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Abstract
In this work, we study fixed points of nonself-mappings which are asymptotically pseudocontractive in the intermediate

sense via an implicit iterative process. Convergence analysis is investigated in the framework of Hilbert spaces. We also give
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1. Introduction

Fixed point theory of nonlinear operators provides us with a general and unified framework in which
to study a wide class of problems arising in pure and applied sciences; see, for example, [1, 10, 18, 20, 24]
and the references therein. In addition to the existence results, many authors have extensively investi-
gated the approximation of fixed points of nonlinear operators via various kind of iterative processes, in
particular, the mean valued iterative process; see, [2, 3, 6, 7, 19], and the references therein. In recent years,
asymptotically nonexpansive mappings have been generalized and extended in several directions using
novel and innovative techniques with a wide range of applications in pure and applied sciences based on
iterative processes. From the manner of generating iterative sequences, there are two kinds of processes:
explicit iterative processes and implicit iterative processes. Every iterative process has its advantage and
disadvantage for fixed points of nonlinear operators. Under the case that both of them converge, we may
prefer from the standpoint of computation the explicit one. It is known that explicit iterative processes
fail to converge to fixed points of pseudocontractive mappings even that they are Lipschitz continuous,
however, the implicit one does. In this paper, we study an implicit iterative process. Weak and strong
convergence of the processes are obtained. We also give strong convergence criteria in the framework of
Hilbert spaces.

2. Preliminaries

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖. Let C be a nonempty
closed convex subset of H and let ProjHC be the metric projection from H onto C.
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Let S : C→ C be a mapping. We denote Fix(S) by the fixed point of the mapping S.
Recall that S is said to be asymptotically nonexpansive iff there exists a sequence {kn} ⊂ [1,∞) with

kn → 1 as n→∞ such that

‖Snx− Sny‖ 6 kn‖x− y‖, ∀x,y ∈ C, n > 1.

S is said to be asymptotically nonexpansive in the intermediate sense iff it is continuous and the following
inequality holds:

lim sup
n→∞ sup

x,y∈C
(‖Snx− Sny‖− ‖x− y‖) 6 0.

Putting
ξn = max{0, sup

x,y∈C
(‖Snx− Sny‖− ‖x− y‖)},

we see that ξn → 0 as n→∞. Hence, we have the following

‖Snx− Sny‖ 6 ‖x− y‖+ ξn, ∀x,y ∈ C, n > 1.

The class of asymptotically nonexpansive mappings in the intermediate sense was introduced by Kirk
[12] (see also Bruck et al. [5]) as a generalization of the class of asymptotically nonexpansive mappings.

S is said to be strictly pseudocontractive if there exists a constant κ ∈ [0, 1) such that

‖Sx− Sy‖2 6 ‖x− y‖2 + κ‖(I− S)x− (I− S)y‖2, ∀x,y ∈ C.

For such a case, S is also said to be a κ-strict pseudocontraction. The class of strict pseudocontractions
was introduced by Browder and Petryshyn [4] in 1967. It is clear that every nonexpansive mapping is a
0-strict pseudocontraction.

S is said to be an asymptotically strict pseudocontraction if there exist a sequence {kn} ⊂ [1,∞) with
kn → 1 as n→∞ and a constant κ ∈ [0, 1) such that

‖Snx− Sny‖2 6 kn‖x− y‖2 + κ‖(I− Sn)x− (I− Sn)y‖2, ∀x,y ∈ C, n > 1.

For such a case, S is also said to be an asymptotically κ-strict pseudocontraction. The class of asymp-
totically strict pseudocontractions is introduced by Liu [13] in 1996. It is clear that every asymptotically
nonexpansive mapping is an asymptotical 0-strict pseudocontraction.

S is said to be an asymptotically strict pseudocontraction in the intermediate sense if there exists a
sequence {kn} ⊂ [1,∞) with kn → 1 as n→∞ and a constant κ ∈ [0, 1) such that

lim sup
n→∞ sup

x,y∈C

(
‖Snx− Sny‖2 − kn‖x− y‖2 − κ‖(I− Sn)x− (I− Sn)y‖2) 6 0.

For such a case, S is also said to be an asymptotically κ-strict pseudocontraction in the intermediate sense.
Putting

ξn = max{0, sup
x,y∈C

(‖Snx− Sny‖2 − kn‖x− y‖2 − κ‖(I− Sn)x− (I− Sn)y‖2)},

we see that ξn → 0 as n→∞. Then we have the following:

‖Snx− Sny‖2 6 kn‖x− y‖2 + κ‖(I− Sn)x− (I− Sn)y‖2 + ξn, ∀x,y ∈ C, n > 1.

