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Abstract
The purpose of this paper is to introduce a new contractive condition. We prove the existence and uniqueness of a fixed

point of self-mapping under this new contractive condition. Moreover, we observe analog of these results for the mappings that
satisfy the property P. An application on integral equations is presented to illustrate the main result. Our results extend and
generalize well-known results in the literature. c©2017 All rights reserved.
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1. Introduction and mathematical preliminaries

The notion of non-zero self-distance was initiated by Matthews [38] to solve the existing problems
in the research area of the denotational semantics of dataflow network. By the help of that concept,
the author extended the notion of metric, by introducing the notion of partial metric, to use the analog
of well-known the Banach contraction mapping principle for his purpose, in particular, for program
verification/termination.

Partial metric spaces become more useful research field after the contribution of Romaguera [44] to
this theory, namely, the notions of 0-completeness. Recently, a number of authors have focused on the
fixed point results in partial metric spaces, see e.g. [1–18, 20–36, 41–45] and references therein.

The aim of this paper is to prove some fixed point results for self-mappings in partial metric space
satisfying a new contractive condition, also we show that the mapping satisfies the property P. We give
also an example to illustrate the main result. Moreover, we propose an application of integral equations
that supports the presented results.

First, we recollect some basics notions and facts. Throughout the paper, let N, Q, R denote the natural,
rational and real numbers, respectively. First, we recall the notion of a partial metric:
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Definition 1.1 ([38]). A partial metric on a nonempty set X is a function p : X×X→ [0,∞) such that

(P1) p(x, x) = p(x,y) = p(y,y) if and only if x = y;
(P2) p(x, x) 6 p(x,y);
(P3) p(x,y) = p(y, x);
(P4) p(x,y) 6 p(x, z) + p(z,y) − p(z, z),

hold for all x,y, z ∈ X. Here, we denote partial metric space by a pair (X,p).

It is straightforward to see that the function dp : X×X→ [0,∞) given by

dp(x,y) = 2p(x,y) − p(x, x) − p(y,y),

forms a standard (usual) metric on X.

Definition 1.2 ([38, 42]). Let (X,p) be a partial metric space. Then

(1) A sequence {xn} in (X,p) converges to a point x ∈ X if and only if p(x, x) = lim
n→∞p(xn, x).

(2) A sequence {xn} in (X,p) is called a Cauchy sequence if lim
n,m→∞p(xn, xm) exists and finite.

(3) (X,p) is said to be complete if every Cauchy sequence {xn} in X converges with respect to its topology
τp to a point x ∈ X such that p(x, x) = lim

n,m→∞p(xn, xm).

(4) A sequence {xn} in (X,p) is called a 0-Cauchy sequence if limn,m→∞ p(xn, xm) = 0. The space (X,p)
is said to be 0-complete if every 0-Cauchy sequence in X converges with respect to τp to a point
x ∈ X such that p(x, x) = 0.

Lemma 1.3 ([38, 42]). Let (X,p) be a partial metric space and {xn} be any sequence in X. Then

(i) {xn} is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric space (X,dp).

(ii) The space (X,p) is complete if and only if the metric space (X,dp) is complete.

(iii) Every 0-Cauchy sequence in (X,p) is Cauchy in (X,dp).

(iv) If (X,p) is complete, then it is 0-complete.

The converse assertions of (iii) and (iv) do not hold as the following easy example shows.

Example 1.4 ([44]). The space X = Q∩ [0,∞) with the partial metric p(x,y) = max{x,y} is 0-complete but
it is not complete (since dp(x,y) = |x− y| and (X,dp) is not complete). Moreover, the sequence {xn} with
xn = 1 for each n ∈N is a Cauchy sequence in (X,p), but it is not a 0-Cauchy sequence.

Notice also that every closed subset of a 0-complete partial metric space is 0-complete.

Lemma 1.5 ([1, 42]). Assume {xn} → z as n → ∞ in a partial metric space (X,p) such that p(z, z) = 0. Then
lim
n→∞p(xn,y) = p(z,y) for all y ∈ X.

Lemma 1.6 ([1, 23]). Suppose that (X,p) is a partial metric space. Then

(1) If p(x,y) = 0, then x = y.
(2) If x 6= y, then p(x,y) > 0.

