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Abstract
This paper is mainly devoted to present new sufficient conditions in terms of Fréchet coderivatives for the local metric

regularity, the metric regularity, the Lipschitz-like property, the nonemptiness and the lower semicontinuity of random implicit
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1. Introduction

Let X, P be topological spaces, Y be a topological vector space, F : X× P ⇒ Y be a multifunction, and
(x0,p0) ∈ X× P be a pair such that

0 ∈ F(x0,p0). (1.1)

The multifunction G : P ⇒ X given by

G(p) := {x ∈ X|0 ∈ F(x,p)}, (1.2)

is called the implicit multifunction defined by the inclusion

0 ∈ F(x,p).

The problem is to find some verifiable conditions on F such that G has the desirable properties. In the
literature, different topological, metric and differential properties (e.g., lower semicontinuity, metric reg-
ularity, Lipschitz-like property, upper Lipschitz continuity, B-differentiability) of implicit multifunctions
are considered. Of course the nonemptiness of the sets G(p) for all p in a neighborhood of p0, is also an
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important property. The structure of F and its behavior around (x0,p0) decide local properties of G in a
neighborhood of the point (p0, x0) in its graph.

The study of the stability of implicit multifunctions has a long history. The pioneering works of
Robinson [12–15] gave good samples for implicit function theorems and their applications. Later, Ledyaev
and Zhu [7], Ngai and Théra [11] established sufficient conditions for the metric regularity of the implicit
multifunction (1.2) in terms of Fréchet coderivatives in Banach spaces with Fréchet-smooth Lipschitz
bump functions. By using the scheme given by Yen [19], Lee et al. [8] showed some sufficient conditions
for the nonemptiness, the lower semicontinuity, the metric regularity and the Lipschitz-like property
of the implicit multifunction (1.2) in terms of normal coderivatives in Asplund spaces. Huy and Yao
[6] established another set of sufficient conditions for the local metric regularity and the Lipschitz-like
property of the implicit multifunction (1.2) in terms of normal coderivatives in Asplund spaces. Durea
[2] obtained implicit multifunction results by simply specializing the openness results, and studied the
metric regularity of implicit multifunctions in terms of normal coderivatives in Asplund spaces. Durea
and Strugariu [3] also obtained implicit multifunction results by simply specializing the openness results,
and studied the metric regularity and the Lipschitz-like property of implicit multifunctions in terms of
Fréchet coderivatives in Asplund spaces. Huy et al. [5] gave new sufficient conditions for both the metric
regularity and the Lipschitz-like property of implicit multifunctions in terms of Clarke coderivatives in
general Banach spaces.

More recently, Yang and Huang [17] considered the following random implicit multifunction. Let
(Ω,A) be a measurable space, X, P be two topological spaces, Y be a topological vector space, F : Ω×X×
P ⇒ Y be a multifunction, and (x0,p0) ∈ X× P be a pair such that

0 ∈ F(ω, x0,p0),

for all ω ∈ Ω. The multifunction G : Ω× P ⇒ X given by

G(ω,p) := {x ∈ X|0 ∈ F(ω, x,p)}, (1.3)

is called the random implicit multifunction defined by the inclusion

0 ∈ F(ω, x,p), (1.4)

if for each p ∈ P, G(·,p) : Ω ⇒ X is measurable. By using normal coderivatives, Yang and Huang [17]
gave sufficient conditions for the local metric regularity, the metric regularity, the Lipschitz-like property,
the nonemptiness and the lower semicontinuity of the random implicit multifunction (1.3) in separable
Asplund spaces. The results in [17] extended the corresponding results in [6, 8]. It is worth mentioning
that implicit multifunction theorems in [17] are required the assumption on inner semicompactness of
the metric projection mapping, while implicit multifunction theorems in [2, 3, 5, 18] are not required
the assumption. So it is natural for us to discuss random implicit multifunction theorems without the
assumption on inner semicompactness of the metric projection mapping in terms of Fréchet coderivatives.

The main purpose of this paper is to establish some random implicit multifunction theorems without
the assumption on inner semicompactness of the metric projection mapping. Firstly, a random implicit
multifunction theorem which gives sufficient conditions for the local metric regularity of the random
implicit multifunction (1.3) is proved in separable Asplund spaces. Secondly, the metric regularity, the
Lipschitz-like property, the nonemptiness and the lower semicontinuity of the random implicit multifunc-
tion (1.3) are discussed in separable Asplund spaces. An example is given to illustrate the above random
implicit multifunction theorems. Finally, some applications to stability analysis for solution maps of
random parametric generalized equations are given under suitable conditions. The results obtained in
this paper are different from those in Yang and Huang [17], and generalize the corresponding results in
[2, 3, 5, 6, 8].

The paper is organized as follows. Section 2 recalls some basic concepts and results from variational
analysis and generalized differentiation. Section 3 presents some random implicit multifunction theorems.
Section 4 gives applications to stability analysis for solution maps of random parametric generalized
equations.
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2. Preliminaries

Throughout this paper we use standard notation of variational analysis and generalized differentia-
tion. We refer the reader to the books by Mordukhovich [9, 10] for more details and discussions. Unless
otherwise stated, all spaces under consideration are Banach spaces whose norms are always denoted by
‖ · ‖. For any X, we consider its dual space X∗ equipped with the weak∗ topology w∗, where 〈·, ·〉 means
the canonical pairing. As usual, BX and BX∗ stand for the closed unit balls of the Banach space X and its
dual X∗, respectively. The closed ball with center x and radius ρ is denoted by B(x, ρ). The symbol A∗

is the adjoint operator of a linear continuous operator A. For a subset Ω ⊂ X, clΩ, intΩ, bdΩ, coΩ and
coneΩ denote, respectively, the closure, the interior, the boundary, the convex hull and the conic hull of
Ω. Throughout the paper, we use the notation

x
Ω−→ x̄⇐⇒ x→ x̄ with x ∈ Ω.

Given a multifunction F : X⇒ X∗ between a Banach space X and its topological dual X∗, we denote by

Limsupx→x̄F(x) := {x∗ ∈ X∗|∃ sequences xk → x̄ and x∗k
w∗−−→ x∗ with x∗k ∈ F(xk) for all k ∈N},

the sequential Painlevé-Kuratowski upper/outer limit with respect to the norm topology of X and the
weak∗ topology of X∗, where N := {1, 2, · · · }. Note that the symbol := means “equal by definition.

Definition 2.1 (generalized normals [9, Definition 1.1]). Let Ω be a nonempty subset of X.