The class of asymptotically strict pseudocontractions in the intermediate sense was introduced by Sahu
et al. [22] as a generalization of the class of asymptotically strict pseudocontractions, see [22] for more
details. We also remark that if kn = 1 for each n > 1 and κ = 0, then the class of asymptotically κ-
strict pseudocontractions in the intermediate sense is reduced to the class of asymptotically nonexpansive
mappings in the intermediate sense.
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S is said to be asymptotically pseudocontractive if there exists a sequence {kn} ⊂ [1,∞) with kn → 1
as n→∞ such that

〈Sx− Sy, x− y〉 6 kn + 1
2
‖x− y‖2, ∀x,y ∈ C.

It is easy to see that it is equivalent to

‖Snx− Sny‖2 6 kn‖x− y‖2 + ‖(I− Sn)x− (I− Sn)y‖2, ∀x,y ∈ C, n > 1.

We remark that the class of asymptotically pseudocontractive mappings was introduced by Schu [23] in
1991. For an asymptotically pseudocontractive mapping S, Zhou [27] proved that if S is also uniformly
Lipschitz and uniformly asymptotically regular. Then S has a nonempty fixed point set. Moreover Fix(S)
is closed and convex.

S is said to be an asymptotically pseudocontractive mapping in the intermediate sense if there exists
an sequence {kn} ⊂ [1,∞) with kn → 1 as n→∞ such that

lim sup
n→∞ sup

x,y∈C

(
‖Snx− Sny‖2 − kn‖x− y‖2 − ‖(I− Sn)x− (I− Sn)y‖2) 6 0.

It is easy to see that it is equivalent to

lim sup
n→∞ sup

x,y∈C

(
〈Snx− Sny, x− y〉− kn + 1

2
‖x− y‖2) 6 0.

Put
ξn = max

{
0, sup
x,y∈C

(
‖Snx− Sny‖2 − kn‖x− y‖2 − ‖(I− Sn)x− (I− Sn)y‖2)}.

Then we have the following

‖Snx− Sny‖2 6 kn‖x− y‖2 + ‖(I− Sn)x− (I− Sn)y‖2 + ξn, ∀n > 1, x,y ∈ C.

It is easy to see that it is equivalent to

〈Snx− Sny, x− y〉 6 kn + 1
2
‖x− y‖2 +

ξn

2
, ∀n > 1, x,y ∈ C.

The class of asymptotically pseudocontractive mappings in the intermediate sense which includes the
class of asymptotically pseudocontractive mappings and the class of asymptotically strict pseudocontrac-
tions in the intermediate sense as special cases.

In this paper, we consider the following nonself-mappings.
T : C → H is said to be an asymptotically pseudocontractive mapping in the intermediate sense if

there exists an sequence {kn} ⊂ [1,∞) with kn → 1 as n→∞ such that

lim sup
n→∞ sup

x,y∈C

(
‖(ProjHCT)nx− (ProjHCT)

ny‖2 − kn‖x− y‖2 − ‖(I− (ProjHCT)
n)x− (I− (ProjHCT)

n)y‖2) 6 0.

It is easy to see that it is equivalent to

lim sup
n→∞ sup

x,y∈C

(
〈(ProjHCT)nx− (ProjHCT)

ny, x− y〉− kn + 1
2
‖x− y‖2) 6 0.

Put
ξn = max

{
0, sup
x,y∈C

(
‖(ProjHCT)nx− (ProjHCT)

ny‖2 − kn‖x− y‖2

− ‖(I− (ProjHCT)
n)x− (I− (ProjHCT)

n)y‖2)}.
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Then we have the following

‖(ProjHCT)nx− (ProjHCT)
ny‖2 6 kn‖x− y‖2 + ‖(I− (ProjHCT)

n)x

− (I− (ProjHCT)
n)y‖2 + ξn, ∀n > 1, x,y ∈ C.

It is easy to see that it is equivalent to

〈(ProjHCT)nx− (ProjHCT)
ny, x− y〉 6 kn + 1

2
‖x− y‖2 +

ξn

2
, ∀n > 1, x,y ∈ C.

