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Abstract
In this paper, a non-autonomous stochastic Gilpin-Ayala predator-prey model with jumps is studied. Firstly, we show

that this model has a unique global positive solution under certain conditions. Then, we discuss the sufficient conditions for
stochastically ultimate boundedness and obtain the asymptotic behavior of the solution. Finally, sufficient criteria for extinction
of all prey and predator species, stochastic weak persistence in the mean of prey species are established. c©2017 All rights
reserved.
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1. Introduction

In population dynamics, predator and prey phenomena are interesting topics due to their universal
existence and importance. The predator-prey model is composed of differential equations which de-
scribe predator-prey dynamics. The classical Lotka-Volterra predator-prey model which was developed
independently by Lotka [17] and Volterra [24] in the 1920’s is given by

ẋ(t) = x(t)(a− by(t)), ẏ(t) = y(t)(−c+ dx(t)),

where x(t) and y(t) denote the prey and predator population size, respectively, at time t. a, b, c, d are
positive constants. a and b are the fixed growth and mortality rates of the prey component, respectively.
d and c are the fixed growth and mortality rates of the predator component, respectively. This model has
become one of classical models in the mathematical biology research, many models are based on it (see
e.g., [1, 10]). However, in the practical case, population systems are often subject to various stochastic
small perturbations. It is therefore useful to reveal how the perturbation affects the population systems.
As a matter of fact, stochastic Lotka-Volterra systems driven by Brownian motion have been studied
extensively (see e.g., [12, 18, 19]).
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Unfortunately, in the Lotka-Volterra model, the rate of change of the size of each species is linear
function of sizes of the interacting species [7, 14]. This is almost impossible in complex ecosystem. In
1973, Gilpin and Ayala [8] have given a modification for Lotka-Volterra model, called Gilpin-Ayala model.
This system more accord with the actual situations, and the Lotka-Volterra model is its special case.
For various forms about the Gilpin-Ayala system readers can see [6, 11, 15] and references therein for
details. Gilpin-Ayala competition models in random environments have recently also been studied by
many authors, for example, [13, 14, 22, 23]. A stochastic Gilpin-Ayala predator-prey model with time
delay and a special case of it have been studied by Vasilova [21]:

dxi(t) =xi(t)

[ri(t) −

d∑
j=1

(aij(t)x
αij
j (t) + bij(t)x

βij
j (t− τij(t)))]dt

+

d∑
j=1

σij(t)x
θij
j (t)dwj(t)

 , i = 1, · · · ,m,

dxi(t) =xi(t)


−ri(t) + m∑

j=1

(aij(t)x
αij
j (t) + bij(t)x

βij
j (t− τij(t))) −

d∑
j=m+1

(aij(t)x
αij
j (t)

+bij(t)x
βij
j (t− τij(t)))

]
dt+

d∑
j=1

σij(t)x
θij
j (t)dwj(t)

 , i = m+ 1, · · · ,d,

where xi(t), i = 1, · · · ,m, denote the population sizes of prey species at time t, xi(t), i = m+ 1, · · · ,d,
denote the population sizes of predator species at time t, αij, βij are positive constants and represent
nonlinear measures of interspecific or intraspecific interference, ri(t), aij(t) and bij(t) are continuous,
bounded and nonnegative on [0,∞), ri(t), i = 1, · · · ,m, are the intrinsic growth rates at time t, ri(t), i =
m+ 1, · · · ,d, are the mortality rates at time t, aij(t) and bij(t) denote the effects of interspecific (i 6= j)
and intraspecific (i = j) interaction at time t, and for i, j = 1, · · · ,d, τij(t) are nonnegative, bounded,
continuously differentiable functions on [0,∞), σij(t) are the intensities of noise at time t, σij(t) are
continuous, bounded and nonnegative on [0,∞) and θij are nonnegative constants. They discussed their
properties of moment boundedness, pathwise estimation, stochastically ultimate boundedness, extinction
and so on.

On the other hand, the population systems may suffer sudden environmental perturbations, that is,
some jump type stochastic perturbations, e.g., earthquakes, hurricanes, epidemics and so on [4]. Stochastic
integrals driven by Brownian motion can not describe these phenomena. But stochastic integrals with
respect to a Poisson counting measure can explain these phenomena well, so introducing a jump process
into the underlying population dynamics makes feasible. In [4, 5], Bao et al. firstly investigated Lotka-
Voterra population dynamics with jumps, and gave some important results which revealed that jump
processes can bring their effect on the properties of the systems. To the best of our knowledge, to this
day, still no scholars investigate the Gilpin-Ayala predator-prey model with jumps which is more realistic
than the Lotka-Voterra population dynamics.

