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1. Introduction and preliminaries

It is well-known that functional analysis is made up of two main methods which are variational
methods and fixed point methods. Variational methods are used to prove the existence of solutions for
differential equations [10, 14, 15, 23, 32, 33, 35–37]. However, fixed point methods are studied by many
scholars [12, 13] in different spaces. Recently, fuzzy fixed point has attracted wide attention. As far as
we know, fuzzy set theory plays an important role in many scientific and engineering applications. The
fuzziness appears when we need to perform, on manifold, calculations with imprecision variables. The
concept of fuzzy sets was introduced initially by Zadeh [34] in 1965. Since then, Heilpern [21] defined
the fuzzy mapping T : X → Wα(X) and proved a fixed point theorem for fuzzy mapping T in metric
linear space, which is a fuzzy extension of the Banach contraction principle. Subsequently, several other
authors [1–9, 11, 16, 17, 20–22, 24–26, 29, 30, 34] have studied existence of fixed points of fuzzy mappings
satisfying some different contractive type conditions.

On the one hand, in 2008, Qiu et al. [27] defined the fuzzy mapping F : CB(X)→ CB(X) on a space of
fuzzy sets and proved a fixed point theorem for fuzzy mappings F in complete metric spaces and this is
different from the approach which is used by Heilpern [21]. On the other hand, in 2009, Qiu et al. [28]
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defined the fuzzy mapping K : C(X)→ C(X) (please see [28]) on a space of fuzzy sets in another way and
proved a fixed point theorem for fuzzy mappings K in compact metric spaces. Recently, following Qiu’s
work, Suantai et al. [31] provided some fuzzy fixed point theorems on a space of fuzzy sets equipped
with supremum metric by using R-functions.

Motivated by [11] and [31], in this paper, we prove some new fuzzy fixed point theorems on a space of
fuzzy sets under a G-distance function and G ′-distance function in complete and compact metric spaces.
Our results extend, generalize and improve the results of [27, 28, 31]. Moreover, some applications are
given here to illustrate the usability of the obtained results.

Throughout this paper, we shall use the following notions.
Let (X,d) be a metric space, and let CB(X) be the set of all nonempty bounded closed subsets of X.

Recall that the Hausdorff metric is a function H on CB(X) defined by

H(A,B) = max
{

sup
x∈B

d(x,A), sup
x∈A

d(x,B)
}
= max{ρ(B,A), ρ(A,B)} for all A,B ∈ CB(X),

where ρ(A,B) = supx∈A d(x,B) is the Hausdorff separation of A from B.
A fuzzy set µ in X is a function with domain X and values in I = [0, 1]. If µ is a fuzzy set and x ∈ X,

then the function value µ(x) is called the grade of membership of x in X. The α-cut set of µ, denoted by
[µ]α, is defined as

[µ]α =
{
x : µ(x) > α

}
,

where α ∈ (0, 1], and we separately specify the support [µ]0 of µ to be the closure of the union of [µ]α for
0 < α 6 1. We denote by CB(X) the totality of fuzzy sets µ : X→ I for which, for each α ∈ I, the α-cut of
µ is a nonempty closed bounded subset of X.

Let µ1,µ2 ∈ CB(X). Then µ1 is said to be included in µ2, denoted by µ1 ⊆ µ2, if and only if µ1(x) 6
µ2(x) for each x ∈ X. Thus we have µ1 ⊆ µ2 if and only if [µ1]α ⊆ [µ2]α for all α ∈ I. Let X, Y be any
metric space. A mapping F is said to be a fuzzy mapping if and only if F is a mapping from the space
CB(X) into CB(X), i.e., F(µ) ∈ CB(X) for each µ ∈ CB(X). µ∗ ∈ CB(X) is said to be a fixed point of a fuzzy
self-mapping F of CB(X) if and only if µ∗ ⊆ F(µ∗).

The d∞-metric (called supremum or generalized Hausdorff metric) is a metric on CB(X) which is
defined as follows:

d∞(µ1,µ2) = sup
06α61

H([µ1]α, [µ2]α) = max{ρ∞(µ1,µ2), ρ∞(µ2,µ1)},

where µ1,µ2 ∈ CB(X), and
ρ∞(µ1,µ2) = sup

06α61
ρ([µ1]α, [µ2]α) (1.1)

is the Hausdorff separation of µ1 from µ2. Notice that the supremum in (1.1) may be not attained, and
so it cannot be replaced by a maximum. To clarify this, we include the following example, which can be
found in [18].