Implicit iterative algorithms, which are complementary algorithms to the explicit iterative algorithms,
have been extensively investigated for fixed points of asymptotically nonexpansive mappings and their
extensions; see [8, 11, 16, 17], and the references therein. In this paper, we study the class of asymptoti-
cally pseudocontractive nonself-mapping in the intermediate sense based on a one step implicit iterative
algorithm. We obtain some convergence theorems of common fixed points in the framework of Hilbert
spaces. The results presented in this paper mainly improve the corresponding results in Khan et al. [9],
Kim et al. [11], Lv [14], Wang [26] and Zhou [27].

In order to prove our main results, we need the following tools.

Recall that a space X is said to satisfy Opial’s condition [15], if for each sequence {xn} in X, the
convergence xn → x weakly implies that

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖, ∀y ∈ E (y 6= x).

Recall that a mapping T : C→ H is semicompact if any sequence {xn} in C satisfying

lim
n→∞ ‖xn − (ProjHCT)xn‖ = 0,

has a convergent subsequence.

Lemma 2.1 ([25]). Let {an}, {bn} and {cn} be three nonnegative sequences satisfying the following condition:

an+1 6 (1 + bn)an + cn, ∀n > n0,

where n0 is some nonnegative integer,
∑∞
n=1 bn <∞ and

∑∞
n=1 cn <∞. Then the limit limn→∞ an exists.

Lemma 2.2 ([21]). In a real Hilbert space, the following inequality holds

‖ax+ (1 − a)y‖2 = a‖x‖2 + (1 − a)‖y‖2 − a(1 − a)‖x− y‖2, ∀a ∈ [0, 1], x,y ∈ H.

3. Demiclosed principals

Theorem 3.1. Let C be a nonempty closed convex bounded subset of a Hilbert spaceH. Let ProjHC be the metric pro-
jection from H onto C. Let T : C→ E be a uniformly L-Lipschitz continuous and asymptotically pseudocontractive
mapping in the intermediate sense. Let {xn} be a sequence in C with xn ⇀ x and limn→∞ ‖xn − ProjHCTxn‖ = 0.
Then x is a fixed point of T .

Proof. Choose κ ∈ (0, 1
L+1) and define ym,κ = κ(ProjHCT)

mx + (1 − κ)x for arbitrary but fixed m > 1.
Notice that

‖(ProjHCT)mxn − xn‖ 6 ‖xn − (ProjHCT)xn‖+ ‖(ProjHCT)xn − (ProjHCT)
2xn‖+ · · ·

+ ‖(ProjHCT)m−1xn − (ProjHCT)
mxn‖

6
(
L(m− 1) + 1

)
‖xn − (ProjHCT)xn‖.
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This implies that
lim
n→∞ ‖(ProjHCT)mxn − xn‖ = 0. (3.1)

On the other hand, we have

〈x̄− ym,κ,ym,κ − (ProjHCT)
mym,κ〉

= 〈x̄− xn,ym,κ − (ProjHCT)
mym,κ〉+ 〈xn − ym,κ,ym,κ − (ProjHCT)

mym,κ〉
= 〈x̄− xn,ym,κ − (ProjHCT)

mym,κ〉+ 〈xn − ym,κ, (ProjHCT)
mxn − (ProjHCT)

mym,κ〉
− 〈xn − ym,α, xn − ym,α〉+ 〈xn − ym,κ, xn − (ProjHCT)

mxn〉

6 〈x̄− xn,ym,κ − (ProjHCT)
mym,κ〉+

km − 1
2
‖xn − ym,κ‖2 +

ξm

2
+ ‖xn − ym,κ‖‖xn − (ProjHCT)

mxn‖.

From (3.1), one has

〈x̄− ym,κ,ym,κ − (ProjHCT)
mym,κ〉 6

km − 1
2
‖xn − ym,κ‖2 +

ξm

2
. (3.2)

Note that

〈x̄− ym,κ, (x̄− (ProjHCT)
mx̄) − (ym,κ − (ProjHCT)

mym,κ)〉 6 (1 + L)‖x̄− ym,κ‖2

= κ2(1 + L)‖x̄− (ProjHCT)
mx̄‖2,

(3.3)

and
‖x̄− (ProjHCT)

mx̄‖2 = 〈x̄− (ProjHCT)
mx̄, x̄− (ProjHCT)

mx̄〉

=
1
κ
〈x̄− ym,κ, x̄− (ProjHCT)

mx̄〉

=
1
κ
〈x̄− ym,κ, (x̄− (ProjHCT)

mx̄) − (ym,κ − (ProjHCT)
mym,κ)〉

+
1
κ
〈x̄− ym,κ,ym,κ − (ProjHCT)

mym,κ〉.