In this paper, we investigate the general non-autonomous stochastic Gilpin-Ayala predator-prey model
with m prey and (d−m) predator species with jumps which has the forms as follows:

dxi(t) =xi(t
−)

[ri(t) −

d∑
j=1

aij(t)x
αij
j (t−)]dt+ σi(t)dw(t) +

∫
Y

ci(t,u)Ñ(dt,du)

 , i = 1, · · · ,m,

dxi(t) =xi(t
−)

[−ri(t) +

m∑
j=1

aij(t)x
αij
j (t−) −

d∑
j=m+1

aij(t)x
αij
j (t−)]dt+ σi(t)dw(t)

+

∫
Y

ci(t,u)Ñ(dt,du)
}

, i = m+ 1, · · · ,d,

(1.1)
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here x(t−) is the left limit of x(t), N is a Poisson counting measure with characteristic measure λ on
a measurable subset Y of [0,∞) with λ(Y) < ∞, and Ñ(dt,du) := N(dt,du) − λ(du)dt, w(t) is a one
dimensional standard Browian motion. We assume w and N are independent. ci(t,u) are bounded
functions, ci(t,u) > −1, u ∈ Y, i = 1, · · · ,d. Other parameters are defined as in [21].

Throughout the full text, (Ω,F, {F}t>0, P) is a complete probability space with a filtration {F}t>0 sat-
isfying the usual conditions. We denote Rd+ = {x ∈ Rd : xi > 0 for all i = 1, · · · ,d}. If x ∈ Rd, its norm is
denoted by |x| = (

∑d
i=1 x

2
i)

1
2 . If A is a matrix, its trace norm is denoted by |A| =

√
trace(ATA). If f(t) is a

continuous bounded function on [0,∞), then define

fu = sup
t∈[0,∞)

f(t), fl = inf
t∈[0,∞)

f(t).

For any constant sequence {cij}(i, j = 1, · · · ,d), define

(čij) = max
16i,j6d

cij, (čii) = max
16i6d

cii, (ĉij) = min
16i,j6d

cij, (ĉii) = min
16i6d

cii.

Assumption 1.1. (âlii) > 0, (α̂ii) > maxD1{αij}, where D1 = {(i, j) : m+ 1 6 i 6 d, 1 6 j 6 m}.

The main aim of our work is to study the properties of non-autonomous Gilpin-Ayala m prey and
(d−m) predator species model with jumps. The remaining part of this paper is organized as follows.
In Section 2, we show that the solution of (1.1) is global and positive under certain conditions, i.e., the
population will not explode in a finite time, which is logical since xi represents the size of the i-th species.
Section 3 and 4 deal with the stochastically ultimate boundedness and asymptotic pathwise behavior
of the solution, respectively. Finally, we carry out the survival analysis for our model and obtain some
sufficient conditions for extinction of all species and stochastic weak persistence in the mean of prey
species.

The key method used in our paper is motivated by Mao et al. (see e.g., [18, 19]), Vasilova (see e.g.,
[21]) and Bahar and Mao (see e.g., [3]). The significance of this paper is mainly:

(1) Gilpin-Ayala system is more suitable for the real conditions than Lotka-Volterra system, but more
complicated;

(2) with adding jump type stochastic perturbations in equation, the system is more in line with the
actual situation but more difficult to study.

2. Global positive solutions

As the i-th state xi(t) of (1.1) denotes the size of the i-th species in the system, it should be nonnegative.
In order to guarantee that SDEs have a unique global solution for any given initial value, the coefficients
of the equation are generally required to satisfy both the linear growth condition and the local Lipschitz
condition (see e.g., [9, 20]). However, the coefficients of (1.1) do not satisfy the linear growth condition,
though they are locally Lipschitz continuous. So the solution of (1.1) may explode in a finite time. The
following theorem proves that this solution is positive and global under certain conditions.

Theorem 2.1. Let Assumption 1.1 hold. Assume further there exists a constant K1 > 0 such that for any t > 0,

d∑
i=1

∫
Y

[ci(t,u) − ln(1 + ci(t,u))]λ(du) 6 K1. (2.1)

Then for any initial value x0 ∈ Rd+, (1.1) has a unique global solution x(t) ∈ Rd+ for all t > 0 almost surely.

Proof. Since the coefficients of the equations are locally Lipschitz continuous, for any given initial value
x0 ∈ Rd+ there is a unique local solution x(t) on t ∈ [0, ρ), where ρ is the explosion time. To show this
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solution is global, we need to show that ρ =∞ a.s.. Let k0 be sufficiently large for every component of x0
lying within the interval [1/k0,k0]. For each integer k > k0, define the stopping time

τk = inf{t ∈ [0, ρ)|xi(t) /∈ (1/k,k)for some i = 1, · · · ,d},

where throughout this paper we set inf ∅ = ∞. Clearly, τk is increasing as k → ∞. Set τ∞ = limk→∞ τk,
whence τ∞ 6 ρ a.s.. If we can show that τ∞ =∞ a.s., then ρ =∞ a.s. and x(t) ∈ Rd+ a.s. for all t > 0. In
other words, to complete the proof all we need to show is that τ∞ =∞ a.s.. For if this statement is false,
then there is a pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ 6 T } > ε.

