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Abstract

In this paper, a class of BAM-type Cohen-Grossberg neural networks with time delays are considered. Some sufficient
conditions for the existence and exponential stability of anti-periodic solutions are established. (©2017 All rights reserved.
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1. Introduction

In recent years, Cohen and Grossberg neural networks [5] have been extensively studied and applied in
many different fields such as associative memory, signal processing and some optimization problems. The
bidirectional associative memory (BAM) model know as an extension of the unidirectional autoassociator
of Hopfield [9], was first introduced by Kosto [11]. This neural network has been widely studied due to
its promising potential for applications in pattern recognition and automatic control.

Continuous bidirectional associative memory (BAM) is made up of two (or more) neural fields Fy
and Fy, connected in the forward direction, from Fy to Fy, by an arbitrary n-by-p synaptic matrix M
and connected in the backward direction, from Fy to Fy, by the p-by-n matrix N. In [11, 12], Kosto has
proposed bidirectional associative memory neural networks with and without axonal signal transmission
delays. In [5], Cohen and Grossberg have studied the following BAM model that possesses Cohen-
Grossberg dynamics, and their extension can be described as follows:

du; m
L = —aulus ) b 1) - ;mm— v;(1)],
dv; (t n
Véi ) = —aqj (Vj (t) [b]’ (V]' (t)) — ; qijgi(ui(t))},

Whereizllzl... ,n, ] :1,2/... , .
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For the sake of theoretical interest as well as application considerations, the dynamical behaviors, in
particular, the existence and stability of the equilibrium point, periodic and almost periodic solutions
of BAM-type Cohen-Grossberg neural networks have been extensively studied by a large number of
scholars. Over the past few years, there have been considerable results on BAM-type Cohen-Grossberg
neural networks (see [2, 7-14, 20, 25, 26, 28]). Recently, there have been some new results on the integral
transform method (see [22-24]). In contrast, however, very few results are available on the existence and
exponential stability of anti-periodic solutions for BAM-type Cohen-Grossberg neural networks, while the
existence of anti-periodic solutions plays a key role in characterizing the behavior of nonlinear differential
equations (see [1, 3, 4, 6, 15-19, 21, 27]).

In this paper, we consider BAM-type Cohen-Grossberg neural networks with time-varying delays
described by

: p
R 1) [bi(ui(t)) - Z ey i vyt —157))],
dvj (t) (1.1)
i I G Z mi [ Kt slgustusls a],

wherei=1,2,---,n,j=1,2,---,p.
The initial conditions associated with system (1.1) are of the form

{ ui(0) = @i(0), 06€[-71,0, i=12,---,n,
V)(T]):'Ll))(n), 1’]6 [_OO'O]I jzlizz"'/p/

where T = max{tij}, ; and \; are continuous real-valued functions defined on their respective domains.
(i)

Let xi(t) : R = R be continuous in t. x;(t) is said to be T-anti-periodic on R, if x;(t+ T) = —x;(t) for
all t € R.
Throughout this paper, we assume that

(Hi) ai, dj : R — [0, 00) are continuously bounded and ki; : [0,00) — R are continuous functions and
ai(—u) = —ai(u), bi(—u) =bi(u), fij(—u) =fi;(u), dj(—v) = —d;(v), ¢j(—v) =¢;(v), ,vER, i=
1/2/...,71 jzl 2, ,p;

(Hz) by, by e], : L are locally Lipschitz continuous and there exist positive constants y; and &; such that
bi(u+x)—bi(x) Zviw, e(v+y)—ejly) =&y,
whereu,veR,1=1,2,---,n,j=1,2,---,p;

(H3) there exist constants Ayj >0, ui; >0, My; >0, Ny > Osuch that forallu,veR,i=1,2,---,n,j=
1/ 2/ te /p/
fi;(0) =0, [fy(uw) —fi(v)]

