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Abstract
In this paper, we prove some results on the existence of fixed points for multivalued maps with respect to general distance.

Our results improve and generalize a number of known fixed point results including the fixed point results. c©2017 All rights
reserved.
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1. Introduction and preliminaries

The well-known Banach contraction principle, which asserts that each single-valued contraction self-
map on a complete metric space has a unique fixed point, plays a central role in nonlinear analysis and
has many generalizations in a number of different directions. Susuki [16] proved a simple but new type
of generalization of the Banach contraction principle for single-valued maps on metric spaces. Recently,
using the concept of a mean on the Banach space `∞, Hasegawa et al. [3] proved a useful result on
the existence of unique fixed point for single-valued self-maps on metric spaces. Using the concept of
the Hausdorff metric, Nadler [13] introduced a notion of multivalued contraction map and proved a
multivalued version of the Banach contraction principle, which states that each closed bounded valued
contraction map on a complete metric space has a fixed point. Since then various fixed point results
concerning multivalued contractions have appeared. In [6], Kikawa and Susuki proved a beautiful fixed
point result which generalizes the above mentioned result of Suzuki and Nadler’s fixed point result. Also
see, [1, 7, 15] and references therein. In fact, without using the Hausdorff metric, the existence part can
be proved under much less stringent conditions. Among others Husain and Latif [4], Feng and Liu [2]
have generalized Nadler’s fixed point result without using the Hausdorff metric. Fixed point theory of
multivalued maps has lots of applications in convex optimization, see [11, 12, 14, 21].

Introducing a notion of w-distance on a metric space, Kada et al. [5] improved several classical results
in metric fixed point theory. While, Suzuki and Takahashi [17] have introduced notions of single-valued
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and multivalued weakly contractive maps with respect to w-distance and proved fixed point results for
such maps. Recent fixed point results concerning w-distance can be found in [8, 9, 10, 18, 19]. Recently,
using the mean and w-distance, Takahashi et al. [20] proved fixed point result for single-valued maps,
which contains the fixed point result of Hasegawa et al. [3] as a special case.

In this paper, we prove some results on the existence of fixed points for multivalued maps with respect
to w-distance. Our results improve and generalize a number of known fixed point results including the
fixed point results of [3, 6, 13, 20].

Let us recall some useful notions and facts.
Let (X,d) be a metric space. We use 2X to denote a collection of nonempty subsets of X and Cl(X) a

collection of all nonempty closed subsets of X. An element x ∈ X is called a fixed point of a multivalued
map T : X→ 2X if x ∈ T(x). We denote Fix(T) = {x ∈ X : x ∈ T(x)}.

A sequence {xn} in X is called an orbit of T at x0 ∈ X if xn ∈ T(xn−1) for all n > 1.
A map f : X → R is called lower semicontinuous if for any sequence {xn} ⊂ X with xn → x ∈ X implies

that f(x) 6 lim inf
n→∞ f(xn).

A multivalued map T : X → 2X is said to be contractive [4] if there exists r ∈ [0, 1) such that for any
x,y ∈ X and u ∈ Tx there is v ∈ Ty with d (u, v) 6 rd (x,y) . In [4], it has been proved that each closed
valued contractive map has fixed point, which is an improved version of the Nadler’s result [13].

Kada et al. [5] introduced the w-distance on a metric space as follows:
Let (X,d) be a metric space. A function p : X× X → [0,∞) is said to be a w-distance on X if the

following are satisfied for all x,y, z ∈ X:

(i) p(x, z) 6 p(x,y) + p(y, z) for all x,y, z ∈ X;

(ii) for any x ∈ X, p(x, .) : X→ [0,∞) is lower semicontinuous;

(iii) for any ε > 0, there exists δ > 0 such that p(z, x) < δ and p(z,y) < δ imply d (x,y) 6 ε.

Note that, in general for x,y ∈ X, p(x,y) 6= p(y, x) and not either of the implications p(x,y) = 0 ⇔
x = y necessarily hold. Clearly, the metric d is a w-distance on X. Let (Y, ‖.‖) be a normed space. Then
the functions p1,p2 : Y × Y → [0,∞) defined by p1(x,y) = ‖y‖ and p2(x,y) = ‖x‖+ ‖y‖ for all x,y ∈ Y are
w-distances [5]. Many other examples and properties of the w-distance can be found in [5, 18]. We denote
by W(X) the set of all w-distances on X. A w-distance p on X is called symmetric if p (x,y) = p (y, x) for
all x,y ∈ X . We denote by W0 (X) the set of all symmetric w-distances on X.