Hence there is an integer k1 > k0 such that

P{τk 6 T } > ε, ∀ k > k1. (2.2)

Define a C2-function V : Rd+ → R+ by

V(x) =

d∑
i=1

(xγi − 1 − γ ln xi), γ > 0.

If x(t) ∈ Rd+, Itô’s formula shows that

dV(x(t)) = F(x(t))dt+ γ

d∑
i=1

σi(t)(x
γ
i − 1)dw(t)

+

d∑
i=1

∫
Y

[xγi ((1 + ci(t,u)γ − 1) − γ ln(1 + ci(t,u)))Ñ(dt,du),

where for simplicity, we have omitted t− in x(t−), and

F(x(t)) = γ

− m∑
i=1

ri(t) +

d∑
i=m+1

ri(t) +

m∑
i=1

ri(t)x
γ
i −

d∑
i=m+1

ri(t)x
γ
i +
∑
D2

aij(t)x
αij
j

−
∑
D1

aij(t)x
αij
j +

∑
D1

aij(t)x
γ
i x
αij
j −

∑
D2

aij(t)x
γ
i x
αij
j +

1
2

d∑
i=1

σ2
i(t) +

γ− 1
2

d∑
i=1

σ2
i(t)x

γ
i


+

∫
Y

d∑
i=1

x
γ
i [(1 + ci(t,u))γ − 1 − γci(t,u)]λ(du) + γ

∫
Y

d∑
i=1

[ci(t,u) − ln(1 + ci(t,u))]λ(du),

where D2 = {(i, j) : 1 6 i 6 m, 1 6 j 6 d, or m+ 1 6 i, j 6 d}. Under Assumption 1.1 and condition
(2.1), since ci(t,u) are bounded functions, for γ > 1, there exists a constant K2 > 0 such that

F(x(t)) 6 γ

−m(r̂li) + (d−m)(řui ) + (řui )

m∑
i=1

x
γ
i + (ǎuii)

d∑
i=1

xαiii + (ǎuij)
∑
D1

x
γ
i x
αij
j

−(âlii)

d∑
i=1

x
γ+αii
i +

d

2
(σ̌ui )

2 +
γ− 1

2
(σ̌ui )

2
d∑
i=1

x
γ
i

]

+

d∑
i=1

∫
Y

[(1 + ci(t,u))γ − 1 − γci(t,u)]λ(du)x
γ
i + γ

d∑
i=1

∫
Y

[ci(t,u) − ln(1 + ci(t,u))]λ(du)

6 (K1 +K2)γ,
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if γ 6 1, using inequality xγ 6 1 + γ(x− 1), x > 0, 1 > γ > 0, the above inequality can be obtained
similarly.

We therefore obtain∫τk∧T
0

dV(x(t)) 6
∫τk∧T

0
(K1 +K2)γdt+ γ

∫τk∧T
0

d∑
i=1

σi(t)(x
γ
i − 1)dw(t)

+

∫τk∧T
0

∫
Y

d∑
i=1

[xγi ((1 + ci(t,u))γ − 1) − γ ln(1 + ci(t,u))]Ñ(dt,du).

Taking expectations, yields

EV(x(τk ∧ T)) 6 V(x0) + (K1 +K2)γE(τk ∧ T) 6 V(x0) + (K1 +K2)γT . (2.3)

Set Ωk = {τk 6 T } for k > k1 and by (2.2), P(Ωk) > ε. Note that for every ω ∈ Ωk, there is some i such
that xi(τk,ω) equals either k or 1/k, therefore

V(x(τk,ω)) > [kγ − 1 − γ ln(k)]∧ [(1/k)γ − 1 − γ ln(1/k)].

It then follows from (2.3) that

V(x0) + (K1 +K2)γT > E (IΩkV(x(τk,ω))) > ε ([kγ − 1 − γ ln(k)]∧ [(1/k)γ − 1 − γ ln(1/k)]) .

Letting k→∞ leads to the contradiction

∞ > V(x0) + (K1 +K2)γT =∞,

so we must have τ∞ =∞ a.s. The proof is complete.

It is easy to see from this theorem that, with probability 1, (1.1) will not explode in a finite time.

3. Ultimate boundedness and moment estimation

In the previous section, we see that (1.1) has a unique global solution x(t) ∈ Rd+ for any t > 0
almost surely. In this section, we discuss how the solution varies in Rd+. Firstly, we discuss the ultimate
boundedness.

Theorem 3.1. Suppose Assumption 1.1 holds. Let p > 0, then the solution of (1.1) has the property

lim sup
t→∞ E|x(t)|p 6 K(p), (3.1)

where K(p) is a positive constant.

Proof. Define a Lyapunov function

V(x) :=

d∑
i=1

x
p
i , x ∈ Rd+.