Definition 1.7 ([37]). A function ψ : [0,∞)→ [0,∞) is called an altering distance function if it satisfies the
following conditions:

1. ψ is continuous and nondecreasing;
2. ψ(t) = 0 if and only if t = 0.

We denote Ψ the set of all altering distance functions.
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Definition 1.8. The function ϕ : [0,∞)→ [0,∞) is called a strong-altering distance function, if the follow-
ing conditions hold.

1. ϕ is continuous;
2. ϕ(t) 6= 0 when t 6= 0.

We denote by Φ the set of all strong-altering distance functions.

Lemma 1.9 ([40]). Let (X,p) be a partial metric space and let {xn} be a sequence in X such that lim
n→∞p(xn, xn+1) =

0. If {x2n} is not a Cauchy sequence in (X,p), then there exist ε > 0 and two sequences {m(k)} and {n(k)} of positive
integers such that n(k) > m(k) > k and the following four sequences tend to ε > 0, when k→∞.

p(x2m(k), x2n(k)+1), p(x2m(k), x2n(k)), p(x2m(k)−1, x2n(k)+1), p(x2m(k)−1, x2n(k)).

The following lemmas will play crucial roles in the sequel.

Lemma 1.10 ([39]). Let (X,p) be a partial metric space and {xn} be a sequence such that lim
n→∞p(xn, xn+1) = 0,

then the sequence {xn} is a Cauchy sequence if and only if {x2n} is a Cauchy subsequence.

Lemma 1.11 ([39]). Let (X,p) be a complete partial metric space and {xn} be a Cauchy sequence such that
lim
n→∞p(xn, xn) = 0, then the sequence {xn} is a 0-Cauchy sequence. Further, if {xn} converges to x, then
lim
n→∞p(xn, x) = 0.

Lemma 1.12 ([39]). Let (X,p) be a complete partial metric space and {xn} be a Cauchy sequence such that
lim
n→∞p(xn, xn+1) = 0. Then the sequence {xn} is a 0-Cauchy sequence.

We should underline the fact that the limit of a sequence in partial metric space is not necessarily

unique. For instance, the limit of the sequence
{

1
n3 + 1

}
n∈N

in the partial metric space, (X,p) defined by

p(x,y) = max{x,y} for all x,y ∈ X = [0,∞),

is not unique. More precisely, we have

p(1, 1) = lim
n→∞p(1,

1
n3 + 1

) and p(2, 2) = lim
n→∞p(2,

1
n3 + 1

).

On the other hand, under the certain restriction, the uniqueness of a limit of a given sequence can be
guaranteed. The following lemma is one of the example of how the uniqueness criteria can be provided.

Lemma 1.13 (See e.g. [34]). Let (X,p) be a partial metric space and let {xn}n∈N be a sequence in X such that
xn → x and xn → y. If

lim
n→∞p(xn, xn) = p(x, x) = p(y,y),

then x = y.

2. Main results

We start this section with the following crucial lemma.

Lemma 2.1. Let (X,p) be a partial metric space and let {xn} be a sequence in X such that lim
n→∞p(xn, xn+1) = 0. If

{x2n} is not a Cauchy sequence in (X,p), then there exist an ε > 0 and two sequences {m(k)} and {n(k)} of positive
integers such that n(k) > m(k) > k and

lim
k→∞p(x2m(k), x2n(k)−1) = ε.
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Proof. By Lemma 1.9 there exist ε > 0 and two sequences {m(k)} and {n(k)} of positive integers such that
n(k) > m(k) > k and

lim
k→∞p(x2n(k), x2m(k)) = ε.

From (P4), we have

p(x2m(k), x2n(k)−1) 6 p(x2m(k), x2n(k)) + p(x2n(k), x2n(k)−1) − p(x2n(k), x2n(k)). (2.1)

By taking the limit of (2.1) as k→∞ and using Lemma 1.9 we get

lim
k→∞p(x2m(k), x2n(k)−1) 6 ε, (2.2)

and also

p(x2m(k), x2n(k)) 6 p(x2m(k), x2n(k)−1) + p(x2n(k)−1, x2n(k)) − p(x2n(k)−1, x2n(k)−1). (2.3)

By letting k→∞ in (2.3) and regarding Lemma 1.9 we get

ε 6 lim
k→∞p(x2m(k), x2n(k)−1). (2.4)

Therefore, from (2.2) and (2.4) we get that lim
k→∞p(x2m(k), x2n(k)−1) = ε.