(i) Given x ∈ Ω and ε > 0, define the set of ε-normals to Ω at x by

N̂ε(x;Ω) :=

x∗ ∈ X∗
∣∣∣∣∣∣lim sup
u
Ω−→x

〈x∗,u− x〉
‖u− x‖

6 ε

 . (2.1)

When ε = 0, elements of (2.1) are called Fréchet normals and their collection, denoted by N̂(x;Ω),
is the prenormal cone to Ω at x. If x /∈ Ω, we put N̂ε(x;Ω) := ∅ for all ε > 0.

(ii) Let x̄ ∈ Ω. Then x∗ ∈ X∗ is a basic/limiting normal to Ω at x̄ if there are sequences εk ↓ 0, xk
Ω−→ x̄

and x∗k
w∗−−→ x∗ such that x∗k ∈ N̂εk(xk;Ω) for all k ∈N. The collection of such normals

N(x̄;Ω) := Limsupx→x̄,ε↓0N̂ε(x;Ω),

is the (basic, limiting) normal cone to Ω at x̄. Put N(x̄;Ω) := ∅ if x̄ /∈ Ω.

A set Ω ⊂ X is sequentially normally compact (SNC) at x̄ ∈ Ω if for any sequence (εk, xk, x∗k) ∈
[0,∞)×Ω×X∗ satisfying

εk ↓ 0, xk → x̄, x∗k ∈ N̂εk(xk;Ω) and x∗k
w∗−−→ 0,

one has ‖x∗k‖ → 0 as k→∞.
Let F : X⇒ Y a multifunction between topological spaces. Denote by

domF := {x ∈ X|F(x) 6= ∅}, rgeF := {y ∈ Y|∃ x with y ∈ F(x)},

the domain and the range of F. Each multifunction F : X⇒ Y is uniquely associated with its graph

gphF := {(x,y) ∈ X× Y|y ∈ F(x)},

in the product space X× Y. The space X× Y is Banach with respect to the sum norm

‖(x,y)‖ := ‖x‖+ ‖y‖,

imposed on X× Y unless otherwise stated. F is lower semicontinuous (in short, l.s.c.) at x̄ ∈ domF if for
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any open set V ⊂ Y satisfying F(x̄) ∩ V 6= ∅, there exists a neighborhood U of x̄ such that F(x) ∩ V 6= ∅
for all x ∈ U. F is lower/inner semicompact at x̄ ∈ domF if for any sequence xk → x̄, there is a sequence
yk ∈ F(xk) that contains a convergent subsequence as k → ∞. It is clear that if F is l.s.c. at x̄, then F is
inner semicompact at x̄.

Definition 2.2 (coderivatives [9, Definition 1.32]). Let F : X⇒ Y with domF 6= ∅.

(i) Given (x,y) ∈ X × Y and ε > 0, we define the ε-coderivative of F at (x,y) as a multifunction
D̂∗εF(x,y) : Y∗ ⇒ X∗ with the values

D̂∗εF(x,y)(y∗) := {x∗ ∈ X∗|(x∗,−y∗) ∈ N̂ε((x,y); gphF)}.

When ε = 0, this construction is called the precoderivative or Fréchet coderivative of F at (x,y) and
is denoted by D̂∗F(x,y). It follows from the definition that D̂∗εF(x,y)(y∗) = ∅ for all ε > 0 and
y∗ ∈ Y∗ if (x,y) /∈ gphF.

(ii) Given (x,y) ∈ X× Y, we define the normal coderivative of F at (x,y) as a multifunction D∗NF(x,y) :
Y∗ ⇒ X∗ with the values

D∗NF(x,y)(y∗) := {x∗ ∈ X∗|(x∗,−y∗) ∈ N((x,y); gphF)}.

We put D∗NF(x,y)(y∗) := ∅ for all y∗ ∈ Y∗ if (x,y) /∈ gphF.

Recall that a single-valued mapping f : X→ Y is said to be Fréchet differentiable at x̄ if there is a linear
continuous operator ∇f(x̄) : X→ Y, called the Fréchet derivative of f at x̄, such that

lim
x→x̄

f(x) − f(x̄) −∇f(x̄)(x− x̄)
‖x− x̄‖

= 0.

A mapping f : X → Y is said to be strictly differentiable at x̄ if there is a linear continuous operator
∇f(x̄) : X→ Y such that

lim
x,u→x̄

f(x) − f(u) −∇f(x̄)(x− u)
‖x− u‖

= 0.

Let ϕ : X→ R be an extended real-valued function. We say that ϕ is proper if ϕ(x) > −∞ for all x ∈ X
and its domain

domϕ := {x ∈ X|ϕ(x) <∞},

is nonempty. With any ϕ we associate its epigraph

epiϕ := {(x,µ) ∈ X×R|µ > ϕ(x)}.

Recall that ϕ is l.s.c. at a point x̄ with |ϕ(x̄)| <∞ if

lim inf
x→x̄

ϕ(x) > ϕ(x̄).

We say that ϕ is l.s.c. around x̄ when it is l.s.c. at any point of some neighborhood of x̄.

Definition 2.3 (subdifferentials [9, Definition 1.77 and Definition 1.83]). Consider a function ϕ : X → R

and a point x̄ ∈ X with |ϕ(x̄)| <∞.

(i) The set
∂̂ϕ(x̄) = {x∗ ∈ X∗|(x∗,−1) ∈ N̂((x̄,ϕ(x̄)); epiϕ)},

is the presubdifferential or Fréchet subdifferential of ϕ at x̄. We put ∂̂ϕ(x̄) := ∅ if |ϕ(x̄)| =∞.
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(ii) The set
∂ϕ(x̄) := {x∗ ∈ X∗|(x∗,−1) ∈ N((x̄,ϕ(x̄)); epiϕ)},

is the (basic, limiting) subdifferential of ϕ at x̄, and its elements are basic subgradients of ϕ at this
point. We put ∂ϕ(x̄) := ∅ if |ϕ(x̄)| =∞.

If ϕ is convex, then both these subdifferentials do coincide with the classical Fenchel subdifferential.
If δΩ denotes the indicator function associated with a nonempty set Ω ⊂ X (i.e., δΩ(x) = 0 if x ∈ Ω,
δΩ(x) = +∞ if x /∈ Ω), then for any x̄ ∈ Ω, ∂̂δΩ(x̄) = N̂(x̄,Ω) and ∂δΩ(x̄) = N(x̄,Ω).

Let ϕ : X → R be finite at x̄. We say that ϕ is sequentially normally epi-compact (SNEC) at x̄ if its
epigraph is SNC at (x̄,ϕ(x̄)). If ϕ is Lipschitz continuous around x̄, then it is SNEC at x̄.