Applying Itô’s formula yields

d(etV(x(t))) = et[V(x(t)) +LV(x(t))]dt+

d∑
i=1

petx
p
i σi(t,u)dw(t)

+ et
d∑
i=1

∫
Y

x
p
i [(1 + ci(t,u))p − 1] Ñ(dt,du),
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where we omit t− in x(t−) and

V(x(t)) +LV(x(t)) = p

 1
p

d∑
i=1

x
p
i +

m∑
i=1

ri(t)x
p
i −

d∑
i=m+1

ri(t)x
p
i −

m∑
i=1

d∑
j=1

aij(t)x
p
i x
αij
j

+

d∑
i=m+1

m∑
j=1

aij(t)x
p
i x
αij
j −

d∑
i=m+1

d∑
j=m+1

aij(t)x
p
i x
αij
j +

p− 1
2

d∑
i=1

σ2
i(t)x

p
i


+

d∑
i=1

∫
Y

[(1 + ci(t,u))p − 1 − pci(t,u)] λ(du)x
p
i .

Therefore

E(etV(x(t))) = V(x0) + E

∫t
0
es [V(x(s)) +LV(x(s))]ds.

For p > 1, using Assumption 1.1, due to functions ci(t,u) are bounded, we can deduce that there exists a
constant K(p) > 0 such that

V(x(t)) +LV(x(t)) 6 p

 1
p

d∑
i=1

x
p
i + (řui )

m∑
i=1

x
p
i − (r̂li)

d∑
i=m+1

x
p
i + (ǎuij)

∑
D1

x
p
i x
αij
j − (âlii)

d∑
i=1

x
p+αii
i

+
p− 1

2
(σ̌ui )

2
d∑
i=1

x
p
i

}
+

d∑
i=1

∫
Y

[(1 + ci(t,u))p − 1 − pci(t,u)] λ(du)x
p
i

6 K(p).

Hence

E(etV(x(t))) 6 V(x0) +

∫t
0
K(p)esds = V(x0) +K(p)(e

t − 1).

Using the inequality |x|p 6 d
p
2
∑d
i=1 x

p
i results in

lim sup
t→∞ E|x(t)|p 6 d

p
2 lim sup
t→∞ E(

d∑
i=1

x
p
i (t)) 6 d

p
2 K(p) =: K(p).

For any p ∈ (0, 1], according to the inequality xr 6 1 + r(x− 1), x > 0, 0 6 r 6 1, we have∫
Y

[(1 + ci(t,u))p − 1 − pci(t,u)] λ(du) 6 0.

Consequently

V(x(t)) +LV(x(t)) 6 p

 1
p

d∑
i=1

x
p
i + (řui )

m∑
i=1

x
p
i − (r̂li)

d∑
i=m+1

x
p
i + (ǎuij)

∑
D1

x
p
i x
αij
j − (âlii)

d∑
i=1

x
p+αii
i

 ,

which has an upper bound by Assumption 1.1, and similarly to the proof of the first part the assertion
(3.1) is obtained.

Definition 3.2 ([12]). The solution of (1.1) is said to be stochastically ultimately bounded, if for any
ε ∈ (0, 1), there is a constant H := H(ε) such that for any x0 ∈ Rd+,

lim sup
t→∞ P {|x(t)| > H} < ε.
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As an application of Theorem 3.1, together with the Chebyshev inequality, we have the following
corollary:

Corollary 3.3. If Assumption 1.1 holds, then the solution of (1.1) is stochastically ultimately bounded.

Since (1.1) is not explicitly solvable, the study of asymptotic moment behavior is essential. In the
following theorem, we prove that the time average of the p-th moment of the solution of (1.1) is asymp-
totically bounded.

Theorem 3.4. Assume all conditions of Theorem 2.1 hold. For p > 0, there is a positive constant K such that for
any initial value x0 ∈ Rd+, the solution of (1.1) has the property

lim sup
t→∞

1
t

E

∫t
0

d∑
i=1

x
p
i (s)ds 6 K. (3.2)

Proof. From the proof of Theorem 2.1, we have obtained

dV(x(t)) =F(x(t))dt+ γ

d∑
i=1

σi(t)(x
γ
i − 1)dw(t)

+

d∑
i=1

∫
Y

[xγi ((1 + ci(t,u)γ − 1) − γ ln(1 + ci(t,u))]Ñ(dt,du),

(3.3)

where F(x(t)) is the same function defined as before. Set

F1(x(t)) = F(x(t)) +

d∑
i=1

x
p
i .

Then if p < γ+(α̂ii), under Assumption 1.1 and condition (2.1), we can deduce that there exists a constant
Kγ such that

F1(x(t)) 6 Kγ,

so it follows from (3.3),

dV(x(t)) 6 [Kγ −

d∑
i=1

x
p
i ]dt+ γ

d∑
i=1

σi(t)(x
γ
i − 1)dw(t)

+

d∑
i=1

∫
Y

[xγi ((1 + ci(t,u)γ − 1) − γ ln(1 + ci(t,u))]Ñ(dt,du).

Taking expectations results in

EV(x(τk ∧ t) 6 V(x0) +KγE(τk ∧ t) − E

∫τk∧t
0

d∑
i=1

x
p
i (s)ds,

which implies

E

∫τk∧t
0

d∑
i=1

x
p
i (s)ds 6 V(x0) +Kγt.