The following is the main result of this paper.

Theorem 2.2. Let (X,p) be a complete partial metric space and T : X→ X be a self-mapping satisfying:

ψ(p2(Tx, Ty)) 6 ψ(M(x,y)) −ϕ(M(x,y)), ∀x,y ∈ X, (2.5)

where ϕ ∈ Φ, ψ ∈ Ψ and

M(x,y) = max

{
p2(x,y), p(x,Tx).p(y,Ty)

1+p2(x,y) ,
1
2 [p(x, Ty).p(y, Tx)], p2(y,Ty)

1+p2(y,y)

}
.

Then T has a unique fixed point, say u, in X and lim
n→∞ Tn(x0) = u for any arbitrary x0 ∈ X.

Proof. Let x0 ∈ X be an arbitrary point and define the sequence xn = Tnx0 = Txn−1. Suppose that
xn = xn+1 for some n ∈ N, then xn = xn+1 = Txn, so xn is a fixed point. From now on, we assume that
xn 6= xn+1 for each n ∈ N. By using (2.5) for x = xn−1 and y = xn, we get that

ψ(p2(xn, xn+1)) = ψ(p
2(Txn−1, Txn))

6 ψ(M(xn−1, xn)) −ϕ(M(xn−1, xn)),
(2.6)

where

M(xn−1, xn) = max

{
p2(xn−1, xn),

p(xn−1,xn).p(xn,xn+1)
1+p2(xn−1,xn)

,
1
2 [p(xn−1, xn+1).p(xn, xn)],

p2(xn,xn+1)
1+p2(xn,xn)

}
.

If p(xn−1, xn) 6 p(xn, xn+1), then

p(xn−1,xn).p(xn,xn+1)
1+p2(xn−1,xn)

6 p2(xn,xn+1)
1+p2(xn−1,xn)

6 p2(xn, xn+1).

Also, if p(xn, xn+1) 6 p(xn−1, xn), then

p(xn−1,xn).p(xn,xn+1)
1+p2(xn−1,xn)

6 p2(xn−1,xn)
1+p2(xn−1,xn)

6 p2(xn−1, xn).
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Thus, we obtain
p(xn−1, xn).p(xn, xn+1)

1 + p2(xn−1, xn)
6 max{p2(xn, xn+1),p2(xn−1, xn)}. (2.7)

On the other hand, from (P4) and (P2) we have

1
2
[p(xn−1, xn+1).p(xn, xn)] 6

1
2
[p(xn−1, xn).p(xn, xn) + p(xn, xn+1).p(xn, xn) − p2(xn, xn)]

6
1
2
[p2(xn−1, xn) + p2(xn, xn+1) − p

2(xn, xn)]

6
1
2
[p2(xn−1, xn) + p2(xn, xn+1)]

6 max{p2(xn−1, xn),p2(xn, xn+1)}.

(2.8)

Combining the observed results in (2.7) and (2.8), we find that

M(xn−1, xn) 6 max{p2(xn−1, xn),p2(xn, xn+1)}. (2.9)

Therefore, by the help of (2.9), inequality (2.6) becomes,

ψ(p2(xn, xn+1)) = ψ(p
2(Txn−1, Txn))

6 ψ(max{p2(xn−1, xn),p2(xn, xn+1)}) (2.10)

−ϕ(max{p2(xn−1, xn),p2(xn, xn+1)}),

which implies that
ψ(p2(xn, xn+1)) < ψ(max{p2(xn−1, xn),p2(xn, xn+1)}). (2.11)

If max{p2(xn−1, xn),p2(xn, xn+1)} = p
2(xn, xn+1), then we have

ψ(p2(xn, xn+1)) < ψ(p
2(xn, xn+1)),

a contradiction. Hence, the inequality (2.11) yields that

ψ(p2(xn, xn+1)) < ψ(p
2(xn−1, xn)).