Lemma 2.4 (Ekeland’s variational principle [9, Theorem 2.26]). Let (X,d) be a metric space. Assume that X is
complete and that ϕ : X → R is a proper l.s.c. function bounded from below. Let ε > 0 and x0 ∈ X be given such
that ϕ(x0) 6 infXϕ+ ε. Then for any λ > 0 there is x̄ ∈ X satisfying

(i) ϕ(x̄) 6 ϕ(x0);

(ii) d(x̄, x0) 6 λ;

(iii) ϕ(x) + (ε/λ)d(x, x̄) > ϕ(x̄) for all x 6= x̄.

Lemma 2.5 (nonsmooth versions of Fermat’s rule [9, Proposition 1.114]). Let ϕ : X→ R be finite at x̄. Then

0 ∈ ∂̂ϕ(x̄) ⊂ ∂ϕ(x̄),

if ϕ has a local minimum at x̄.

A Banach space X is Asplund, or it has the Asplund property, if every convex continuous function
ϕ : U → R defined on an open convex subset U of X is Fréchet differentiable on a dense subset of U; see
[9, Definition 2.17]. The class of Asplund spaces is large. For instance, any reflexive Banach space is an
Asplund space. The calculus of normal cones and subdifferentials in Asplund spaces is simpler than that
in general Banach spaces; see [9, Chapter 3].

Lemma 2.6 (fuzzy sum rule [9, Theorem 2.33]). Let X be an Asplund space and ϕ1,ϕ2 : X→ R = R∪ {∞} be
such that ϕ1 is Lipschitz continuous around x̄ ∈ domϕ1 ∩ domϕ2 and ϕ2 is l.s.c. around x̄. Then for any γ > 0
one has

∂̂(ϕ1 +ϕ2)(x̄) ⊂
⋃

{∂̂ϕ1(x1) + ∂̂ϕ2(x2) : xi ∈ x̄+ γBX, |ϕi(xi) −ϕi(x̄)| 6 γ, i = 1, 2}+ γBX∗ .

Lemma 2.7 (coderivatives of differentiable mappings [9, Theorem 1.38]). Let f : X → Y be Fréchet differen-
tiable at x̄. Then

D̂∗f(x̄)(y∗) = {∇f(x̄)∗(y∗)}, ∀y∗ ∈ Y∗.

Lemma 2.8 (coderivative sum rules with equalities [9, Theorem 1.62]). Let f : X→ Y be Fréchet differentiable
at x̄, and let F : X ⇒ Y be an arbitrary set-valued mapping such that ȳ− f(x̄) ∈ F(x̄) for some ȳ ∈ Y. Then for all
y∗ ∈ Y∗, we have

D̂∗(f+ F)(x̄, ȳ)(y∗) = ∇f(x̄)∗y∗ + D̂∗F(x̄, ȳ− f(x̄))(y∗).

Consider the multifunction G defined by (1.2) in a neighborhood of a point (x0,p0) satisfying (1.1).
G is said to be locally metrically regular around (x0,p0) with modulus γ > 0 if there are a neighbor-

hood V of x0, a neighborhood U of p0, and a constant µ > 0 such that

dist(x,G(p)) 6 γdist(0, F(x,p)), (2.2)

for all (x,p) ∈ V ×U with dist(0, F(x,p)) < µ. The adverb “locally” will be omitted if the last inequality is
not required for the fulfillment of (2.2).
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G is said to be Lipschitz-like around (p0, x0) with modulus l > 0 if there are a neighborhood U of p0
and a neighborhood V of x0 such that

G(p ′)∩ V ⊂ G(p) + l‖p ′ − p‖BX, ∀p,p ′ ∈ U.

The Lipschitz-like property is also known as the pseudo-Lipschitzian property or the Aubin property of
multifunctions.

At the end of this section, we give some basic concepts and results about measurability of multi-
functions. For details, we refer the reader to Aubin and Frankowska [1, Chapter 8] and Himmelberg
[4].

Consider a set Ω and a family A of subsets of Ω. If A is a σ-algebra, we call the pair (Ω,A) a
measurable space and the elements of A measurable sets. In case there is a σ-finite measure defined on
A, we say that Ω is σ-finite, and if there is a complete σ-finite measure defined on A we call Ω complete.
Further, if Ω is a topological space, then the smallest σ-algebra containing all open sets is called the Borel
σ-algebra. We denote it by B(Ω) or simply B, when it is clear from the context.

Definition 2.9 (measurability of multifunctions [4]). Consider a measurable space (Ω,A), a separable
metrizable space X, and a multifunction F : Ω ⇒ X. Then F is measurable (weakly measurable, B-
measurable, C-measurable) if and only if

F−1(B) := {ω ∈ Ω : F(ω)∩B 6= ∅}

is measurable for each closed (resp., open, Borel, compact) subset B of X.
If F : Y ⇒ Xwhere Y is a topological space, then the assertion that F is measurable (weakly measurable,

etc.) means that F is measurable (weakly measurable, etc.) when Y is assigned the σ-algebra B of Borel
subsets of Y. Likewise, if F : Ω× Y ⇒ X, then the various kinds of measurability of F are always defined
in terms of the product σ-algebra A×B generated by the sets A×B, where A ∈ A and B ∈ B.

Lemma 2.10 (measurable projection [1, Theorem 8.3.2]). Let (Ω,A,µ) be a complete σ-finite measure space, X
a complete separable metric space and G ∈ A×B(X). Then its projection is measurable:

πΩ(G) := {ω ∈ Ω : ∃ x ∈ X, (ω, x) ∈ G} ∈ A.

3. Random implicit multifunction theorems

Theorem 3.1. Let X, Y be separable Asplund spaces, P a topological space, (Ω,A,µ) a complete σ-finite measure
space, F : Ω× X× P ⇒ Y a multifunction such that for each p ∈ P, F(·, ·,p) : Ω× X ⇒ Y is measurable. Let
G : Ω× P ⇒ X be the multifunction defined by (1.3), and (x0,p0) ∈ X× P a pair such that 0 ∈ F(ω, x0,p0) for all
ω ∈ Ω. Denote Fω,p(·) := F(ω, ·,p). Suppose that for each ω ∈ Ω, there exist constants r > 0 and σ > 0 such
that:

(i) for any p ∈ B(p0, r), the multifunction Fω,p(·) is closed;

(ii) for any (x,p) ∈ B(x0, r)×B(p0, r),

σ 6 inf{‖x∗‖ : x∗ ∈ D̂∗Fω,p(x,y)(y∗), y ∈ B(0, r)∩ Fω,p(x), ‖y∗‖ = 1}.