Letting k→∞ yields

lim sup
t→∞

1
t

E

∫t
0

d∑
i=1

x
p
i (s)ds 6 Kγ.

Therefore, for any given p > 0, we can choose γ satisfying γ+ (α̂ii) > p such that assertion (3.2) holds.
This completes the proof.
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4. Pathwise estimation

The theorems in this section consider some limit inequalities for the growth rates of the population
size of species which show how the solution of (1.1) varies in Rd+.

Assumption 4.1. For any t > 0, i = 1, · · · ,d, there exists a constant c > 0 such that∫
Y

(ln(1 + ci(t,u)))
2 λ(du) < c.

Theorem 4.2. Assume all conditions of Theorem 2.1 hold. Under Assumption 4.1, then there exists a positive
constant K, for any initial value x0 ∈ Rd+, the solution of (1.1) has the property

lim sup
t→∞

ln
∏d
i=1 xi(t)

t
6 K a.s. .

Proof. We apply Itô’s formula to ln xi(t), i = 1, · · · ,m and get

d(ln xi(t)) =

ri(t) − d∑
j=1

aij(t)x
αij
j −

1
2
σ2
i(t) +

∫
Y

(ln(1 + ci(t,u)) − ci(t,u)) λ(du)

dt
+ σi(t)dw(t) +

∫
Y

ln(1 + ci(t,u))Ñ(dt,du),

which implies that

ln xi(t) = ln xi(0) +Mi(t) + M̃i(t) +

∫t
0

ri(s) − d∑
j=1

aij(s)x
αij
j (s) −

1
2
σ2
i(s)

+

∫
Y

(ln(1 + ci(s,u)) − ci(s,u)) λ(du)
]
ds,

(4.1)

where

Mi(t) =

∫t
0
σi(s)dw(s), M̃i(t) =

∫t
0

∫
Y

ln(1 + ci(s,u))Ñ(ds,du),

are real-valued local martingales vanishing at t = 0 under Assumption 4.1.
Then, for i = m+ 1, · · · ,d, we again apply Itô’s formula to ln xi(t) and integrating from 0 to t yields

ln xi(t) = ln xi(0) +Mi(t) + M̃i(t)

+

∫t
0

−ri(s) + m∑
j=1

aij(s)x
αij
j (s) −

d∑
j=m+1

aij(s)x
αij
j (s) −

1
2
σ2
i(s)

+

∫
Y

(ln(1 + ci(s,u)) − ci(s,u)) λ(du)
]
ds,

(4.2)

where Mi(t) and M̃i(t) are the same real-valued local martingales mentioned above.
In the light of exponential martingale inequality with jumps [2], fix ε ∈ (0, 1) arbitrarily and let θ > 1,

for every integer n > 1, we obtain

P

{
sup

06t6n

[∫t
0
σi(s)dw(s) −

ε

2

∫t
0
σ2
i(s)ds+

∫t
0

∫
Y

ln(1 + ci(s,u))Ñ(ds,du)

−
1
ε

∫t
0

∫
Y

(
eε ln(1+ci(s,u)) − 1 − ε ln(1 + ci(s,u))

)
λ(du)ds

]
>
θ lnn
ε

}
<

1
nθ

.
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Since the series
∑∞
n=1

1
nθ

converges, we can deduce from the Borel-Cantella lemma [20] that there exists
an Ωi ⊆ Ω with P(Ωi) = 1 such that for any ω ∈ Ωi, an integer ni = ni(ω) can be found such that∫t

0
σi(s)dw(s) +

∫t
0

∫
Y

ln(1 + ci(s,u))Ñ(ds,du) 6
θ lnn
ε

+
ε

2

∫t
0
σ2
i(s)ds

+

∫t
0

∫
Y

[ci(s,u) − ln(1 + ci(s,u))]λ(du)ds,

whenever n > ni, 0 6 t 6 n. Moreover, according to the equality ln x 6 x− 1 when x > 0,∫
Y

(ln(1 + ci(t,u) − ci(t,u)))λ(du) 6 0.

Thus for i = 1, · · · ,m it follows from (4.1)

ln xi(t) 6 ln xi(0) +
θ lnn
ε

+

∫t
0

∫
Y

(ci(s,u) − ln(1 + ci(s,u))) λ(du)ds

+

∫t
0

ri(s) − d∑
j=1

aij(s)x
αij
j (s) −

1 − ε

2
σ2
i(s)

ds, (4.3)

and for i = m+ 1, · · · ,d from (4.2) it follows

ln xi(t) 6 ln xi(0) +
θ lnn
ε

+

∫t
0

∫
Y

(ci(s,u) − ln(1 + ci(s,u))) λ(du)ds

+

∫t
0

−ri(s) + m∑
j=1

aij(s)x
αij
j (s) −

d∑
j=m+1

aij(s)x
αij
j (s) −

1 − ε

2
σ2
i(s)

ds, (4.4)

for 0 6 t 6 ni and n > ni whenever ω ∈ Ωi. Denote Ω0 =
⋂d
i=1Ωi. It is easy to see P(Ω0) = 1.