< u)|
gi;(0) =0, |gij(u) — gy (V) < myjlu—], |91)( u)|

(H4) there exists constant A > 0 such that
P
0 < A—ai(u(t))(yiet —eM™ Z lcilAg51),
and

n t
0 <Al (0)Ee = 3 iyl | Koyl sl g}t s,

For x(t) = (wq(t),uz(t), - - ,un(t),vi(t), vo(t), - vp(t))T € R"*P, we define the norm

X|| = sup maxy max |ui(t)|, max |v;(t)|s.
x|l = sup max{max us(t)l, max v; (1)}
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Definition 1.1. Let z*(t) = (uj(t), u;(t),--- ,uy (t),vf( ),vi(t),- ,v;_f‘,( ))T be an anti-periodic solution of

system (1.1) with initial value (@7 (t), @5(t),---, @5 (t), ¥] ( ), 05 (t), -yt ))T. If there exist constants
A > 0 and M > 1 such that for every solution z(t) = (ui(t), uz(t), - ( ) vi(t),va(t), -+, vp ()T of
system (1.1) with initial value (¢@1(t), @2(t), -, @n(t), P1(t), P2(t), - - ,ll)p( )T satisfies

||Z_Z*||gMei}\tmaX{H(p_(p*HOO’ ||lb_1b*||00}l t>0/ i:1/2/"'/11/ ]:1/2//p

where

¢ —¢"[lo = sup max [@i(s)—@i(s)l, [W—"[lo= sup max hhils)—i(s)l,
—r<s<oIsisn oo<s<0 ISI<P

then z*(t) is said to be globally exponentially stable.

2. Preliminaries
The following lemmas will be used to prove our main results in Section 3.

Lemma 2.1. Let (Hy)-(Hy) hold. Suppose that 2(t) = (1i(t),(t)), where @i(t) = (1 (t), ta(t), -+, Wn(t)T,
V(t) = (I (1), V2(t), -+, Vp ()7 is a solution of system (1.1) with initial conditions

P
> leijIMy;
- ~ - j=1 .
ul(e) = (pl(e)/ |(Pl(e)| < ]T/ e S [_T/ 0}/ 1= 1/2/’ M, (2'1)
1
Z |m1)|N1] f (p—s)lds
vim) =dim), i)l < 3 , M€ (—0,0, j=1,2,---,p. (2.2)
j
Then
P n
Zl lc1IMij 2 ImyINij I? . Kij(p—s)lds
G ()] < Y, ()] < = , 23
i(t) v () 3 (2.3)
wheret>0,1=1,2,---,n,j=1,2,---,p.
Proof. By way of contradiction, assume that (2.3) does not hold. Then, there exists p > 0 such that
P P
> leyiIMy; 2 lejIMy;
- = - j=1
Wlp)=""—) wWt)<——) tel-rol, (24)
Yi Yi
o P o P
2 Imyj Ny J° o Kij(p—s)lds .Zl Imy; Ny [ [Kij(p —s)ds

vj(p) = = , i) < = tel—oo,pl. (25)

& & ’

Calculating the upper left derivative of [ti;(t)| and [¥;(t)], together with (H;)-(Hy), (2.4) and (2.5), we can
obtain

0 < D™ ([ (p)l)

< —ai(fii(p))bi(tii(p)) + ai(tii(p )ch] ij V] p— Tl)))
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) p
< ai(ti(p)) | —bi(ti(p)) + Z g lfi5 (V5 (0 — T15))
I =

|C1)|M1] i l(p)):|

C1)|M1] Ylul(p)j|

H

<0,
and
0 < D™ (I95(p)I)
< (5 (0))e5 (5 (0)) + s (%5 (0)| Zmu [ wilo—sigualsnas
[me[ Kis (0~ S)llgss (@s(s)) ds — 5 (% (p))]
bl P
< d5(95(p)) [Z Imy;INy; J IKij(p —s)lds — &;; (p)]
i=1 %
<0,
which is a contradiction and hence (2.3) holds. This completes the proof. O

Remark 2.2. In view of the boundedness of this solution, from the theory of functional differential equa-
tions in [1], it follows that ti(t) can be defined on [T, c0) and ¥(t) can be defined on [0, c0).