Then

(1) for any p ∈ P, G(·,p) : Ω⇒ X is measurable;

(2) for any ω ∈ Ω, G(ω, ·) : P ⇒ X is locally metrically regular around (x0,p0) with modulus 1+σ
σ . In fact, for

any µ ∈
(

0, rσ
2(1+σ)

)
, we have

dist(x,G(ω,p)) 6
1 + σ

σ
dist(0, F(ω, x,p)), (3.1)

for all (x,p) ∈ B(x0, r2 )×B(p0, r) with dist(0, F(ω, x,p)) < µ.
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Proof. (1) Fix any p ∈ P, and consider the graph of G(·,p) : Ω⇒ X which has the form

gphG(·,p) = {(ω, x) ∈ Ω×X : x ∈ G(ω,p)}
= {(ω, x) ∈ Ω×X : 0 ∈ F(ω, x,p)}
= {(ω, x) ∈ Ω×X : F(ω, x,p)∩ {0} 6= ∅}.

Since F(·, ·,p) : Ω×X⇒ Y is measurable, we have that

{(ω, x) ∈ Ω×X : F(ω, x,p)∩ {0} 6= ∅} ∈ A×B(X),

and it follows that
gphG(·,p) ∈ A×B(X).

For any B ∈ B(X), by Lemma 2.10, we know that

πΩ(gphG(·,p)∩ (Ω×B)) ∈ A.

Since

πΩ(gphG(·,p)∩ (Ω×B)) = {ω ∈ Ω : ∃ x ∈ X, (ω, x) ∈ gphG(·,p)∩ (Ω×B)}
= {ω ∈ Ω : ∃ x ∈ B, x ∈ G(ω,p)}
= {ω ∈ Ω : G(ω,p)∩B 6= ∅},

we obtain that
{ω ∈ Ω : G(ω,p)∩B 6= ∅} ∈ A.

Hence, G(·,p) : Ω⇒ X is B-measurable. It follows that G(·,p) : Ω⇒ X is measurable.

(2) Fix any ω ∈ Ω. By the assumptions, there exist constants r > 0 and σ > 0 such that conditions (i) and
(ii) are satisfied. Fix any µ ∈

(
0, rσ

2(1+σ)

)
, and any (x,p) ∈ B(x0, r2 )× B(p0, r) with dist(0, F(ω, x,p)) < µ.

Now we prove that (3.1) holds. If dist(0, F(ω, x,p)) = 0, then 0 ∈ F(ω, x,p) and hence x ∈ G(ω,p).
Therefore, both sides of (3.1) are equal to 0 and (3.1) holds. Hence, we can assume that dist(0, F(ω, x,p)) =
α, where α ∈ (0,µ). It remains to show that

dist(x,G(ω,p)) 6
α(1 + σ)

σ
.

Since 0 < α < µ < rσ
2(1+σ) , we obtain that 2α

r <
σ

1+σ . For each ε ∈ (0, r− µ) with 2(α+ε)
r < σ

1+σ , by the
definition of the distance function, there exists ȳ ∈ Fω,p(x) such that ‖ȳ‖ < α+ ε < µ+ ε < r. Define the
function fp : X× Y → R by

fp(x
′,y ′) := ‖y ′‖+ δ((x ′,y ′); gphFw,p), ∀(x ′,y ′) ∈ X× Y.

We claim that fp is l.s.c. on X× Y due to condition (i). Fix any t ∈
(

2(α+ε)
r , σ

1+σ

)
, and put β := fp(x, ȳ) =

‖ȳ‖. We see that

fp(x, ȳ) = t · β
t

.

Clearly,

fp(x, ȳ) 6 inf
(x ′,y ′)∈B(x0,r)×B(0,r)

fp(x
′,y ′) + t · β

t
.

By the Ekeland variational principle in Lemma 2.4, there exists (x̂, ŷ) ∈ B(x0, r)×B(0, r) such that

fp(x̂, ŷ) 6 fp(x, ȳ), ‖(x̂, ŷ) − (x, ȳ)‖ 6 β
t

,
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and
fp(x̂, ŷ) 6 fp(x ′,y ′) + t · ‖(x ′,y ′) − (x̂, ŷ)‖, ∀(x ′,y ′) ∈ B(x0, r)×B(0, r).

This implies that (x̂, ŷ) ∈ gphFw,p,

‖ŷ‖ 6 ‖ȳ‖, ‖x̂− x‖+ ‖ŷ− ȳ‖ 6 β
t

,

and
‖ŷ‖ 6 ‖y ′‖+ t(‖x ′ − x̂‖+ ‖y ′ − ŷ‖) + δ((x ′,y ′); gphFw,p), ∀(x ′,y ′) ∈ B(x0, r)×B(0, r). (3.2)

We now show that 0 ∈ Fω,p(x̂). Assume to the contrary that 0 /∈ Fω,p(x̂), then ŷ 6= 0. Obviously,
x̂ ∈ B(x0, r), ŷ ∈ B(0, r). Since

‖x̂− x0‖ 6 ‖x̂− x‖+ ‖x− x0‖ 6
β

t
+
r

2
<
α+ ε

t
+
r

2
<
r

2
+
r

2
= r,

and
‖ŷ‖ 6 ‖ȳ‖ = β < α+ ε < µ+ ε < r,

we have that (x̂, ŷ) ∈ intB(x0, r)× intB(0, r) = int(B(x0, r)×B(0, r)). Define functions ϕ1, ϕ2, ϕ3 : X× Y →
R by

ϕ1(x
′,y ′) := ‖y ′‖,

ϕ2(x
′,y ′) := t(‖x ′ − x̂‖+ ‖y ′ − ŷ‖),

ϕ3(x
′,y ′) := δ((x ′,y ′); gphFw,p),

for all (x ′,y ′) ∈ X× Y.
It follows from (3.2) that (x̂, ŷ) is a local minimum of the function ϕ1 +ϕ2 +ϕ3 on X× Y. From the

nonsmooth version of Fermat’s rule in Lemma 2.5, we know that

(0, 0) ∈ ∂̂(ϕ1 +ϕ2 +ϕ3)(x̂, ŷ).

Using the fact that ϕ1 +ϕ2 is Lipschitz continuous on X× Y and ϕ3 is l.s.c on X× Y, we can apply the
fuzzy sum rule for the Fréchet subdifferential. Choose 0 < γ < min{1 − t, σ−(1+σ)t

1+σ } with 0 /∈ B(ŷ,γ),
B(x̂,γ) ⊂ B(x0, r) and B(ŷ,γ) ⊂ B(0, r). By Lemma 2.6, there exist

(x1
γ,y1

γ) ∈ B(x̂,γ)×B(ŷ,γ) ⊂ B(x0, r)×B(0, r),

and
(x2
γ,y2

γ) ∈ [B(x̂,γ)×B(ŷ,γ)]∩ gphFω,p ⊂ [B(x0, r)×B(0, r)]∩ gphFω,p,

such that
(0, 0) ∈ ∂̂(ϕ1 +ϕ2)(x

1
γ,y1

γ) + ∂̂ϕ3(x
2
γ,y2

γ) + γ(BX∗ ×BY∗).