Moreover, for any ω ∈ Ω0, let n0(ω) = max{ni(ω) : 1 6 i 6 d}. Then, for any ω ∈ Ω0, from (4.3) and (4.4)
we get

d∑
i=1

ln xi(t) 6
d∑
i=1

ln xi(0) +
θd lnn
ε

+

∫t
0

∫
Y

d∑
i=1

(ci(s,u) − ln(1 + ci(s,u))) λ(du)ds+
∫t

0
F(x(s))ds,

where

F(x(s)) =

m∑
i=1

ri(s) −

d∑
i=m+1

ri(s) −

m∑
i=1

d∑
j=1

aij(s)x
αij
j (s) +

d∑
i=m+1

m∑
j=1

aij(s)x
αij
j (s)

−

d∑
i=m+1

d∑
j=m+1

aij(s)x
αij
j (s) −

1 − ε

2

d∑
i=1

σ2
i(s),

for all 0 6 t 6 n and n > n0.
According to Assumption 1.1, there exists a constant K2 > 0 such that

F(x(s)) 6 m(řui ) − (d−m)(r̂li) + (ǎuij)
∑
D1

x
αij
j (s) − (âlii)

d∑
i=1

xαiii (s) −
1 − ε

2
d(σ̂li)

2 6 K2.

Combining with (2.1) yields

d∑
i=1

ln xi(t) 6
d∑
i=1

ln xi(0) +
θd lnn
ε

+ (K1 +K2)t,

for 0 6 t 6 n, n > n0.
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Consequently, for any ω ∈ Ω0, if n− 1 6 t 6 n and n > n0 + 1, we obtain

lim sup
t→∞

ln
∏d
i=1 xi(t)

t
6 lim sup

n→∞
[

ln
∏d
i=1 xi(0)
n− 1

+
θd lnn
ε(n− 1)

+ (K1 +K2)

]
=: K.

This completes the proof.

Theorem 4.3. Under Assumptions 1.1 and 4.1, if in addition the following condition holds:
for any t > 0, and i = 1, · · · ,d,

sup
t>0

∫t
0

∫
Y

eλ(s−t)[ci(s,u) − ln(1 + ci(s,u))]λ(du)ds <∞, (4.5)

then, for any initial value x0 ∈ Rd+

lim sup
t→∞

ln(
∏d
i=1 xi(t))

ln t
6 d a.s. .

Proof. Let λ > 0. For i = 1, · · · ,m, we apply Itô’s formula to eλt ln xi(t) and get

eλt ln xi(t) = ln xi(0) +
∫t

0
eλsσi(s)dw(s) +

∫t
0

∫
Y

eλs ln(1 + ci(s,u))Ñ(ds,du)

+

∫t
0
eλs

λ ln xi(s) + ri(s) −
d∑
j=1

aij(s)x
αij
j (s) −

1
2
σ2
i(s)

ds
+

∫t
0

∫
Y

eλs (ln(1 + ci(s,u)) − ci(s,u)) λ(du)ds.

(4.6)

Similarly, for i = m+ 1, · · · ,d, we get

eλt ln xi(t) = ln xi(0) +
∫t

0
eλsσi(s)dw(s) +

∫t
0

∫
Y

eλs ln(1 + ci(s,u))Ñ(ds,du)

+

∫t
0
eλs

λ ln xi(s) − ri(s) +
m∑
j=1

aij(s)x
αij
j (s) −

d∑
j=m+1

aij(s)x
αij
j (s) −

1
2
σ2
i(s)

ds
+

∫t
0

∫
Y

eλs (ln(1 + ci(s,u)) − ci(s,u)) λ(du)ds.

(4.7)

For any ε ∈ (0, 1) arbitrarily, θ > 1 and every integer n > 1, under Assumption 4.1, using the exponential
martingale inequality with jumps yields

P

{
sup

06t6n

[∫t
0
eλsσi(s)dw(s) −

ε

2
e−λn

∫t
0
e2λsσ2

i(s)ds+

∫t
0

∫
Y

eλs ln(1 + ci(s,u))Ñ(ds,du)

−
1

εe−λn

∫t
0

∫
Y

(eεe
−λneλs ln(1+ci(s,u)) − 1 − εe−λneλs ln(1 + ci(s,u)))λ(du)ds

]
>
θeλn lnn

ε

}
<

1
nθ

.

Since the series
∑∞
n=1

1
nθ

< ∞, from the Borel-Cantella lemma we obtain there is an Ωi ⊆ Ω with
P(Ωi) = 1 such that for any ω ∈ Ωi, an integer ni = ni(ω) can be found such that∫t

0
eλsσi(s)dw(s) +

∫t
0

∫
Y

eλs ln(1 + ci(s,u))Ñ(ds,du) 6
θeλn lnn

ε
+
ε

2
e−λn

∫t
0
e2λsσ2

i(s)ds

+

∫t
0

∫
Y

eλs[ci(s,u) − ln(1 + ci(s,u))]λ(du)ds,
(4.8)
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whenever n > ni, 0 6 t 6 n. In addition,∫
Y

(ln(1 + ci(t,u) − ci(t,u)))λ(du) 6 0. (4.9)

Now let Ω0 =
⋂d
i=1Ωi. Clearly P(Ω0) = 1. Moreover, for any ω ∈ Ω0, let

n0(ω) = max{ni(ω) : 1 6 i 6 d}.