Lemma 2.3. Suppose that (H;)-(Hy) are satisfied. Let z*(t) = (u* (t),v*(t))T", where u*(t) = (ui(t),us(t),---,
uj (t), vi(t) = (vi(t),vi(t),--- ,u]’;(t)) be the solution of system (1.1) with initial value (2.1) and (2.2). Let
z(t) = (w(t),up(t), -+, un(t),vi(t),va(t), - ,up(t))T be the solution of system (1.1) with initial value
(p1(t), @2(t), -+, en(t), ¥1(t), ¥a(t),--- ,Il)p(t))T. Then there exist constants A > 0 and M > 1 such that

lz—2*|| < Me max{[|@ — @*[loo, [0 ="}, t>0.

Proof. Set x(t) =u(t) —u*(t) and y(t) = v(t) —v*(t), by system (1.1) , we have

d)gt(t) = —ai(xi(t) +ui(t) [bi(xi(t) +uf(t)) —bi(ui(t)
- Zl cyj (fi (yj (t — Ti5) + v (t —735)) — (v;f(t_ﬁj)))], i=12---n,
j
dyciit) = —dj(y;(t) +v;(t)) [e]- (y; (1) + i (1) — 5 (vi (1)) 20
_ il myj [OO Ky (t —s)(gij(xi(s) +ui(t)) — gij(ui(t))) ds], i=1,2,-,p.

We consider the Lyapunov functional

Viil}(t) - |Xi(t)|e?\t, VJ{Z}(t) - |1J] (t)|e)\tl 1 - ]-1 2/ e ,n, J - 1/ 2/ e /p- (27)
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Calculating the upper right derivative of Vim(t), we have

D (V! (1) < —as(x: (V1M +165 (1) [bi (e (1) +uf (1) — b (uf (1))

P
— Z e lIF55 (5 (£ — Ti5) 4 Vi (t —T45)) — Fi5 (v} (£ —T35)) [ €™ + Alxi ()]
=1

< —ai(pa(VleM +ui(v) [yiki(t)le

o At At (2.8)
= > lelMulhys (¢ — i)l e+ A (t)le
j=1
P
= a; ([xi(t)leM +ui(t)) Z 511l ( — i) e T e
j=1
+ A= ailxi(OleM +ui(t)yvie] xi(vle™.
Calculating the upper right derivative of V).{Z}(t), we have
D (VP (1)) < —dj (s (1)1e™ +v] (1)) [e5 (s (0)1eM +v7 (1)) — 5 (4] (1)
n t
=3 | K sl )+ g )] — gy ()] ds | 4 A (0l
i=1 o0
< = (fy; (V1™ + Vi (1) [E5ly; (0)]e
n t \ \ (2.9)
=3l | Kt )l g s Ay (0™
i=1 -
< [A— ayys (01 +v5 (0)65€M s (DM + s (s ()l + v (1))
n t
Y tmyl | Ky le )l luglals)le e ds,
i=1 —
Let M > 1 denote an arbitrary real number and set
- * 0o — i - H 0/
lo — o7 _fgf<01r§a<xn|(pl(s) @i(s)l >
[~ = sup max hbi(s) —wi(s) > 0.
—00<s<0 1<i<p
It follows from (2.6) that
{3y 1y At ok 2}y s At e
Vi (1) = xi(t)e™ <Ml — @ o, V;7 (1) = ly;(t)]e™ < M| —1"|lo,
forallt € (—,0, i=1,2,---,n,j=1,2,---,p.
We claim that
VIV() = i (DleM < Mo — 0" [loor VIZ (1) = lyj (1)]eM < M[th —1*|s, (2.10)

forallt>0,1=1,2---,n,j=1,2,---,p. Contrarily, there must existi € {1,2,--- ,n}, j € {1,2,---,p}
and t; > 0, t; > 0 such that

1 3 1 *
VT () = Mll@ — 0" leo, VIV (1) < M| — @ loo, ¥t € (—o00, 1),
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ViZ () = MIb =9 [loo, VIZ (1) < MI[b = " oo, ¥t € (—00,15),
whereie€{1,2,---,n},j €{1,2,---,p}, which is