Since ψ is non-decreasing, the inequality above turns into

p2(xn, xn+1) 6 p
2(xn−1, xn),

that is
p(xn, xn+1) 6 p(xn−1, xn).

Therefore, the sequence {p(xn, xn+1)} is decreasing sequence and bounded below by 0. So,

lim
n→∞p(xn, xn+1) = r > 0.

Now we show that r = 0. Assume r > 0. Taking limit as n→∞ for (2.10) we get

ψ(r2) 6 ψ(max{r2, r2}) −ϕ(max{r2, r2})

< ψ(r2),

a contradiction. Thus, we conclude that r = 0 and so,

lim
n→∞p(xn, xn+1) = 0. (2.12)
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As a next step, we shall prove that {xn} is a Cauchy sequence in the context of partial metric space (X,p).
Suppose, on the contrary, that the sequence {xn} is not Cauchy. Then, by Lemma 1.10, the subsequence
{x2n} is not Cauchy, either. By Lemma 1.9 there exist ε > 0 and two sequences {m(k)} and {n(k)} of
positive integers such that n(k) > m(k) > k and

lim
k→∞p(x2n(k), x2m(k)) = lim

k→∞p(x2m(k)−1, x2n(k)) = lim
k→∞p(x2n(k)−1, x2m(k)) = ε. (2.13)

Now, we have

ψ(p2(x2n(k), x2m(k))) = ψ(p
2(Tx2n(k)−1, Tx2m(k)−1))

6 ψ(M(x2n(k)−1, x2m(k)−1)) −ϕ(M(x2n(k)−1, x2m(k)−1)),
(2.14)

where

M(x2n(k)−1, x2m(k)−1) = max


p2(x2n(k)−1, x2m(k)−1),

p(x2n(k)−1,x2n(k)).p(x2m(k)−1,x2m(k))

1+p2(x2n(k)−1,x2m(k)−1)
,

1
2 [p(x2n(k)−1, x2m(k)).p(x2m(k)−1, x2n(k))],

p2(x2m(k)−1,x2m(k))

1+p2(x2m(k)−1,x2m(k)−1)

 ,

but,

0 6 p2(x2n(k)−1, x2m(k)−1) 6 [p(x2n(k)−1, x2n(k))

+ p(x2n(k), x2m(k)−1) − p(x2n(k), x2n(k))]
2.

Hence, we have

max


p(x2n(k)−1,x2n(k)).p(x2m(k)−1,x2m(k))

1+p2(x2n(k)−1,x2m(k)−1)
,

1
2 [p(x2n(k)−1, x2m(k)).p(x2m(k)−1, x2n(k))],

p2(x2m(k)−1,x2m(k))

1+p2(x2m(k)−1,x2m(k)−1)


6M(x2n(k)−1, x2m(k)−1)

6 max


[p(x2n(k)−1, x2n(k)) + p(x2n(k), x2m(k)−1) − p(x2n(k), x2n(k))]

2,
p(x2n(k)−1,x2n(k)).p(x2m(k)−1,x2m(k))

1+p2(x2n(k)−1,x2m(k)−1)
,

1
2 [p(x2n(k)−1, x2m(k)).p(x2m(k)−1, x2n(k))],

p2(x2m(k)−1,x2m(k))

1+p2(x2m(k)−1,x2m(k)−1)

 .

(2.15)

Letting k→∞ in (2.14) together with (2.12), (2.13), Lemma 2.1, and (P2) we get

ψ(ε2) 6 ψ(max{ε2, 0,
ε2

2
, 0}) −ϕ( lim

k→∞M(x2n(k)−1, x2m(k)−1))

= ψ(ε2) −ϕ( lim
k→∞M(x2n(k)−1, x2m(k)−1)).