Example 1.1. Let X be a set of real numbers and µ,υ ∈ CB(X) be fuzzy subsets of X such that the
corresponding level sets are

[µ]α = [υ]α = [0, 1] for 0 6 α 6
1
2

,

and
[µ]α = {0}, [υ]α = [0, 2(1 −α)] for

1
2
6 α 6 1.

It follows that

H([µ]α, [υ]α) =

{
0, for 0 6 α 6 1

2 ,
2(1 −α), for 1

2 6 α 6 1.

Hence, d∞(µ,υ) = sup06α61H([µ]α, [υ]α) = 1, but this is not attained.
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Note that if {µn} is a sequence in CB(X), then it follows from the definition of d∞ that {µn} converges
with respect to the d∞-metric if and only if [µn]α converges uniformly in α ∈ I with respect to the
Hausdorff metric. Further, we know that the metric space (CB(X),d∞) and (C(X),d∞) are complete
provided (X,d) is complete (see Theorem 1 in [27] and Theorem 1 in [28]). Now, we list some results of
the d∞-metric as follows.

Lemma 1.2 ([27, 28]). Let µ1,µ2,µ3 ∈ CB(X) (or C(X)). Then the following properties hold:

(i) ρ(µ1,µ2) = 0 if and only if µ1 ⊆ µ2,
(ii) if µ1 ⊆ µ2, then ρ∞(µ1,µ3) 6 d∞(µ2,µ3),

(iii) ρ∞(µ1,µ3) 6 d∞(µ1,µ2) + ρ∞(µ2,µ3).

Lemma 1.3 ([27]). Let (X,d) be a metric space and µ1,µ2 ∈ CB(X). Then for any β > 1 and any µ3 ∈ CB(X)
satisfying µ3 ⊆ µ1, there exists a µ4 ∈ CB(X) such that µ4 ⊆ µ2 and d∞(µ3,µ4) 6 βd∞(µ1,µ2).

Lemma 1.4 ([28]). Let (X,d) be a metric space and µ1,µ2 ∈ C(X). Then for any µ3 ∈ C(X) satisfying µ3 ⊆ µ1,
there exists a µ4 ∈ C(X) such that µ4 ⊆ µ2 and d∞(µ3,µ4) 6 d∞(µ1,µ2).

In [31], the authors gave an important tool related to our considered class of mappings. A function
ϕ : [0,∞)→ [0, 1) is said to be an R-function if

sup
s→t+

ϕ(s) < 1 for all t ∈ [0,∞).

Note that if ϕ : [0,∞) → [0, 1) is a non-decreasing function or a non-increasing function, then ϕ is an
R-function. This means the set of R-functions is a rich class. In [19], Du proved some of the following
properties for the class of R-functions.

Theorem 1.5. Let ϕ : [0,∞)→ [0, 1) be a function. Then the following statements are equivalent

(a) ϕ is an R-function.
(b) For any nonincreasing sequence {xn}n∈N in [0,∞), we have 0 6 supn∈Nϕ(xn) < 1.

By Lemma 1.2, Lemma 1.3, and Theorem 1.5, Qiu et al. [27] and Suantai et al. [31] proved the following
common fixed point theorems under the assumption of a closed bounded cut set of CB(X).

Theorem 1.6. Let (X,d) be a complete metric space and let {Fi}∞i=1 be a sequence of self-mappings of CB(X). If
there exists a constant q ∈ (0, 1) such that for each µ1,µ2 ∈ CB(X), and for arbitrary positive integers i and j,
i 6= j,

d∞(Fi(µ1), Fj(µ2)) 6 qMi,j(µ1,µ2),

where

Mi,j(µ1,µ2) = max
{
d∞(µ1,µ2), ρ∞(µ1, Fi(µ1)), ρ∞(µ2, Fj(µ2)),

ρ∞(µ2, Fi(µ1)) + ρ∞(µ1, Fj(µ2))

2

}
,

then there exists a µ∗ ∈ CB(X) such that µ∗ ⊆ Fi(µ∗) for all i ∈ N.

Theorem 1.7. Let (X,d) be a complete metric space and let {Fi}
∞
i=1 be a sequence of self-mappings of CB(X).