The following lemma concerning w-distance is fundamental.

Lemma 1.1 ([5]). Let X be a metric space with metric d and let p be a w-distance on X. Let {xn} and {yn} be
sequences in X. Let {αn} and {βn} be sequences in [0,∞) converging to 0, and let x,y, z ∈ X. Then, the following
hold:

(a) if p(xn,y) 6 αn and p(xn, z) 6 βn for any n ∈N, then y = z; in particular, if p(x,y) = 0 and p(x, z) = 0,
then y = z;

(b) if p(xn,yn) 6 αn and p(xn, z) 6 βn for any n ∈N, then {yn} converges to z;
(c) if p(xn, xm) 6 αn for any n,m ∈N with m > n, then {xn} is a Cauchy sequence;
(d) if p(y, xn) 6 αn for any n ∈N, then {xn} is a Cauchy sequence.

Let (X,d) be a metric space. A multivalued mapping T : X→ 2X is said to be p-contractive [17] if there
exist p ∈W(X) and r ∈ [0, 1) such that for any x,y ∈ X and u ∈ Tx there is v ∈ Ty with

p (u, v) 6 rp (x,y) .

In particular, a single-valued mapping f : X → X is said to be p-contractive if there exist p ∈ W(X) and
r ∈ [0, 1) such that p (f (x) , f (y)) 6 rp (x,y) for all x,y ∈ X. Using w-distance, Suzuki and Takahashi [17]
proved that each p-contractive multivalued map T : X → Cl(X) has a fixed point, which is an improved
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version of the corresponding results in [4, 13]. Further, they deduced that each single-valued p-contractive
self-map on X has a unique fixed point, which is an improved version of the Banach contraction principle.

Now, we recall the notion of the mean.
Let `∞ be the Banach space of bounded sequence with supremum norm and let (`∞)∗ be the dual

space of `∞. We denote by µ(x) the value of µ at x = {xn} ∈ `∞. The value of µ(x) is also denoted by
µn(xn). A linear functional µ on `∞ is called a mean if µ(e) = ||µ|| = 1 , where e = (1, 1, 1, ...). A mean µ is
called a Banach limit on `∞ if µn(xn) = µn(xn+1) for all {xn} ∈ `∞. If µ is a Banach limit on `∞, then for
x = {xn} ∈ `∞,

lim inf
n→∞ xn 6 µn (xn) 6 lim sup

n→∞ xn.

In particular, if x = {xn} ∈ `∞, and xn → a ∈ R, then we have µ (x) = µ (xn) = a. For the proof of the
existence of a Banach limit and its other elementary properties, see [19].

2. Fixed point results

We consider a decreasing function β : [0, 1)→ ( 1
2 , 1] defined by β(λ) = 1

1+λ .
First we prove the following useful lemma for multivalued maps with respect to w-distance.

Lemma 2.1. Let (X,d) be a metric space, p ∈ W(X) and Let T : X → Cl(X). Assume that there exists r ∈ [0, 1)
such that for any x,y ∈ X and u ∈ Tx, there exists v ∈ Ty such that

β(r)p(x, Tx) 6 p(x,y) implies p(u, v) 6 rp(x,y).

Then there exists an orbit of T in X which is a Cauchy sequence.

Proof. Let z0 be an arbitrary but fixed element of X and z1 ∈ Tz0. Then, clearly we have

β(r)p(z0, Tz0) 6 β(r)p(z0, z1) 6 p(z0, z1).

Thus, by hypothesis, there is z2 ∈ Tz1 such that

p(z1, z2) 6 rp(z0, z1).

Continuing this process, we get a sequence {zn} in X such that for each n ∈N, zn ∈ Tzn−1 satisfying

p(zn, zn+1) 6 rp(zn−1, zn).

Note that for each n ∈N, we have
p(zn, zn+1) 6 r

np(z0, z1).