Then, for any ω ∈ Ω0, by using inequalities (4.8) and (4.9), it follows from (4.6), (4.7)

eλt
d∑
i=1

ln xi(t) 6
d∑
i=1

ln xi(0) +
θdeλn lnn

ε

+

∫t
0

∫
Y

eλs
d∑
i=1

(ci(s,u) − ln(1 + ci(s,u))) λ(du)ds+
∫t

0
eλsF̃(x(s))ds,

for all 0 6 t 6 n and n > n0(ω), where

F̃(x(s)) = λ

d∑
i=1

ln xi(s) +
m∑
i=1

ri(s) −

d∑
i=m+1

ri(s) −

m∑
i=1

d∑
j=1

aij(s)x
αij
j (s) +

d∑
i=m+1

m∑
j=1

aij(s)x
αij
j (s)

−

d∑
i=m+1

d∑
j=m+1

aij(s)x
αij
j (s) −

1 − εeλs−λn

2

d∑
i=1

σ2
i(s)

6 λ
d∑
i=1

ln xi(s) +m(řui ) − (d−m)(r̂li) + (ǎuij)
∑
D1

x
αij
j (s) − (âlii)

d∑
i=1

xαiii (s) −
1 − εeλs−λn

2
d(σ̂li)

2,

which has an upper bound under Assumption 1.1, say K̃. So for any ω ∈ Ω0, if (n− 1) 6 t 6 n and
n > n0 + 1, we obtain

ln
∏d
i=1 xi(t)

ln t
6

ln
∏d
i=1 xi(0)
eλt ln t

+
θdeλn lnn

εeλ(n−1) ln(n− 1)
+

1
ln t

∫t
0
K̃eλ(s−t)ds

+
1

ln t

∫t
0

∫
Y

eλ(s−t)(ci(s,u) − ln(1 + ci(s,u)))λ(du)ds.

Supposing that n ↑∞, using (4.5) leads to

lim sup
t→∞

ln
∏d
i=1 xi(t)

ln t
6
θdeλ

ε
a.s.,

and the conclusion follows on setting λ ↓ 0, ε ↑ 1 and θ ↓ 1.

Remark 4.4. Under the conditions of Theorem 4.2, from the above proof, it is easy to see that for i =

1, · · · ,d, lim supt→∞ lnxi(t)
ln t 6 1 a.s.. Noting the limit limt→∞ ln t

t = 0, we have

lim sup
t→∞

ln xi(t)
t

6 0 a.s. . (4.10)

5. The survival analysis for (1.1)

Definition 5.1 ([16]).

(1) Stochastic population xi(t) is said to be extinct with probability 1, if for every initial value x0 ∈ Rd+,
the solution xi(t), t > 0 has the property

lim
t→∞ xi(t) = 0 a.s. .
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(2) Stochastic population xi(t) is said to be weakly persistent in the mean, if

lim sup
t→∞

1
t

∫t
0
xi(s)ds > 0 a.s. .

Theorem 5.2. Under Assumptions 1.1 and 4.1.

(i) If for t > 0,

lim sup
t→∞

1
t

∫t
0
βi(s)ds < 0, i = 1, · · · ,m, (5.1)

where
βi(t) := ri(t) −

1
2
σ2
i(t) −

∫
Y

(ci(t,u) − ln(1 + ci(t,u)))λ(du),

then all prey species and predator species are extinctive a.s. .

(ii) If lim supt→∞ 1
t

∫t
0 βi(s)ds > 0, i = 1, · · · ,m and condition (4.5) holds, then for any initial value x0 ∈ Rd+,

there exist constants bi > 0, i = 1, · · · ,m such that

lim sup
t→∞

1
t

∫t
0
xi(s)ds > bi, i = 1, · · · ,m, a.s. . (5.2)

Proof. (i) Applying Itô’s formula to ln xi(t), i = 1, · · · ,m gives

ln(xi(t)/xi(0))
t

6
1
t

∫t
0
βi(s)ds+

Mi(t)

t
+
M̃i(t)

t
,

where Mi(t) =
∫t

0 σi(s)dw(s), and M̃i(t) =
∫t

0

∫
Y

ln(1 + ci(s,u))Ñ(ds,du). Noting that

〈Mi〉(t) =
∫t

0
σ2
i(s)ds 6 (σ̌ui )

2t,

and

〈M̃i〉(t) =
∫t

0

∫
Y

[ln(1 + ci(s,u))]2λ(du)ds 6 ct,

where〈·〉(t) is Meyer’s angle bracket process.
From strong law of large numbers [20], we obtain

lim
t→∞Mi(t)

t
= 0, a.s. and lim

t→∞ M̃i(t)

t
= 0 a.s. . (5.3)

Combining with (5.1), yields

lim sup
t→∞

ln xi(t)
t

6 lim sup
t→∞

1
t

∫t
0
βi(s)ds < 0.