(3.4)

Substituting (3.2) and (3.3) into (3.4), we arrive at(
1 − (1 + L)κ

)
‖x̄− (ProjHCT)

mx̄‖2 6
km − 1

2
‖xn − ym,κ‖2 +

ξm

2
. (3.5)

Letting m → ∞ in (3.5), we see that (ProjHCT)
mx̄ → x̄. Since (ProjHCT) is uniformly L-Lipschitz, we can

obtain that x̄ = (ProjHCT)x̄. This means that x̄ ∈ Fix(ProjHCT) = Fix(T). This completes the proof.

4. Weak convergence theorems

Theorem 4.1. Let C be a nonempty closed convex subset of a Hilbert space H and let ProjHC be the metric projection
from H onto C. Let Ti : C → E be a uniformly Li-Lipschitz continuous and asymptotically pseudocontractive
mapping in the intermediate sense with the sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i − 1) < ∞ for each

1 6 i 6 N, where N > 1 is some positive integer. Let

ξ(n,i) = max{0, sup
x,y∈C

(‖Tni x− Tni y‖2 − k(n,i)‖x− y‖2 − ‖(I− Tni )x− (I− Tni )y‖2)},

for each 1 6 i 6 N. Assume that the common fixed point set ∩Ni=1Fix(Ti) is nonempty. Let {xn}∞n=0 be a sequence
generated in the following manner:

xn = αnxn−1 + (1 −αn)(Proj
H
CTi(n))

h(n)xn, ∀n > 1.

Assume that the control sequence {αn} in (0, 1) satisfies the following restrictions 0 < 1 − 1
L < a 6 αn 6 b < 1,

where L = max{Li : 1 6 i 6 N}, ∀n > 1,
∑∞
n=1 ξn < ∞, where ξn = max{ξ(n,i) : 1 6 i 6 N}. Then {xn}

converges weakly to some point in ∩Ni=1Fix(Ti).
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Proof. The proof is split into four steps.

Step 1. Show that {xn} is well-defined.
Define mappings Cn : C→ C by

Cn(x) = (1 −αn)(Proj
H
CTi(n))

h(n)x+αnxn−1, ∀x ∈ C, n > 1.

Since each Ti is Lipschitz continuous, we have

‖Cn(x) −Cn(y)‖ = ‖
(
αnxn−1 + (1 −αn)(Proj

H
CTi(n))

h(n)x
)

−
(
αnxn−1 + (1 −αn)(Proj

H
CTi(n))

h(n)y
)
‖

6 (1 −αn)L‖x− y‖
6 L(1 − a)‖x− y‖, ∀x,y ∈ C.

This shows that Cn is a contraction for each n > 1. By the Banach contraction principle, we see that there
exists a unique fixed point xn ∈ C such that

xn = (1 −αn)(Proj
H
CTi(n))

h(n)xn +αnxn−1, ∀n > 1.

This yields that {xn} is well-defined. This completes the first step.

Step 2. Show that {xn} is bounded.
Letting kn = max{kn,i : 1 6 i 6 N} and fixing p ∈ ∩Ni=1Fix(Ti), we see from Lemma 2.2 that

‖xn − p‖2 = (1 −αn)‖(ProjHCTi(n))
h(n)xn − p‖2 −αn(1 −αn)‖(ProjHCTi(n))

h(n)xn − xn−1‖2

+αn‖xn−1 − p‖2

6 (1 −αn)
(
kh(n)‖xn − p‖2 + ‖(ProjHCTi(n))

h(n)xn − xn‖2 + ξn
)
+αn‖xn−1 − p‖2

−αn(1 −αn)‖(ProjHCTi(n))
h(n)xn − xn−1‖2

6 (1 −αn)kh(n)‖xn − p‖2 + (1 −αn)‖(ProjHCTi(n))
h(n)xn − xn‖2 +αn‖xn−1 − p‖2

−αn(1 −αn)‖(ProjHCTi(n))
h(n)xn − xn−1‖2 + ξn

6 αn‖xn−1 − p‖2 + (1 −αn)kh(n)‖xn − p‖2 − (1 −αn)
2αn‖(ProjHCTi(n))

h(n)xn − xn−1‖2 + ξn.