Now, for all n,m ∈N, m > n we get

p(zn, zm) 6 p(zn, zn+1) + p(zn+1, zn+2) + . . . + p(zm−1, zm)

6 rnp(z0, z1)[1 + r+ r2 + · · ·+ rm−n−1]

6
rn

1 − r
p(z0, z1).

Take αn = rn

1−r [p(z0, z1)], then clearly αn → 0. Thus, by Lemma 1.1, {zn} is a Cauchy sequence in X.

Now, using Lemma 2.1 we prove some fixed point results for multivalued maps which improve the
fixed point result of Kikawa and Suzuki [6, Theorem 2] for w-distance.

Theorem 2.2. Let (X,d) be a complete metric space. Assume that all the hypotheses of Lemma 2.1 hold. Further
assume that for any orbit {un} of T in X with limit u, we have

β(r)p(un, Tun) 6 p(un,u). (2.1)

Then the map T has a fixed point.
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Proof. It follows from Lemma 2.1 that there exists an orbit {zn} of T at z0 ∈ X which is a Cauchy se-
quence. Due to the completeness of X, there exists some z ∈ X such that zn → z. Now, using the lower
semicontinuity of p(zn, .) and the proof of Lemma 2.1, we have

p(zn, z) 6 lim inf
m→∞ [p(zn, zm)] 6

rn

1 − r
[p(z0, z1)].

Since zn ∈ Tzn−1 and z ∈ X, using the hypothesis and the definition of T , there exists wn ∈ Tz such that

p(zn,wn) 6 rp(zn−1, z).

Then
p(zn,wn) 6

rn

1 − r
p(u0,u1)

and thus, by Lemma 1.1, we have wn → z. Since Tz is closed, we get z ∈ Tz.

Now, we prove a fixed point result, where the condition (2.1) of Theorem 2.2 is dispensable with
somewhat natural condition.

Theorem 2.3. Assume that all the hypotheses of Theorem 2.2 except the inequality (2.1) hold. Further assume that

inf{p(x,u) + p(x, Tx) : x ∈ X} > 0,

for every u ∈ X with u /∈ Tu. Then, the map T has a fixed point.

Proof. Due to Lemma 2.1 there exists an orbit sequence {zn} of T at z0 ∈ X which is a Cauchy sequence
and for each n ∈N we have

p(zn, zn+1) 6 r
np(z0, z1),

where 0 < r < 1. Further, due to the completeness of X, and the lower semicontinuity of p(zn, .), we have
zn → z ∈ X and

p(zn, z) 6
rn

1 − r
p(z0, z1).

Assume that z /∈ Tz. Then, using the hypothesis, we have

0 < inf{p(u, z) + p(u, Tu) : u ∈ X}
6 inf{p(zn, z) + p(zn, Tzn) :: n ∈N}

6 inf
{
rn

1 − r
p(z0, z1) + r

np(z0, z1) : n ∈N

}
6

{
2 − r

1 − r
p(z0, z1)

}
inf{rn : n ∈N} = 0,

which is impossible and hence z is a fixed point of T .

Now, using notions of mean and w-distance we prove a general result on the existence of fixed points
for multivalued maps, which improve and generalize a number of known results.

Theorem 2.4. Let (X,d) be a metric space, p ∈ W0(X) , T : X → 2X , {xn} be a sequence such that {p (xn, z)} is
bounded for some z ∈ X, and T : X → 2X be a multivalued mapping. Suppose there exist r ∈ [0, 1) and a mean µ
on `∞ such that for any y ∈ X there is v ∈ Ty with

µnp (xn, v) 6 rµnp (xn,y) . (2.2)

Then there exists u ∈ X such that u ∈ Tu and p (u,u) = 0.
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Proof. First we note that for any y ∈ X, the sequence {p (xn,y)} is bounded. Indeed, by the hypothesis,
the sequence {p (xn, z)} is bounded for some z ∈ X, so for any y ∈ X and n ∈N we have

p (xn,y) 6 p (xn, z) + p (z,y) 6 sup
j∈N

p
(
xj, z

)
+ p (z,y) <∞.

Using a mean µ on `∞, we define a function

g (y) = µnp (xn,y) , y ∈ X.