(2.16)

From (2.15), limk→∞M(x2n(k)−1, x2m(k)−1) > max{0, ε2

2 , 0} = ε2

2 > 0, and so from properties of ϕ we
conclude that ϕ(limk→∞M(x2n(k)−1, x2m(k)−1)) > 0. Thus (2.16) becomes ψ(ε2) < ψ(ε2), a contradiction.
So, we deduce that {x2n} is a Cauchy sequence. Hence, by Lemma 1.10 {xn} is a Cauchy sequence. So,
there exists u ∈ X such that lim

n→∞ xn = u. From (P2) and Lemma 1.11 that 0 = lim
n→∞p(xn,u) = p(u,u) and

hence,

lim
n→∞p2(xn,u) = 0. (2.17)
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Next, we shall show that u ∈ X is a fixed point of T . From (2.5) we have

ψ(p2(xn+1, Tu)) = ψ(p2(Txn, Tu))
6 ψ(M(xn,u)) −ϕ(M(xn,u)), (2.18)

where

M(xn,u) = max

{
p2(xn,u), p(xn,Tu).p(u,Tu)

1+p2(xn,u)
,

1
2 [p(xn, Tu).p(u, xn+1)],

p2(u,Tu)
1+p2(u,u)

}
.

By taking limit for M(xn,u) as n→∞ and using (2.17) and Lemma 1.5, then equation (2.18) becomes,

ψ(p2(u, Tu)) 6 ψ(p2(u, Tu)) −ϕ(p2(u, Tu)).

Consequently, ϕ(p2(u, Tu)) = 0, so p2(u, Tu) = 0 which implies p(u, Tu) = 0 and u = Tu.
Now, we shall prove that the obtained fixed point is unique. Suppose, on the contrary, that there exists

another fixed point v ∈ X with v 6= u. Then, we observe

ψ(p2(v,u)) = ψ(p2(Tv, Tu))
6 ψ(M(v,u)) −ϕ(M(v,u)),

where

M(u, v) = max

{
p2(u, v), p(u,Tu).p(v,Tv)

1+p2(u,v) ,
1
2 [p(u, Tv).p(v, Tu)], p2(v,Tv)

1+p2(v,v)

}
.

Hence, we find

ψ(p2(u, v)) 6 ψ(max{p2(u, v), 0,
p2(u, v)

2
,
p2(v, v)

1 + p2(v, v)
})

−ϕ(max{p2(u, v), 0,
p2(u, v)

2
,
p2(v, v)

1 + p2(v, v)
}),

(2.19)

but p2(v,v)
1+p2(v,v) 6 p2(u,v)

1+p2(v,v) 6 p2(u, v). Thus (2.19) becomes

ψ(p2(u, v)) 6 ψ(p2(u, v)) −ϕ(p2(u, v)),

which yields
ψ(p2(u, v)) < ψ(p2(u, v)),

a contradiction. This completes the proof.

Theorem 2.3. Let (X,p) be a complete partial metric space and T : X → X be a self mapping satisfying for some
n ∈N

ψ(p2(Tnx, Tny)) 6 ψ(M(x,y)) −ϕ(M(x,y)), ∀x,y ∈ X,

where ϕ ∈ Φ, ψ ∈ Ψ and

M(x,y) = max

{
p2(x,y), p(x,Tnx).p(y,Tny)

1+p2(x,y) ,
1
2 [p(x, Tny).p(y, Tnx)], p2(y,Tny)

1+p2(y,y)

}
.

Then T has a unique fixed point, say u, in X and lim
k→∞ Tk(x0) = u for any arbitrary x0 ∈ X.

Proof. By following the proof of Theorem 2.2, we conclude that the mapping Tn has a unique fixed point,
say u, that is Tnu = u. Thus, we have Tu = T(Tnu) = Tn+1u = Tn(Tu). As a result, Tu is a fixed
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point of Tn. On account of Lemma 1.13, uniqueness yields that u = Tu. From Theorem 2.2 we have
lim

m→∞ Tmn(x0) = u, thus

lim
k→∞ Tk(x0) = lim

m→∞ Tmn+rx0

= lim
m→∞ Tmn(Trx0)

= lim
m→∞ Tmn(x∗) = u,

where 0 6 r < n and x∗ = Trx0 ∈ X.

Definition 2.4 ([19]). We say that a map T has the property P if F(T) = F(Tn) for each n ∈N, where F(T)
denotes the set of all fixed points of a self-mapping T .