Morever,
|(ϕ1 +ϕ2)(x

1
γ,y1

γ) − (ϕ1 +ϕ2)(x̂, ŷ)| 6 γ, and |ϕ3(x
2
γ,y2

γ) −ϕ3(x̂, ŷ)| 6 γ.

Observing that ϕ1 and ϕ2 are convex functions and y1
γ 6= 0, we obtain that

(0, 0) ∈ {0}× SY∗ + t(BX∗ × {0}+ {0}×BY∗) + N̂((x2
γ,y2

γ); gphFω,p) + γ(BX∗ ×BY∗).

Hence, there exist y∗1 ∈ SY∗ , (x∗2 ,y∗2) ∈ N̂((x2
γ,y2

γ); gphFω,p), x∗3 ∈ BX∗ and y∗3 ∈ BY∗ such that

‖y∗1‖ = 1, ‖x∗2 + γx∗3‖ 6 t, and ‖y∗1 + y∗2 + γy∗3‖ 6 t.

Let x∗ := x∗2
‖y∗2‖

and y∗ := −
y∗2
‖y∗2‖

. Then we have

(x∗,−y∗) ∈ N̂((x2
γ,y2

γ); gphFω,p).
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It follows that
x∗ ∈ D̂∗Fω,p(x

2
γ,y2

γ)(y
∗).

Since ‖x∗2‖− ‖γx∗3‖ 6 ‖x∗2 + γx∗3‖ 6 t, we obtain that ‖x∗2‖ 6 γ+ t. Furthermore,

t > ‖y∗1 + y∗2 + γy∗3‖ > ‖y∗1‖− ‖y∗2 + γy∗3‖ > 1 − ‖y∗2‖− γ‖y∗3‖ > 1 − ‖y∗2‖− γ.

Hence, ‖y∗2‖ > 1 − γ− t. It follows that

‖x∗‖ =
‖x∗2‖
‖y∗2‖

6
γ+ t

1 − γ− t
< σ,

which is contrary to condition (ii). Therefore, we have shown that 0 ∈ Fω,p(x̂), i.e. x̂ ∈ G(ω,p). It follows
that

dist(x,G(ω,p)) 6 ‖x− x̂‖ 6 β
t
<
α+ ε

t
.

Since t < σ
1+σ , by letting t→ σ

1+σ and ε→ 0, we have that

dist(x,G(ω,p)) 6
α(1 + σ)

σ
=

1 + σ

σ
dist(0, F(ω, x,p)).

Remark 3.2. We notice that [17, Theorem 3.1] is required the assumption on inner semicompactness of the
metric projection mapping, but Theorem 3.1 is not required. Moreover, [17, Theorem 3.1] uses normal
coderivatives, while Theorem 3.1 uses Fréchet coderivatives. Also, we can see from the proof of Theorem
3.1 that the conclusion of the theorem is still valid, if the topological space P is replaced by a metric space.

When considering the deterministic case of Theorem 3.1, we have the following corollary.

Corollary 3.3. Let X, Y be Asplund spaces, P a topological space, F : X× P ⇒ Y a multifunction, G : P ⇒ X the
implicit multifunction defined by (1.2), and (x0,p0) ∈ X×P a pair such that 0 ∈ F(x0,p0). Denote Fp(·) := F(·,p).
Suppose that there exist constants r > 0 and σ > 0 such that:

(i) for any p ∈ B(p0, r), the multifunction Fp(·) is closed;

(ii) for any (x,p) ∈ B(x0, r)×B(p0, r),

σ 6 inf{‖x∗‖ : x∗ ∈ D̂∗Fp(x,y)(y∗), y ∈ B(0, r)∩ Fp(x), ‖y∗‖ = 1}.

Then G is locally metrically regular around (x0,p0) with modulus 1+σ
σ . In fact, for any µ ∈

(
0, rσ

2(1+σ)

)
, we have

dist(x,G(p)) 6
1 + σ

σ
dist(0, F(x,p)),

for all (x,p) ∈ B(x0, r2 )×B(p0, r) with dist(0, F(x,p)) < µ.

Remark 3.4. We notice that [6, Theorem 3.5] is required the assumption on inner semicompactness of the
projection mapping, but Corollary 3.3 is not required. Corollary 3.3 is also similar with [5, Theorem 3.1],
which is based on Clarke coderivative and Clarke subdifferential in Banach spaces. By using different
norm on the product space, the proof of Corollary 3.3 is much simpler than that of [5, Theorem 3.1].

Theorem 3.5. Suppose that all the assumptions of Theorem 3.1 are satisfied. Moreover, assume that

(iii)1 for any ω ∈ Ω, F(ω, ·, ·) is l.s.c. at (x0,p0).

Then

(1) for any p ∈ P, G(·,p) : Ω⇒ X is measurable;
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(2) for any ω ∈ Ω, G(ω, ·) : P ⇒ X is metrically regular around (x0,p0) with modulus 1+σ
σ . In fact, there exist

a neighborhood V of x0 and a neighborhood U of p0 such that

dist(x,G(ω,p)) 6
1 + σ

σ
dist(0, F(ω, x,p)),

for all (x,p) ∈ V ×U.

Remark 3.6. Since the proof of Theorem 3.5 is similar to that of [17, Theorem 3.5], we omit the proof here.
It is worth mentioning that Theorem 3.5 is different from [17, Theorem 3.5], because the assumptions in
Theorem 3.5 is different from that in [17, Theorem 3.5].

Theorem 3.7. Suppose that all the assumptions of Theorem 3.1 are satisfied. Moreover, assume that P is a subset
of a normed space and

(iii)2 for any ω ∈ Ω, there exist a neighborhood V of x0, a neighborhood U of p0 and a constant l > 0 such that

F(ω, x,p ′) ⊂ F(ω, x,p) + l‖p ′ − p‖BY , ∀x ∈ V , ∀p,p ′ ∈ U.

Then

(1) for any p ∈ P, G(·,p) : Ω⇒ X is measurable;

(2) for any ω ∈ Ω, G(ω, ·) : P ⇒ X is Lipschitz-like around (p0, x0).

Remark 3.8. Since the proof of Theorem 3.7 is similar to that of [17, Theorem 3.8], we omit the proof here.
It is worth mentioning that Theorem 3.7 is different from [17, Theorem 3.8], because the assumptions in
Theorem 3.7 is different from that in [17, Theorem 3.8].

Theorem 3.9. Suppose that all the assumptions of Theorem 3.1 are satisfied. Moreover, assume that

(iii)3 for any (ω, x,p) ∈ Ω×B(x0, r)×B(p0, r), the multifunction F(ω, x, ·) is l.s.c. at p.