Then, clearly g is a real-valued continuous function on X. Let z0 be an arbitrary but fixed element of X,
then by definition there exists z1 ∈ Tz0 such that

µnp (xn, z1) 6 rµnp (xn, z0) .

Continuing this process, we get a sequence zm ∈ Tzm−1 such that

µnp (xn, zm) 6 rmµnp (xn, z0) . (2.3)

Now, for m,n ∈N, we have

p (zm, zm+1) 6 p (zm, xn) + p (xn, zm+1) .

Applying µn, we have

p (zm, zm+1) 6 µnp (zm, xn) + µnp (xn, zm+1)

= µnp (xn, zm) + µnp (xn, zm+1)

6 rmµnp (xn, z0) + r
m+1µnp (xn, z0)

= rm (1 + r)g (z0) .

Thus, for any k,m ∈N with m > k, we have

p (zk, zm) 6 p (zk, zk+1) + p (zk+1, zk+2) + · · ·+ p (zm−1, zm)

6 rk (1 + r)g(z0) + r
k+1 (1 + r)g(z0) + · · ·+ rm−1 (1 + r)g(z0) + · · ·

= rk (1 + r)g(z0)
[
1 + r+ r2 + r3 + · · ·+ rm−1]

6 rk (1 + r)g(z0)

[
1

1 − r

]
.

Since r ∈ [0, 1), we have rk (1 + r)g(z0)
[ 1

1−r

]
→ 0 as l → ∞. Thus by Lemma 1.1 (c), {zm} is a Cauchy

sequence in X. Since X is complete, then, there exists some q ∈ X such that {zm} converges to q. Now,
since p is lower-semicontinuous, for any n ∈N, we have

p (xn,q) 6 lim inf
m→∞ p (xn, zm) ,

and thus, we have
g(q) = µnp (xn,q) 6 µn lim inf

m→∞ p (xn, zm).

Also note that for any k,m,n, m > k

p (xn, zm) 6 p (xn, zk) + p (zk, zm) 6 p (xn, zk) + rk (1 + r)g (z0)
1

1 − r
.

Thus, we get

µn lim sup
m→∞ p (xn, zm) 6 µnp (xn, zk) + rk (1 + r)g (z0)

1
1 − r

.
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Now, passing the limit as k→∞, we have

µn lim sup
m→∞ p (xn, zm) 6 lim inf

k→∞ µnp (xn, zk) + lim
k→∞rk (1 + r)g (z0)

1
1 − r

6 lim inf
k→∞ µnp (xn, zk) .

We get

g (q) 6 µn lim inf
m→∞ p (xn, zm) 6 µnlim sup

m→∞ p (xn, zm)

6 lim inf
m→∞ µnp (xn, zm)

= lim inf
m→∞ g (zm)

6 lim sup
m→∞ g (zm) .

Further, note that for each m ∈N and zm ∈ Tzm−1, we have

g (zm) = µnp (xn, zm) 6 rµnp (xn, zm−1) 6 · · · 6 rmµnp (xn, z0) = rmg (z0) ,

and letting m→∞, we get
lim sup
m→∞ g (zm) 6 0,

and thus, using (2.2) and (2.3), we get g (q) 6 0. Hence

g (q) = µnp (xn,q) = 0.

Now, we show that q ∈ Tq and p(q,q) = 0. Since q ∈ X, so there exists w ∈ Tq such that

µnp (xn,w) 6 rµnp (xn,q) = rg(q).

Also, for each n ∈N,
p (w,q) 6 p (w, xn) + p (xn,q) .

Thus,

p (w,q) 6 µnp (w, xn) + µnp (xn,q) = µnp (xn,w) + µnp (xn,q) 6 (1 + r)g(q) = 0,

that is, p (w,q) = 0. Now, it is enough to show that q = w. Note that

p (w,w) 6 µnp (w, xn) + µnp (xn,w) 6 rµnp (xn,q) + rp (xn,q) = 0

and thus, p(w,w) = 0. By Lemma 1.1 we get q = w ∈ Tq and p (q,q) = 0.

Remark 2.5. Theorems 2.2 and 2.3 are improved versions of [6, Theorem 2] for w-distance. Theorem 2.4
improves and generalizes a number of existence results including the corresponding results of [3, 20].
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