Theorem 2.5. Let (X,p) be a complete partial metric space and T : X→ X be a self-mapping satisfying:

ψ(p2(Tx, Ty)) 6 ψ(M(x,y)) −ϕ(M(x,y)), ∀x,y ∈ X,

where ϕ ∈ Φ, ψ ∈ Ψ and

M(x,y) = max

{
p2(x,y), p(x,Tx).p(y,Ty)

1+p2(x,y) ,
1
2 [p(x, Ty).p(y, Tx)], p2(y,Ty)

1+p2(y,y)

}
.

Then, T has the property P.

Proof. Let n ∈N and suppose u ∈ F(Tn). Then for any integers 0 < i, j < n, we have

ψ(p2(T iu, T ju)) 6 ψ(M(T i−1u, T j−1u)) −ϕ(M(T i−1u, T j−1u)),

where,

M(T i−1u, T j−1u) = max

 p2(T i−1u, T j−1u), p(T i−1u,T iu).p(T j−1u,T ju)
1+p2(T i−1u,T j−1u)

,
1
2 [p(T

i−1u, T ju).p(T j−1u, T iu)], p2(T j−1u,T ju)
1+p2(T j−1u,T j−1u)

 .

For the sake of simplicity, we define

∆ = max
06i,j<n

{p2(T iu, T ju)}.

Now, we assume that M(T i−1u, T j−1u) 6= 0 for all 0 < i, j 6 n.

ψ(p2(T iu, T ju)) 6 ψ(M(T i−1u, T j−1u)) −ϕ(M(T i−1u, T j−1u))

6 ψ(∆) −ϕ(M(T i−1u, T j−1u))

< ψ(∆).

(2.20)

By taking maximum of (2.20) for 0 6 i, j < n, we get that ψ(∆) < ψ(∆) which is a contradiction. Thus
there exist i0, j0 such that M(T i0−1u, T j0−1u) = 0, then we have p2(T j0−1u, T j0u) = 0. Consequently,
we get p(T j0−1u, T j0u) = 0. Combining the observations above with the axioms (P1) and (P2), we get
T j0−1u = T j0u. Therefore

Tnu = Tn−j0+1(T j0−1u) = Tn−j0+1(T j0u) = Tn+1u.

Thus, T(Tnu) = Tn+1 = Tnu. Since, u = Tnu, we conclude that Tu = u. Hence u is a fixed point of T .
Therefore, F(T) = F(Tn), for all n ∈N.
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3. Some consequences

In Theorem 2.2, by taking ψ(t) = t and ϕ(t) = (1 − α)t such that α ∈ (0, 1) we get the following
corollary.

Corollary 3.1. Let (X,p) be a complete partial metric space and T : X→ X be a self-mapping satisfying

p2(Tx, Ty) 6 αM(x,y), ∀x,y ∈ X,

where

M(x,y) = max

{
p2(x,y), p(x,Tx).p(y,Ty)

1+p2(x,y) ,
1
2 [p(x, Ty).p(y, Tx)], p2(y,Ty)

1+p2(y,y)

}
.

Then T has a unique fixed point, say u, in X and lim
n→∞ Tn(x0) = u for any arbitrary x0 ∈ X.

Corollary 3.2. Let (X,p) be a complete partial metric space and T : X→ X be a self-mapping satisfying

p2(Tx, Ty) 6M(x,y), ∀x,y ∈ X,

where

M(x,y) = a1p
2(x,y) + a2

p(x, Tx).p(y, Ty)
1 + p2(x,y)

+ a3[p(x, Ty).p(y, Tx)] + a4
p2(y, Ty)

1 + p2(y,y)
,

and a1 + a2 + 2a3 + a4 < 1. Then T has a unique fixed point, say u, in X and lim
n→∞ Tn(x0) = u for any arbitrary

x0 ∈ X.

By taking a2 = a3 = a4 = 0 in the above corollary we get the following result ([38, Theorem 5.3]).

Corollary 3.3 ([38], Theorem 5.3). Let (X,p) be a complete partial metric space and T : X→ X be a self-mapping
satisfying

p(Tx, Ty) 6 βp(x,y), ∀x,y ∈ X, β ∈ [0, 1).

Then T has a unique fixed point, say u, in X and lim
n→∞ Tn(x0) = u for any arbitrary x0 ∈ X.