Then

(1) for any p ∈ P, G(·,p) : Ω⇒ X is measurable;

(2) for any ω ∈ Ω, there exists a constant s ∈ (0, r) such that the multifunction G̃ω : P ⇒ X defined by

G̃ω(p) := G(ω,p)∩ intB(x0, r),

is nonempty and l.s.c. on B(p0, s).

Proof. By Theorem 3.1, conclusion (1) of Theorem 3.9 holds. Now we show that conclusion (2) of Theorem
3.9 also holds. Fix any ω ∈ Ω. Since 0 ∈ F(ω, x0,p0), by condition (iii)3, there exists a neighborhood Ũ of
p0 such that

F(ω, x0,p)∩ intB
(

0,
rσ

1 + σ

)
6= ∅,

for every p ∈ Ũ. Hence,
dist(0, F(ω, x0,p)) <

rσ

1 + σ
,

for every p ∈ Ũ. Choose a number s ∈ (0, r) satisfying B(p0, s) ⊂ Ũ. We want to show that s satisfies the
conclusion (2) of Theorem 3.9.

(a) Fix any p ∈ B(p0, s). Now we show that G̃ω(p) is nonempty. Define the function fp : X× Y → R by

fp(x,y) := ‖y‖+ δ((x,y); gphFw,p), ∀(x,y) ∈ X× Y.

We claim that fp is l.s.c. on X× Y due to condition (i). In particular, it is l.s.c. on B(x0, r)× B(0, r). If
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fp(x0, 0) = 0, then 0 ∈ Fω,p(x0), and hence x0 ∈ G(ω,p). It follows that x0 ∈ G(ω,p) ∩ intB(x0, r). That
is G̃ω(p) 6= ∅. If fp(x0, 0) 6= 0, then 0 /∈ Fω,p(x0), and hence dist(0, F(ω, x0,p)) > 0. We can assume that
α := dist(0, F(ω, x0,p)), where 0 < α < rσ

1+σ < r.
For each ε ∈ (0, r− α) with α+ε

r < σ
1+σ , by the definition of the distance function, there exists ȳ ∈

Fω,p(x0) such that ‖ȳ‖ < α+ ε < r. Let β := fp(x0, ȳ) = ‖ȳ‖, and fix any t ∈
(
α+ε
r , σ

1+σ

)
. We see that

fp(x0, ȳ) = t · β
t

.

Clearly,

fp(x0, ȳ) 6 inf
(x,y)∈B(x0,r)×B(0,r)

fp(x,y) + t · β
t

.

By the Ekeland variational principle in Lemma 2.4, there exists (x̂, ŷ) ∈ B(x0, r)×B(0, r) such that

fp(x̂, ŷ) 6 fp(x0, ȳ), ‖(x̂, ŷ) − (x0, ȳ)‖ 6 β
t

,

and
fp(x̂, ŷ) 6 fp(x,y) + t · ‖(x,y) − (x̂, ŷ)‖, ∀(x,y) ∈ B(x0, r)×B(0, r).

This implies that (x̂, ŷ) ∈ gphFw,p,

‖ŷ‖ 6 ‖ȳ‖, ‖x̂− x0‖+ ‖ŷ− ȳ‖ 6
β

t
,

and
‖ŷ‖ 6 ‖y‖+ t(‖x− x̂‖+ ‖y− ŷ‖) + δ((x,y); gphFw,p), ∀(x,y) ∈ B(x0, r)×B(0, r). (3.3)

Obviously, x̂ ∈ B(x0, r), ŷ ∈ B(0, r). Since

‖x̂− x0‖ 6
β

t
<
α+ ε

t
< r, ‖ŷ‖ 6 ‖ȳ‖ < r,

we have that (x̂, ŷ) ∈ intB(x0, r)× intB(0, r) = int(B(x0, r)×B(0, r)).
We now show that 0 ∈ Fω,p(x̂). Assume to the contrary that 0 /∈ Fω,p(x̂), then ŷ 6= 0. Define functions

ϕ1, ϕ2, ϕ3 : X× Y → R by

ϕ1(x,y) := ‖y‖, ϕ2(x,y) := t(‖x− x̂‖+ ‖y− ŷ‖), ϕ3(x,y) := δ((x,y); gphFw,p), ∀(x,y) ∈ X× Y.

It follows from (3.3) that (x̂, ŷ) is a local minimum of the function ϕ1 + ϕ2 + ϕ3 on X × Y. Arguing
as in Theorem 3.1, we can deduce a contradiction with condition (ii). Therefore, we have shown that
0 ∈ Fω,p(x̂), i.e., x̂ ∈ G(ω,p). It follows that G̃ω(p) 6= ∅.

(b) Fix any p ∈ B(p0, s), and we show that G̃ω(·) is l.s.c. at p. It suffices to show that for any x ∈ G̃ω(p)
and any ε > 0, there exists a constant t > 0 such that

G̃ω(p ′)∩ intB(x, ε) 6= ∅, ∀p ′ ∈ B(p, t).

Since x ∈ G̃ω(p), we have that 0 ∈ F(ω, x,p) and x ∈ intB(x0, r). Choose 0 < η < ε such that B(x,η) ⊂
B(x0, r) and B(p,η) ⊂ B(p0, r). Arguing as above for the pair (x,p) in the place of (x0,p0), the constant η in
the place of r, and the ball B(x,η), B(0,η), B(p,η), B(0, ησ1+σ) instead of B(x0, r), B(0, r), B(p0, r), B(0, rσ1+σ),
respectively, we find a constant 0 < t < η such that

G(ω,p ′)∩ intB(x,η) 6= ∅, ∀p ′ ∈ B(p, t). (3.4)
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Since intB(x,η) ⊂ intB(x0, r)∩ intB(x, ε), from (3.4) we get

G(ω,p ′)∩ intB(x0, r)∩ intB(x, ε) 6= ∅, ∀p ′ ∈ B(p, t).

That is,
G̃ω(p ′)∩ intB(x, ε) 6= ∅, ∀p ′ ∈ B(p, t).

Remark 3.10. We notice that [17, Theorem 3.12] is required the assumption on inner semicompactness
of the metric projection mapping, but Theorem 3.9 is not required. Moreover, [17, Theorem 3.12] uses
normal coderivatives, while Theorem 3.9 uses Fréchet coderivatives. Also, we can see from the proof of
Theorem 3.9 that the conclusion of the theorem is still valid, if the topological space P is replaced by a
metric space.

When considering the deterministic case of Theorem 3.9, we have the following corollary.

Corollary 3.11. Suppose that all the assumptions of Corollary 3.3 are satisfied. Moreover, assume that

(iii)3 for any (x,p) ∈ B(x0, r)×B(p0, r), the multifunction F(x, ·) is l.s.c. at p.

Then there exists a constant s ∈ (0, r) such that the multifunction G̃ : P ⇒ X defined by

G̃(p) := G(p)∩ intB(x0, r),

is nonempty and l.s.c. on B(p0, s).