(4.1)

From the restriction imposed on {αn}, we see that there exists some n0 such that

(1 −αn)kh(n) < (1 +
a

2(1 − a)
)(1 − a) < 1, ∀n > n0.

Hence, we have

‖xn − p‖2 6
(

1 +
kh(n) − 1

1 −M

)
‖xn−1 − p‖2 +

ξn

1 −M
, ∀n > n0,

where M = (1 + a
2(1−a))(1 − a). Using Lemma 2.1, we find that limn→∞ ‖xn − p‖ exists. Hence, {xn} is

bounded. This completes the second step.

Step 3. Show that
lim
n→∞ ‖(ProjHCTr)xn − xn‖ = 0, ∀r ∈ {1, 2, · · · ,N}.

From (4.1), we have

(1 −αn)
2αn‖xn−1 − (ProjHCTi(n))

h(n)xn‖2 6 (kh(n) − 1)‖xn − p‖2 +αn(‖xn−1 − p‖2 − ‖xn − p‖2) + ξn.

This implies that
lim
n→∞ ‖(ProjHCTi(n))h(n)xn − xn−1‖ = 0. (4.2)
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Using (4.2) and the following fact

‖xn − xn−1‖ 6 ‖(ProjHCTi(n))h(n)xn − xn−1‖,

we have
lim
n→∞ ‖xn − xn−1‖ = 0. (4.3)

On the other hand, we have

‖(ProjHCTi(n))h(n)xn−1 − xn−1‖

6 ‖(ProjHCTi(n))h(n)xn − (ProjHCTi(n))
h(n)xn−1‖+ ‖xn−1 − (ProjHCTi(n))

h(n)xn‖

6 L‖xn − xn−1‖+ ‖xn−1 − (ProjHCTi(n))
h(n)xn‖.

It follows from (4.2) and (4.3) that

lim
n→∞ ‖xn−1 − T

h(n)
i(n) xn−1‖ = 0. (4.4)

Since for any positive integer n > N, it can be written as n = (h(n)−1)N+ i(n), where i(n) ∈ {1, 2, · · · ,N}.
Hence, we have

‖xn−1−(ProjHCTn)xn−1‖
6 ‖(ProjHCTi(n))h(n)xn−1 − (ProjHCTn)xn−1‖+ ‖xn−1 − (ProjHCTi(n))

h(n)xn−1‖

6 ‖xn−1 − (ProjHCTi(n))
h(n)xn−1‖+ L‖(ProjHCTi(n))h(n)−1xn−1 − xn−1‖

6 ‖xn−1 − (ProjHCTi(n))
h(n)xn−1‖

+ L
(
‖(ProjHCTi(n))h(n)−1xn−1 − (ProjHCTi(n−N))

h(n)−1xn−N‖

+ ‖(ProjHCTi(n−N))
h(n)−1xn−N − x(n−N)−1‖+ ‖x(n−N)−1 − xn−1‖

)
.

(4.5)

Since for each n > N, n = (n−N) (mod N), one finds that

n−N =
(
(h(n) − 1) − 1

)
N+ i(n) = (h(n−N) − 1)N+ i(n−N).

That is,
i(n−N) = i(n), h(n−N) = h(n) − 1.

Since each Tr is Lipschitz, we have

‖(ProjHCTi(n−N))
h(n)−1xn−N − x(n−N)−1‖ = ‖(ProjHCTi(n−N))

h(n−N)xn−N − x(n−N)−1‖, (4.6)

and
‖(ProjHCTi(n))h(n)−1xn−1 − (ProjHCTi(n−N))

h(n)−1xn−N‖

= ‖(ProjHCTi(n))h(n)−1xn−1 − (ProjHCTi(n))
h(n)−1xn−N‖

6 L‖xn−N − xn−1‖.
(4.7)

Using (4.5), (4.6) and (4.7), one has

‖(ProjHCTn)xn−1 − xn−1‖ 6 ‖(ProjHCTi(n))h(n)xn−1 − xn−1‖+ L
(
L‖xn−N − xn−1‖

+ ‖(ProjHCTi(n−N))
h(n−N)xn−N − x(n−N)−1‖+ ‖xn−1 − x(n−N)−1‖

)
.

It follows from (4.2), (4.3) and (4.4) that

lim
n→∞ ‖(ProjHCTn)xn−1 − xn−1‖ = 0.