Denote by Λ the set of functions λ : [0,∞)→ [0,∞) satisfying the following hypotheses:

1. λ is a Lebesgue integral mapping on each compact subset of [0,∞).
2. For every ε > 0, we have

∫ε
0 λ(s)ds > 0.

Corollary 3.4. Let (X,p) be a complete partial metric space and T : X→ X be a self-mapping satisfying∫p2(Tx,Ty)

0
λ(s)ds 6

∫M(x,y)

0
λ(s)ds−

∫M(x,y)

0
µ(s)ds, ∀x,y ∈ X,

where λ,µ ∈ Λ and

M(x,y) = max

{
p2(x,y), p(x,Tx).p(y,Tny)

1+p2(x,y) ,
1
2 [p(x, Ty).p(y, Tx)], p2(y,Ty)

1+p2(y,y)

}
.

Then T has a unique fixed point, say u, in X.

Proof. It is an easy matter to see that the mappings ψ,ϕ : [0,∞)→ [0,∞) defined by ψ(t) =
∫t

0 λ(s)ds and
ϕ(t) =

∫t
0 µ(s)ds are (altering) and strong-altering distance functions respectively. Therefore, the rest of

the proof follows from the proof of Theorem 2.2.

Corollary 3.5. Let (X,p) be a complete partial metric space and T : X→ X be a self-mapping satisfying

ψ(p2(Tx, T 2x)) 6 ψ(M(x, Tx)) −ϕ(M(x, Tx)), ∀x ∈ X,

where ϕ ∈ Φ, ψ ∈ Ψ and
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M(x, Tx) = max

 p2(x, Tx), p(x,Tx).p(Tx,T 2x)
1+p2(x,Tx) ,

1
2 [p(x, T 2x).p(Tx, Tx)], p2(Tx,T 2x)

1+p2(Tx,Tx)

 .

Then, T has a unique fixed point, say u, in X and lim
n→∞ Tn(x0) = u for any arbitrary initial point x0 ∈ X.

Proof. The proof follows from Theorem 2.2 by taking y = Tx.

Now, we give an example to support Theorem 2.2.

Example 3.6. Let X = [0,∞), and (X,p) be a partial metric space which is defined by p(x,y) = max{x,y}
for all x,y ∈ X. Let T be a self-mapping defined by

Tx =
4x
5

, ∀x ∈ [0,∞),

and ψ(t) = t2, ϕ(t) = 2
5t

2 for all t ∈ [0,∞). Let x,y ∈ X. Without loss of generality assume that x < y,
then

p2(Tx, Ty) = (max{
4x
5

,
4y
5
})2 =

16y2

25
,

p2(x,y) = (max{x,y})2 = y2,

p(x, Tx) = max{x,
4x
5
} = x,

p(y, Ty) = max{y,
4y
5
} = y,

p(y, Tx) = max{y,
4x
5
} = y,

p(x, Ty) = max{x,
4y
5
}.

Now to find M(x,y) we split our work into two cases:
Case 1: If 5x > 4y, then p(x, Ty) = x, so

M(x,y) = max{y2,
xy

1 + y2 ,
xy

2
,
y2

1 + y2 } = y
2.

Case 2: If 5x 6 4y, then p(x, Ty) = 4y
5 , so

M(x,y) = max{y2,
xy

1 + y2 ,
4y2

10
,
y2

1 + y2 } = y
2.

Hence we deduce that

ψ(p2(Tx, Ty)) = ψ(
16y2

25
) =

256
625

y4

6
3
5
y4

= y4 − (
2
5
y4)

= ψ(y2) −ϕ(y2)

= ψ(M(x,y)) −ϕ(M(x,y)).

Therefore, all conditions of Theorem 2.2 are satisfied and x = 0 is the unique fixed point of T .
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4. Application to integral equation

In this section, we will use Theorem 2.2 to show that there is a solution to the following integral
equation:

x(t) = h(x(t)) +

∫t
0
m(t, s)H(s, x(s))ds, t ∈ [0, 1], (4.1)

where,

1. h(t) : [0, 1]→ R is a continuous function.
2. m(t, s) : [0, 1]× [0, 1]→ [0,∞) is a continuous functions.
3. H(t, s) : [0, 1]× R→ R is a continuous function.