Remark 3.12. Corollary 3.11 shows that the condition “F(x0, ·) is inner semicontinuous at (p0, 0)” in [2,
Corollary 3.3] and [3, Theorem 5.1] can be omitted. Moreover, Corollary 3.11 includes [8, Theorem 3.1] as
a special case. We elaborate from the following four aspects:

(a) the condition “F is nonempty-valued around (x0,p0)” in [8, Theorem 3.1] is omitted;

(b) the condition “for each p ∈ P, the multifunction Fp(·) is closed-graph” in [8, Theorem 3.1] is replaced
by the weaker condition “for each p ∈ B(p0, r), the multifunction Fp(·) is closed” in Corollary 3.11;

(c) the condition (A1) in [8, Theorem 3.1] obviously implies the condition (ii) in Corollary 3.11;

(d) the condition (A2) in [8, Theorem 3.1] is omitted.

Example 3.13. Let X = Y = P = R. Then X and Y are separable Asplund spaces and P is a topological
space. Moreover, let Ω = {0, 1}, A = {∅, {0}, {1}, {0, 1}}. Then (Ω,A) is a measurable space. Define the
function µ : A→ R as follows

µ(∅) = 0, µ({0}) = µ({1}) =
1
2

, µ({0, 1}) = 1.

Obviously, (Ω,A,µ) is a complete σ-finite measure space. For any (ω, x,p) ∈ Ω × X × P, define the
multifunction F : Ω×X× P ⇒ Y as follows

F(ω, x,p) =
{
x− p+ 2, if ω = 0;
x−
√
p, if ω = 1.

Then for any p ∈ P, F(·, ·,p) : Ω×X⇒ Y is measurable. In fact, for any closed subset B ⊂ Y, we have

F−1
p (B) = {(ω, x) ∈ Ω×X : F(ω, x,p)∩B 6= ∅}

= {(0, x) ∈ Ω×X : {x− p+ 2}∩B 6= ∅}∪ {(1, x) ∈ Ω×X : {x−
√
p}∩B 6= ∅}

= {0}× {x ∈ X : x ∈ p− 2 +B}∪ {1}× {x ∈ X : x ∈
√
p+B}

= {0}× (p− 2 +B)∪ {1}× (
√
p+B).
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Noting that a singleton set in R is closed, we obtain that F−1
p (B) is a closed subset of Ω× X. It follows

that F(·, ·,p) : Ω×X⇒ Y is measurable.
Furthermore, let x0 = 2, p0 = 4. Obviously, for all ω ∈ Ω, 0 ∈ F(ω, x0,p0). For any ω ∈ Ω, let r = 1,

σ = 1. Then we have the following conclusions:

(i) For any p ∈ R, Fω,p(·) is a continuous single-valued function. Hence, it has closed graph.

(ii) Since for all (ω,p) ∈ Ω× P, Fω,p(·) is Fréchet differentiable, we obtain that ∇Fω,p(x) = IX, for all
x ∈ X. By Lemma 2.7,

D̂∗Fω,p(x,y)(y∗) = {∇Fω,p(x)
∗y∗} = {y∗},

and it follows that

1 6 inf{‖x∗‖ : x∗ ∈ D̂∗Fω,p(x,y)(y∗), y ∈ B(0, r)∩ Fω,p(x), ‖y∗‖ = 1}.

(iii) By the definition of F, for any ω ∈ Ω, F(ω, ·, ·) is continuous at (x,p). It follows that F(ω, ·, ·) is l.s.c.
at (2, 4).

(iv) If ω = 0, let V = B(x0, 1) = [1, 3], U = B(p0, 1) = [3, 5], l = 1. Then we have

x− p ′ + 2 ∈ x− p+ 2 + |p ′ − p|BY , ∀x ∈ [1, 3], p,p ′ ∈ [3, 5].

That is,
F(ω, x,p ′) ⊂ F(ω, x,p) + l · |p ′ − p|BY , ∀x ∈ [1, 3], p,p ′ ∈ [3, 5].

If ω = 1, let V = B(x0, 1) = [1, 3], U = B(p0, 1) = [3, 5], l = 2. For any p,p ′ ∈ [3, 5], we have
|
√
p−
√
p ′| 6 3 − 1 = 2, and it follows that

x−
√
p ′ ∈ x−

√
p+ 2|p ′ − p|BY , ∀x ∈ [1, 3], p,p ′ ∈ [3, 5].

That is,
F(ω, x,p ′) ⊂ F(ω, x,p) + l · |p ′ − p|BY , ∀x ∈ [1, 3], p,p ′ ∈ [3, 5].

(v) By the definition of F, for any (ω, x,p) ∈ {0, 1}×R×R, F(ω, x, ·) is continuous at p. It follows that
F(ω, x, ·) is l.s.c. at p.

By the above discussions, we know that all the conditions of Theorems 3.1, 3.5, 3.7 and 3.9 are satisfied.
It follows that

(1) for any p ∈ R, G(·,p) : {0, 1}⇒ R is measurable;

(2) for any ω ∈ {0, 1}, G(ω, ·) : R ⇒ R is locally metrically regular around (2, 4) with modulus 2. In
fact, for any µ ∈ (0, 1

4), we have

dist(x,G(ω,p)) 6 2dist(0, F(ω, x,p)),

for all (x,p) ∈ B(2, 1
2)×B(4, 1) with dist(0, F(ω, x,p)) < µ;

(3) for any ω ∈ {0, 1}, G(ω, ·) : R⇒ R is metrically regular around (2, 4) with modulus 2;

(4) for any ω ∈ {0, 1}, G(ω, ·) : R⇒ R is Lipschitz-like around (2, 4);

(5) for any ω ∈ {0, 1}, there exists a constant s ∈ (0, 1) such that the function G̃ω : R⇒ R defined by

G̃ω(p) := G(ω,p)∩ intB(2, 1),

is nonempty and l.s.c. on B(4, s).
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4. Applications to random parametric generalized equations

In this section, we consider a special case of F in (1.4) which has the following form

F(ω, x,p) = f(ω, x,p) +Q(ω, x,p),

where f : Ω× X× P → Y is a single-valued mapping and Q : Ω× X× P ⇒ Y is a multifunction. In this
case, (1.4) becomes

0 ∈ f(ω, x,p) +Q(ω, x,p). (4.1)

The deterministic case of this random generalized equation was introduced by Robinson [13]. It is well-
known that the deterministic case of model (4.1) provides a convenient framework for the unified study
of optimal solutions in many optimization-related areas including mathematical programming, comple-
mentarity, variational inequalities, optimal control, mathematical economics, equilibrium and some other
fields (see, for example, [9, 10, 16] and the references therein).