V() = Mllo — 0 e =0, VIV (1) =M[l¢ — @[l <0, Vt € (—oo,ti),

V() =Ml =¥ [l =0, V(1) =M[b—7[|oo <0, ¥t € (—00,1;),
wherei1€{1,2,---,n},j€{1,2,---,p}. Together with (2.6), (2.7), (2.8), (2.9), we obtain

0 < DT (VI (1) — Ml — ¢*|))
=D* (V" (t;))

1
< [ = ailaltoleMs +ug (6 hyie [lxi(t)leM s

P
+ai(ba(t) e i () ) lewlAglly; (t — i)l ) AT

< P aulba e + i) vier Ml — 0l
P
+ aq(Ixi (t)[eM +uf () Z lci5l A5 M[Y — p* || o™
=1

P
< P aulbat)le™ i) (et — e 3 feglg |

x max{M||@ — @*(|co, M[[h — ™[0},

and
0.< D (V¥ (t5) = I — )
- D+(V§2}(t]))
< {7\— d; (ly; (t;)]eM +V;k(tj))£je}\tj} by (t5)1e™Y + d; (fy; (t;)[e™Y
n 1
i) 3 gl 1Kt = o) gl )X 4 ds
< [A—d-(mj(tjne“i +v*(tj))aje“i}Muw—w*uoo+dj(|y)-(tj)|e“i
n
Vi () XZ'%'J Kis (5 — )| s[5 M ] — @ [oudls
< [x—d-(mj(tjne“i +vi(5))
« (g5e “J—Zmﬂj Kyt — )l ggle )|
x max(M]|p — @*[|oo, M|[tb — " oo}
Thus

P
0 < A—ai(lxi(t) e +uf(ty))(viet — ™ Z lcg;11Ag1),
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and

Y
|
—00

n
0 < A —dj(lyj(t;)[e™" +V;'k(tj))(5je}\tj - Z |mij|J Kij (t — )| ngslet5)ds),
im1

which is a contradiction. Hence, (2.10) holds. It follows that

xi() < M@ — @*[lwe™, lyj(t) < M| —¥*|le ™, t>0, i=1,2,---,m, j=12,---,p.
This completes the proof of Lemma 2.3. O

If z5(t) = (u*(t),v*(t))7T, where u*(t) = (ui(t), -, up(t),ve(t) = (vi(t),---,up(t)) is a T-anti-
periodic solution of system (1.1), it follows from Lemma 2.3 and Definition 1.1 that z*(t) is globally
exponentially stable.

3. Main results
Our main result of this paper is as follows.

Theorem 3.1. Suppose that (H;)-(Hy) are satisfied. Then system (1.1) has exactly one T-anti-periodic solution
z*(t). Moreover, z*(t) is globally exponentially stable.

Proof. Let z(t) = (u(t),v(t)), where u(t) = (wi(t), uz(t), -, un(t)T, v(t) = (vi(t),va(t),--- ,vp(t))T be a
solution of system (1.1) with initial conditions

P
lcijIMy;
— ‘
ul(e) = (pz/(e), |(p1\_/(e)| < ]T/ 0 S [_TIO]/ 1= 1/2/' N,
1
= P
Imy; Ny [T [Kij(p —s)lds
—=

vi(m) = b} (), oy ()] < * ne(—000l, j=12p.

& ’
By Lemma 2.1, the solution z(t) = (u(t),v(t)) is bounded and

)
2 leyIMy
lui(t)] < J_AT, tel[-1,0, i=1,2,---,n,
n ' o
miiINg [ [Kij(p —s)lds
izl

v (t)] < te(—oo,0l, j=1,2,---,p.