Let X = C([0, 1]) be the set of all real continuous functions on [0, 1], endowed with the partial metric

p(u, v) = max{ sup
t∈[0,1]

|u(t)|, sup
t∈[0,1]

|v(t)|}, ∀u, v ∈ X.

Clearly, (X,p) is a complete partial metric space.

Theorem 4.1. The integral equation (4.1) has a solution u ∈ C([0, 1]) if the following conditions hold:

1. supt∈[0,1]m(t, s) 6 1√
5
.

2. |H(s, t)| 6 |t|.
3. |h(t)| 6 1√

5
|t|.

Proof. Define mapping T : X→ X by

Tx(t) = h(x(t)) +

∫t
0
m(t, s)H(s, x(s))ds, t ∈ [0, 1].

We now prove condition (2.5) of Theorem 2.2 is satisfied. Let x(t),y(t) ∈ X. Then, for all t ∈ [0, 1], we
have

|T(x(t))| 6 |h(x(t))|+ |

∫t
0
m(t, s)H(s, x(s)) ds|

6 |h(x(t))|+

∫t
0
|m(t, s)||H(s, x(s))| ds

6 |h(x(t))|+

∫t
0

1√
5
|H(s, x(s))|ds

6
1√
5

sup
t∈[0,1]

|x(t)|+

∫t
0

1√
5

sup
s∈[0,1]

|x(s)|ds

6
1√
5

sup
t∈[0,1]

|x(t|+

∫ 1

0

1√
5

sup
s∈[0,1]

|x(s)|ds

=
2√
5

sup
t∈[0,1]

|x(t)|.

Similarly,

|T(y(t))| 6
2√
5

sup
t∈[0,1]

|y(t)|.

Hence,

p(T(x(t)), T(y(t))) 6
2√
5
p(x(t),y(t)),

which implies,
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p2(T(x(t)), T(y(t))) 6
4
5
p2(x(t),y(t))

6
4
5
M(x,y)

= ψ(M(x,y)) −ϕ(M(x,y)).

Therefore, ψ(p2(T(x(t)), T(y(t)))) 6 ψ(M(x,y)) −ϕ(M(x,y)) where ψ(t) = t and ϕ(t) = t
5 . Hence, all

conditions of Theorem 2.2 hold and the mapping T has a fixed point u(t) ∈ C([0, 1]) which is a solution
to the equation (4.1).

Example 4.2. The equation
4
5
x(t) =

1
2
√

5

∫t
0
tsx(s)ds, t ∈ [0, 1],

has a solution.

Proof. Let m(t, s) = ts√
5
, H(s, t) = 1

2t and h(t) = t
5 . Then all conditions of Theorem 4.1 are satisfied and so

the equation has a solution.

5. Conclusion

As it is known well, a metric space satisfies all conditions of the notion of partial metric space. But,
the converse is false. Hence, the observed fixed point results of this paper, in the setting of partial metric
spaces generalize and cover all corresponding results in the context of metric spaces. In particular, we
re-state all results of this paper in the setting of metric spaces as consequences. We avoid the list all such
consequences to optimize the length of the paper.
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[18] D. Ilić, V. Pavlović, V. Rakočević, Some new extensions of Banach’s contraction principle to partial metric space, Appl.
Math. Lett., 24 (2011), 1326–1330. 1

[19] G. S. Jeong, B. E. Rhoades, More maps for which F(T) = F(Tn), Demonstratio Math., 40 (2007), 671–680. 2.4
[20] M. Jleli, E. Karapınar, B. Samet, Further remarks on fixed-point theorems in the context of partial metric spaces, Abstr.

Appl. Anal., 2013 (2013), 6 pages. 1
[21] E. Karapınar, A note on common fixed point theorems in partial metric spaces, Miskolc Math. Notes, 12 (2011), 185–191.
[22] E. Karapınar, Generalizations of Caristi Kirk’s theorem on partial metric spaces, Fixed Point Theory Appl., 2011 (2011),

7 pages.
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[29] E. Karapınar, İ. M. Erhan, A. Y. Ulus, Fixed point theorem for cyclic maps on partial metric spaces, Appl. Math. Inf.

Sci., 6 (2012), 239–244.
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