The solution map G : Ω× P ⇒ X associated with (4.1) is defined by

G(ω,p) := {x ∈ X : 0 ∈ f(ω, x,p) +Q(ω, x,p)}. (4.2)

In what follows, we establish sufficient conditions ensuring the (local) metric regularity, the Lipschitz-like
property, the nonemptiness and the lower semicontinuity of the solution map in (4.2).

Lemma 4.1 ([17, Lemma 4.3]). Let (Ω,A) be a measurable space, X a separable Banach space, f1 : Ω → X a
measurable mapping and F2 : Ω⇒ X a weakly measurable multifunction with closed values. Then f1 + F2 : Ω⇒ X

is weakly measurable.

Theorem 4.2. Let X be separable Asplund space, Y be σ-compact separable Asplund space, P a topological space,
(Ω,A,µ) a complete σ-finite measure space, f : Ω × X × P → Y a single-valued mapping and Q : Ω × X ×
P ⇒ Y a multifunction such that for each p ∈ P, f(·, ·,p) is measurable and Q(·, ·,p) is weakly measurable with
closed values. Let G : Ω × P ⇒ X the solution map defined by (4.2), and (x0,p0) ∈ X × P a pair such that
(ω, x0,p0,−f(ω, x0,p0)) ∈ gphQ for all ω ∈ Ω. Let fω,p(·) := f(ω, ·,p) and Qω,p(·) := Q(ω, ·,p). Suppose
that for each ω ∈ Ω, there exist constants r > 0 and σ > 0 such that:

(i) for any p ∈ B(p0, r), the mapping fω,p(·) is Fréchet differentiable on X and the multifunction Qω,p(·) is
closed;

(ii) for any (x,p) ∈ B(x0, r)×B(p0, r),

σ 6 inf{‖x∗‖ : x∗ ∈ ∇fω,p(x)
∗y∗ + D̂∗Qω,p(x,y− fω,p(x))(y

∗),
y ∈ B(0, r)∩ (fω,p(x) +Qω,p(x)), ‖y∗‖ = 1}.

Then

(1) for any p ∈ P, G(·,p) : Ω⇒ X is measurable;

(2) for any ω ∈ Ω, G(ω, ·) : P ⇒ X is locally metrically regular around (x0,p0) with modulus 1+σ
σ . In fact, for

any µ ∈
(

0, rσ
2(1+σ)

)
, we have

dist(x,G(ω,p)) 6
1 + σ

σ
dist(−f(ω, x,p),Q(ω, x,p)),

for all (x,p) ∈ B(x0, r2 )×B(p0, r) with dist(−f(ω, x,p),Q(ω, x,p)) < µ.

Proof. Define the multifunction F : Ω×X× P ⇒ Y by

F(ω, x,p) = f(ω, x,p) +Q(ω, x,p), ∀(ω, x,p) ∈ Ω×X× P.

Let Fω,p(·) := F(ω, ·,p). Then Fω,p(·) = fω,p(·) +Qω,p(·). Obviously, (ω, x0,p0,−f(ω, x0,p0)) ∈ gphQ
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is equivalent to 0 ∈ F(ω, x0,p0). It follows from Lemma 4.1 that for each p ∈ P, F(·, ·,p) : Ω× X ⇒ Y is
weakly measurable. Since Y is σ-compact, by [4, Theorem 3.2 (ii)], we have that F(·, ·,p) : Ω× X ⇒ Y is
measurable. Fix any ω ∈ Ω, there exist constants r > 0 and σ > 0 such that conditions (i) and (ii) are
satisfied. By condition (i), it is easy to check that for any p ∈ B(p0, r), the multifunction Fω,p(·) is closed.
By condition (ii) and Lemma 2.8, we obtain that for any (x,p) ∈ B(x0, r)×B(p0, r),

σ 6 inf{‖x∗‖ : x∗ ∈ D̂∗Fω,p(x,y)(y∗), y ∈ B(0, r)∩ Fω,p(x), ‖y∗‖ = 1}.

Therefore, Theorem 4.2 follows from Theorem 3.1.

Remark 4.3. Theorem 4.2 is similar to [17, Theorem 4.4 ]. In Theorem 4.2, the assumption “for any p ∈
B(p0, r), the mapping fω,p(·) is Fréchet differentiable on X” is required, while in [17, Theorem 4.4 ], the
assumption “for any p ∈ B(p0, r), the mapping fω,p(·) is strictly differentiable on X” is required.

Theorem 4.4. Suppose that all the assumptions of Theorem 4.2 are satisfied. Moreover, assume that

(iii)1 for any ω ∈ Ω, f(ω, ·, ·) is continuous at (x0,p0) and Q(ω, ·, ·) is l.s.c at (x0,p0).

Then

(1) for any p ∈ P, G(·,p) : Ω⇒ X is measurable;

(2) for any ω ∈ Ω, G(ω, ·) : P ⇒ X is metrically regular around (x0,p0) with modulus 1+σ
σ .

Theorem 4.5. Suppose that all the assumptions of Theorem 4.2 are satisfied. Moreover, assume that P is a subset
of a normed space and

(iii)2 for any ω ∈ Ω, there exist a neighborhood V of x0, a neighborhood U of p0 and a constant l > 0 such that

f(ω, x,p ′) +Q(ω, x,p ′) ⊂ f(ω, x,p) +Q(ω, x,p) + l‖p ′ − p‖BY , ∀x ∈ V , ∀p,p ′ ∈ U.

Then

(1) for any p ∈ P, G(·,p) : Ω⇒ X is measurable;

(2) for any ω ∈ Ω, G(ω, ·) : P ⇒ X is Lipschitz-like around (p0, x0).

Theorem 4.6. Suppose that all the assumptions of Theorem 4.2 are satisfied. Moreover, assume that

(iii)3 for any (ω, x,p) ∈ Ω× B(x0, r)× B(p0, r), the mapping f(ω, x, ·) is continuous at p and the multifunction
Q(ω, x, ·) is l.s.c. at p.

Then

(1) for any p ∈ P, G(·,p) : Ω⇒ X is measurable;

(2) for any ω ∈ Ω, there exists a constant s ∈ (0, r) such that G̃ω : P ⇒ X defined by

G̃ω(p) := G(ω,p)∩ intB(x0, r),

is nonempty and l.s.c. on B(p0, s).

Remark 4.7. We notice that [17, Theorem 4.4, Theorem 4.7–4.9] are always required the assumption on inner
semicompactness of the metric projection mapping, but Theorems 4.2, 4.4, 4.5 and 4.6 are not required.
Moreover, [17, Theorem 4.4, Theorem 4.7–4.9] use normal coderivatives, while Theorems 4.2, 4.4, 4.5 and
4.6 use Fréchet coderivatives.
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