& ’
From (1.1) and (H7)-(Hy), we have

(DM (t+ (k+DT)) = (=D (t + (k+1)T)
(1 = asfui b+ (k+ D) b (wi(t+ (k+1)T)

o)
=D eyfyv((t+ (kDT —73y)] }
j=1
= —ai((~1% i (t+ (e D) bl (=) i b+ (k+ DT))

P
_Zcijfij((_l)k+lvj((t+ (k+1)T) —Tij)):|, i=1,2,---,n,
=1
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and
(Dt + (k+DT)) = (D)W (t+ (k+ DT)
= (1 = dy vyt (e 1T g5 (5t + (k+ DT))

n t+(k+1)T

_ZmUJ

=—dj(vj(t+ (k+1)T)) [ej (=) v (t+ (k+1)T))

ki (t+ (k+ 1T — s)gg; (wi(s)) ds} }

(e o]

n t+(k+1)T

;mijj

—00

kij(t+ (k+1)T—s)gij(ui(s))ds}, i=1,2,- ,p.

Thus, for any natural number k, (—1)¥*1z(t + (k 4+ 1)T) are the solution of system (1.1). Then, by Lemma
2.3, there exists a constant M > 0 such that

(1) i (t 4 (k+ 1)T) — (=) (t + kT)|

< Me MR sup max (s +T) +ui(s)]

—rgsgo Isisn
» (3.1)
2 leyjIMy
< Ze*}‘(HkT)M]:lyi, for t+kT>0,i=1,2---,m,
i
and
[(=1)* s (t+ (k+1)T) — (=1)*v; (t + kT)|
< Me MHFRD sup max vi(s+T) +vj(s)
7<>o<s<01<3<‘p
(3.2)
Z |m1)|N1) fp S)|dS
< 2e MEHKTI N I= : , fort+kT>0, j=1,2,---,p.
j
Thus, for any natural number m, we obtain
m
(D™t (m+ DT =w () + ) (D it + (k+ DT) — (D us(t+kT)],
k=0
and
m
(=)™ i (t+ (m+1)T) = v (t) + Z (D v (t+ (k+ DT) — (=1)*v; (t + KT)],
k=0
wherei=1,2,---,n, j=1,2,---,p. Then,
(=)™ s+ (m+ DT < fus (8] + Z =D g (4 (kDT = (D it +kT)),
and
(=)™ vy (t+ (m+1D)T)] < v (1) + Z (=1 i (t+ (k+DT) — (=) %vj(t + kT,

wherei=1,2,---,n,j=12,---,p.
In view of (3.1) and (3.2), we can choose sufficiently large constants N; > 0, N2 > 0 and positive
constants o1, ® such that
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‘(—1)k+1ui(t+ (k+1T) — (=D *uy(t + kT)| < x(e ™%, fork>N;, i=1,---,n,

and
(D)% Ny (t 4 (k+DT) — (=1)%vj (t + kT)| < oa(e )%, fork >Ny, j=1,---,p.

It follows from above that {(—1)™z(t + mT)} uniformly converges to a continuous function z*(t) =
(w*(t),v*(t)T, where u*(t) = (uj(t),u3(t), -, up(t)), v:(t) = (vi(t),v5(t),---,v;(t)) on any compact
set of R.

Now we will show that z*(t) is T-anti-periodic solution of system (1.1). First, z*(t) is T-anti-periodic,
since

Z5(t+T)= lim (—1)™z(t+T+mT)=— lim (=)™ z(t+(m+1)T)=—2z*(t).
m—o0 (m+1)—o0

Next, we prove that z*(t) is a solution of (1.1). In fact, together with the continuity of the right side of
(1.1), (3.1) implies that {((—1)™*!z(t + (m + 1)T))’} uniformly converges to a continuous function on any
compact set of R. Thus, letting m — oo, we obtain

P
St v) = —asui (V) [oiluf (1) - X eufylv(t—my N,
=

and

—00

n t
jt{v;*(t)} = —d; (v} (1)) [¢; (v} () —Zmijj Kij(t— 5)gy; (wi(s)) ds|.
i=1

Therefore, z*(t) is a solution of (1.1).
Finally, by Lemma 2.3, we can prove that z*(t) is globally exponentially stable. This completes the
proof. O
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