So for i = 1, · · · ,m,
lim
t→∞ xi(t) = 0 a.s. . (5.4)

That is, all prey species become extinct.
For i = m+ 1, · · · ,d, applying Itô’s formula to ln xi(t) and integrating from 0 to t yields

ln xi(t)
t

6
ln xi(0)
t

+
Mi(t)

t
+
M̃i(t)

t

+
1
t

∫t
0

−ri(s) + (ǎuij)

m∑
j=1

x
αij
j (s) −

1
2
σ2
i(s) −

∫
Y

(ci(s,u) − ln(1 + ci(s,u)))λ(du)

ds.
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By (5.3), (5.4)

lim sup
t→∞

ln xi(t)
t

< 0,

so for i = m+ 1, · · · ,d,
lim
t→∞ xi(t) = 0 a.s.,

i.e., all predator species become extinct.
(ii) If (5.2) is false, then for any fixed ε > 0, there exists a solution x̃(t) with initial value x̃0 ∈ Rd+ such

that

P

{
lim sup
t→∞

1
t

∫t
0
x̃i(s)ds < ε

}
> 0, i = 1, · · · ,m.

Letting ε be sufficiently small to satisfy

lim sup
t→∞

1
t

∫t
0
βi(s)ds− (ǎuij)

m∑
j=1

εαij > 0, i = 1, · · · ,m,

lim sup
t→∞

1
t

∫t
0
ηi(s)ds+ (ǎuij)

m∑
j=1

εαij < 0, i = m+ 1, · · · ,d,

(5.5)

where ηi(t) := −ri(t) −
1
2σ

2
i(t) −

∫
Y
(ci(t,u) − ln(1 + ci(t,u)))λ(du).

For i = m+ 1, · · · ,d, from (4.2), (5.3) and (5.5), we have

lim sup
t→∞

ln x̃i(t)
t

6 lim sup
t→∞

1
t

∫t
0
ηi(s)ds+ (ǎuij)

m∑
j=1

εαij < 0,

therefore
lim
t→∞ x̃i(t) = 0, i = m+ 1, · · · ,d.

On the other hand, for i = 1, · · · ,m, from (4.1), we obtain

ln(x̃i(t)/xi(0))
t

>
1
t

∫t
0
βi(s)ds− (ǎuij)

1
t

∫t
0

m∑
j=1

x̃
αij
j (s) − (ǎuij)

1
t

∫t
0

d∑
j=m+1

x̃
αij
j (s) +

Mi(t)

t
+
M̃i(t)

t
. (5.6)

Substituting (5.3), (5.5) into (5.6) results in

lim sup
t→∞

ln x̃i(t)
t

> lim sup
t→∞

1
t

∫t
0
βi(s)ds− (ǎuij)

m∑
j=1

εαij > 0, i = 1, · · · ,m.

In other words, we have shown that

P

{
lim sup
t→∞

ln x̃i(t)
t

> 0
}
> 0, i = 1, · · · ,m,

which contradicts (4.10). This completes the proof.

Remark 5.3. Making use of inequality x− 1 − ln x > 0, x > 0, yields

βi(s) := ri(s) −
1
2
σ2
i(s) −

∫
Y

(ci(s,u) − ln(1 + ci(s,u)))λ(du) 6 ri(s) −
1
2
σ2
i(s).

Thus Theorem 5.2 reveals that jumps can make the population extinct.

Remark 5.4. From Theorem 5.2, it is easy to see that prey species are weakly persistent in the mean.
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6. Conclusions

This paper is concerned with a general non-autonomous Gilpin-Ayala m prey and (d−m) predator
species model with jumps. Gilpin-Ayala model is a highly nonlinear system, so it is difficult to discuss this
model. In this paper, we adopt the analysis of Lyapunov functions which has been used by many authors
to discuss the asymptotic behavior of the solution of our model. We show that the model with jumps
admits a unique global positive solution, and investigate stochastic ultimate boundedness, asymptotic
moment estimation and pathwise estimation. From the survival analysis of this model, we obtain that
jumps can make the population extinct.
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[2] D. Applebaum, Lévy processes and stochastic calculus, Second edition, Cambridge Studies in Advanced Mathemat-
ics, Cambridge University Press, Cambridge, (2009). 4

[3] A. Bahar, X.-R. Mao, Stochastic delay population dynamics, Int. J. Pure Appl. Math., 11 (2004), 377–399. 1
[4] J.-H. Bao, X.-R. Mao, G. Yin, C.-G. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal.,

74 (2011), 6601–6616. 1
[5] J.-H. Bao, C.-G. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 391 (2012), 363–375.
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