This further implies that
lim
n→∞ ‖xn − (ProjHCTn)xn‖ = 0. (4.8)
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On the other hand, one has

‖xn−(ProjHCTn+m)xn‖
6 ‖xn+m − (ProjHCTn+m)xn+m‖+ ‖(ProjHCTn+m)xn+m − (ProjHCTn+m)xn‖+ ‖xn − xn+m‖
6 ‖xn+m − (ProjHCTn+m)xn+m‖+ (1 + L)‖xn − xn+m‖.

Using (4.3) and (4.8), one sees that limn→∞ ‖xn − (ProjHCTn+m)xn‖ = 0 for each 1 6 m 6 N. Therefore,
we have

lim
n→∞ ‖xn − (ProjHCTr)xn‖ = 0, ∀r ∈ {1, 2, . . . ,N}. (4.9)

This completes the third step.

Step 4. Show that xn ⇀ x̄ ∈ ∩Ni=1Fix(Ti).
Since {xn} is a bounded sequence, we see that there exists a subsequence {xni} ⊂ {xn} such that {xni}

converges weakly to a point x̄. From Theorem 3.1, we obtain that x̄ ∈ ∩Ni=1Fix(Ti). Let {xnj} be another
subsequence of {xn} such that {xnj} converges weakly to x∗ ∈ C, where x∗ 6= x̄. From the above argument,
we have x∗ ∈ ∩Ni=1Fix(Ti). Since limn→∞ ‖xn− x‖ exists for all x ∈ ∩Ni=1Fix(Ti). Without loss of generality,
we assume limn→∞ ‖xn − x̄‖ = d > 0, where d is a nonnegative number. By virtue of the Opial property
of space H, we see that

d = lim inf
n→∞ ‖xn − x̄‖ = lim inf

i→∞ ‖xni − x̄‖ < lim inf
i→∞ ‖xni − x∗‖

= lim inf
j→∞ ‖xnj − x∗‖ < lim inf

j→∞ ‖xnj − x̄‖ = lim inf
n→∞ ‖xn − x̄‖ = d.

This is a contradiction. Hence x̄ = x∗. This shows that {xn} converges weakly to x̄ ∈ ∩Ni=1Fix(Ti). This
completes the proof.

For the class of mappings which are asymptotically pseudocontractive, we have the following result
immediately.

Corollary 4.2. Let C be a nonempty closed convex subset of a Hilbert spaceH and let ProjHC be the metric projection
from H onto C. Let Ti : C → E be a uniformly Li-Lipschitz continuous and asymptotically pseudocontractive
mapping with the sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i − 1) < ∞ for each 1 6 i 6 N, where N > 1 is

some positive integer. Assume that the common fixed point set ∩Ni=1Fix(Ti) is nonempty. Let {xn}∞n=0 be a sequence
generated in the following manner:

xn = αnxn−1 + (1 −αn)(Proj
H
CTi(n))

h(n)xn, ∀n > 1.

Assume that the control sequence {αn} in (0, 1) satisfies the following restrictions 0 < 1 − 1
L < a 6 αn 6 b < 1,

where
L = max{Li : 1 6 i 6 N}, ∀n > 1.

Then {xn} converges weakly to some point in ∩Ni=1Fix(Ti).

5. Strong convergence theorems

Recall that a family {Ti}
N
i=1 : C→ H with ∩Ni=1Fix(Ti) 6= ∅ is said to satisfy Condition (YP) on C if there

is a nondecreasing function f : [0,∞)→ [0,∞) with f(0) = 0 and f(m) > 0 for all m ∈ (0,∞) such that for
all x ∈ C

max
16i6N

{‖x− (ProjHCTi)x‖} > f(d(x,∩Ni=1Fix(Ti))).

Next, we give strong convergence theorems with the help of Condition (YP).

Theorem 5.1. Let C be a nonempty closed convex subset of a Hilbert space H and let ProjHC be the metric projection
from H onto C. Let Ti : C → E be a uniformly Li-Lipschitz continuous and asymptotically pseudocontractive
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mapping in the intermediate sense with the sequence {kn,i} ⊂ [1,∞) such that
∑∞
n=1(kn,i − 1) < ∞ for each

1 6 i 6 N, where N > 1 is some positive integer. Let

ξ(n,i) = max{0, sup
x,y∈C

(‖Tni x− Tni y‖2 − k(n,i)‖x− y‖2 − ‖(I− Tni )x− (I− Tni )y‖2)},

for each 1 6 i 6 N. Assume that the common fixed point set ∩Ni=1Fix(Ti) is nonempty. Let {xn}∞n=0 be a sequence
generated in the following manner:

xn = αnxn−1 + (1 −αn)(Proj
H
CTi(n))

h(n)xn, ∀n > 1.

Assume that the control sequence {αn} in [0, 1] satisfies the following restrictions 0 < 1 − 1
L < a 6 αn 6 b < 1,

where
L = max{Li : 1 6 i 6 N}, ∀n > 1,∑∞

n=1 ξn < ∞, where ξn = max{ξ(n,i) : 1 6 i 6 N}. If {T1, T2, . . . , TN} satisfies Condition (YP), then {xn}

converges strongly to some point in ∩Ni=1Fix(Ti).

Proof. In view of Condition (YP), using (4.9), we have limn→∞ f(d(xn,∩Ni=1Fix(Ti))) = 0, which in turn
implies limn→∞ d(xn,∩Ni=1Fix(Ti)) = 0. Now, we are in a position to prove that {xn} is a Cauchy sequence.
For any positive integers m,n, where m > n > n0, we find that

‖xm − p‖ 6 Q‖xn − p‖+Q
∞∑

i=n+1

ξi
1 −M

+
ξm

1 −M
,

where Q = exp{
∑∞
n=1

kh(n)−1
1−M }. Hence, we have

‖xn − xm‖ 6 ‖xn − p‖+ ‖xm − p‖ 6 (1 +Q)‖xn − p‖+Q
∞∑

i=n+1

ξi
1 −M

+
ξm

1 −M
.

This proves that {xn} is a Cauchy sequence in C and so {xn} converges strongly to some q̄ ∈ C. Since each
Ti is Lipschitz continuous, we see that ∩Ni=1Fix(Ti) is a closed set. This in turn implies that q̄ ∈ ∩Ni=1Fix(Ti).
This completes the proof.

For the class of mappings which are asymptotically pseudocontractive, we have the following result.

Corollary 5.2. Let C be a nonempty closed convex subset of a Hilbert spaceH and let ProjHC be the metric projection
from H onto C. Let Ti : C → H be a uniformly Li-Lipschitz continuous and asymptotically pseudocontractive
mapping with the sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i − 1) < ∞ for each 1 6 i 6 N, where N > 1 is

some positive integer. Assume that the common fixed point set ∩Ni=1Fix(Ti) is nonempty. Let {xn}∞n=0 be a sequence
generated in the following manner:

xn = αnxn−1 + (1 −αn)(Proj
H
CTi(n))

h(n)xn, ∀n > 1.

Assume that the control sequence {αn} in [0, 1] satisfies the following restrictions 0 < 1 − 1
L < a 6 αn 6 b < 1,

where L = max{Li : 1 6 i 6 N}, ∀n > 1. If {T1, T2, . . . , TN} satisfies Condition (YP), then {xn} converges strongly
to some point in ∩Ni=1Fix(Ti).

Next, we give another strong convergence theorem with the aid of compactness.

Theorem 5.3. Let C be a nonempty closed convex subset of a Hilbert space H and let ProjHC be the metric projection
from H onto C. Let Ti : C → H be a uniformly Li-Lipschitz continuous and asymptotically pseudocontractive
mapping in the intermediate sense with the sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i − 1) < ∞ for each

1 6 i 6 N, where N > 1 is some positive integer. Let

ξ(n,i) = max{0, sup
x,y∈C

(‖Tni x− Tni y‖2 − k(n,i)‖x− y‖2 − ‖(I− Tni )x− (I− Tni )y‖2)},

for each 1 6 i 6 N. Assume that the common fixed point set ∩Ni=1Fix(Ti) is nonempty. Let {xn}∞n=0 be a sequence
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generated in the following manner:

xn = αnxn−1 + (1 −αn)(Proj
H
CTi(n))

h(n)xn, ∀n > 1.

Assume that {αn} in [0, 1] satisfies the following restrictions 0 < 1 − 1
L < a 6 αn 6 b < 1, where

L = max{Li : 1 6 i 6 N}, ∀n > 1,∑∞
n=1 ξn < ∞, where ξn = max{ξ(n,i) : 1 6 i 6 N}. If one of {T1, T2, . . . , TN} is semicompact, then {xn}

converges strongly to some point in ∩Ni=1Fix(Ti).

Proof. Without loss of generality, we assume that T1 is a semicompact mapping. From (4.9), we see that
there exits a subsequence {xni} of {xn} such that it converges strongly to x ∈ C. For each r ∈ {1, 2, . . . ,N},
we get that

‖x− (ProjHCTr)x‖ 6 ‖xni − (ProjHCTr)xni‖+ ‖(Proj
H
CTr)xni − (ProjHCTr)x‖+ ‖x− xni‖.

Since ProjHC and Tr are Lipschitz continuous, we obtain that x ∈ ∩Nr=1Fix(Proj
H
CTr) = ∩Ni=1Fix(Ti). In

view of Theorem 3.1, we obtain that limn→∞ ‖xn − x‖ exists. Therefore, we obtain the desired conclusion
immediately. This completes the proof.

For the class of mappings which are asymptotically pseudocontractive, we have the following result.

Corollary 5.4. Let C be a nonempty closed convex subset of a Hilbert spaceH and let ProjHC be the metric projection
from H onto C. Let Ti : C → H be a uniformly Li-Lipschitz continuous and asymptotically pseudocontractive
mapping with the sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i − 1) < ∞ for each 1 6 i 6 N, where N > 1 is

some positive integer. Assume that the common fixed point set ∩Ni=1Fix(Ti) is nonempty. Let {xn}∞n=0 be a sequence
generated in the following manner:

xn = αnxn−1 + (1 −αn)(Proj
H
CTi(n))

h(n)xn, ∀n > 1.

Assume that {αn} in [0, 1] satisfies the following restrictions 0 < 1 − 1
L < a 6 αn 6 b < 1, where

L = max{Li : 1 6 i 6 N}, ∀n > 1.

If one of {T1, T2, . . . , TN} is semicompact, then {xn} converges strongly to some point in ∩Ni=1Fix(Ti).

Finally, we give the following strong convergence criteria.

Theorem 5.5. Let C be a nonempty closed convex subset of a Hilbert space H and let ProjHC be the metric projection
from H onto C. Let Ti : C → H be a uniformly Li-Lipschitz continuous and asymptotically pseudocontractive
mapping in the intermediate sense with the sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i − 1) < ∞ for each

1 6 i 6 N, where N > 1 is some positive integer. Let

ξ(n,i) = max{0, sup
x,y∈C

(‖Tni x− Tni y‖2 − k(n,i)‖x− y‖2 − ‖(I− Tni )x− (I− Tni )y‖2)},

for each 1 6 i 6 N. Assume that ∩Ni=1Fix(Ti) is nonempty. Let {xn}∞n=0 be a sequence generated in the following
manner:

xn = αnxn−1 + (1 −αn)(Proj
H
CTi(n))

h(n)xn, ∀n > 1.

Assume that {αn} in [0, 1] satisfies 0 < 1 − 1
L < a 6 αn 6 b < 1, where

L = max{Li : 1 6 i 6 N}, ∀n > 1,∑∞
n=1 ξn <∞, where ξn = max{ξ(n,i) : 1 6 i 6 N}. Then the sequence {xn} converges strongly to some point in

∩Ni=1Fix(Ti), if and only if lim infn→∞ d(xn,∩Ni=1Fix(Ti)) = 0.
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Proof. The necessity is obvious. We only show the sufficiency. Assume that

lim inf
n→∞ d(xn,∩Ni=1Fix(Ti)) = 0.

In view of Lemma 2.1, we can obtain that limn→∞ d(xn,∩Ni=1Fix(Ti)) = 0. The desired results can be
obtained from Theorem 5.1 immediately. This completes the proof.

For the class of mappings which are asymptotically pseudocontractive, we have the following result.

Corollary 5.6. Let C be a nonempty closed convex subset of a Hilbert spaceH and let ProjHC be the metric projection
from H onto C. Let Ti : C → H be a uniformly Li-Lipschitz continuous and asymptotically pseudocontractive
mapping with the sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i − 1) < ∞ for each 1 6 i 6 N, where N > 1 is

some positive integer. Assume that ∩Ni=1Fix(Ti) is nonempty. Let {xn}∞n=0 be a sequence generated in the following
manner:

xn = αnxn−1 + (1 −αn)(Proj
H
CTi(n))

h(n)xn, ∀n > 1.

Assume that {αn} in [0, 1] satisfies 0 < 1 − 1
L < a 6 αn 6 b < 1, where

L = max{Li : 1 6 i 6 N}, ∀n > 1.

Then the sequence {xn} converges strongly to some point in ∩Ni=1Fix(Ti), if and only if

lim inf
n→∞ d(xn,∩Ni=1Fix(Ti)) = 0.
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