Assume that there exists an R-function ϕ : [0,∞) → [0, 1) such that for each µ1,µ2 ∈ CB(X), and for arbitrary
positive integers i and j, i 6= j,

d∞(Fi(µ1), Fj(µ2)) 6 ϕ(d∞(µ1,µ2))Mi,j(µ1,µ2),

where

Mi,j(µ1,µ2) = max
{
d∞(µ1,µ2), ρ∞(µ1, Fi(µ1)), ρ∞(µ2, Fj(µ2)),

ρ∞(µ2, Fi(µ1)) + ρ∞(µ1, Fj(µ2))

2

}
.

Then there exists a µ∗ ∈ CB(X) such that µ∗ ⊆ Fi(µ∗) for all i ∈ N.
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By Lemmas 1.2 and 1.3, Qiu et al. [28] proved the following common fixed point theorems under the
assumption of a compact cut set of C(X).

Theorem 1.8. Let (X,d) be a compact metric space and let {Fi}
∞
i=1 be a sequence of self-mappings of C(X). Let

Φ : [0,∞)→ [0,∞) be a non-decreasing function satisfying the following condition: Φ is continuous from the right
and

Σ∞n=1Φ
n(t) <∞ for all t > 0,

where Φn denotes the nth iterative function of Φ. Suppose that for arbitrary positive integers i and j, i 6= j,

d∞(Fi(µ1), Fj(µ2)) 6 Φ(Mi,j(µ1,µ2)),

where

Mi,j(µ1,µ2) = max
{
d∞(µ1,µ2), ρ∞(µ1, Fi(µ1)), ρ∞(µ2, Fj(µ2)),

ρ∞(µ2, Fi(µ1)) + ρ∞(µ1, Fj(µ2))

2

}
.

Then there exists a µ∗ ∈ CB(X) such that µ∗ ⊆ Fi(µ∗) for all i ∈ N.

Next, we introduce some classes of functions.
Let Ψ be the set of all functions φ such that φ : [0,+∞)→ [0,+∞) be a continuous and nondecreasing

function with φ(t) = 0 if and only if t = 0.
Let Υ be the set of all functions η such that η : [0,+∞) → [0,+∞) be lower semi continuous with

η(t) = 0 if and only if t = 0.
Let Ω be the set of all functions ψ such that ψ : [0,+∞) → [0,+∞) be nondecreasing and continuous

from the right with limn→∞ψn(t) = 0 for all t ∈ (0,+∞). If ψ ∈ Ω, then ψ is called Ω-map, then it is an
easy matter to show that

(1) ψ(t) < t for all t ∈ (0,+∞),
(2) ψ(0) = 0.

Remark 1.9. By Theorem 1.8 and the above function classes, it is an easy matter to show that Φ ∈ Ω.

2. Fuzzy fixed point theorems under a G-distance function

In this section, inspired by Constantin [17] and Chen et al. [11], we will show some fuzzy fixed point
theorems on a space of fuzzy sets via a G-distance function. In what follows, we slightly modified the
definition of G-distance functions which was introduced by Chen et al. [11].

Definition 2.1. A function g is said to be a G-distance function if g : [0,∞)5 → [0,∞) is continuous
function with the following properties hold:

(i) g is nondecreasing in the 2nd, 3rd, 4th, and 5th variables;
(ii) if u, v ∈ [0,∞) are such that u 6 g(v, v,u, 0,u + v) or u 6 g(v,u, v, 0,u + v) then u 6 hv where

0 < h < 1 is a given constant;
(iii) if u ∈ [0,∞) is such that u 6 g(u, 0, 0,u,u), then u = 0.

Next, we introduce and prove the following result which generalizes some existing results.

Theorem 2.2. Let (X,d) be a complete metric space and g be a G-distance function and {Fi}
∞
i=1 a sequence of self-

mappings of CB(X). Suppose that there exists an R-function ϕ : [0,∞)→ [0, 1) such that for each µ1,µ2 ∈ CB(X),
and for arbitrary positive integers i and j, i 6= j,

d∞(Fi(µ1), Fj(µ2)) 6 ϕ(d∞(µ1,µ2))M(µ1,µ2), (2.1)

where

M(µ1,µ2) = g
(
d∞(µ1,µ2), ρ∞(µ1, Fi(µ1)), ρ∞(µ2, Fj(µ2)), ρ∞(µ2, Fi(µ1)), ρ∞(µ1, Fj(µ2))

)
.

Then there exists a µ∗ ∈ CB(X) such that µ∗ ⊆ Fi(µ∗) for all i ∈ N.
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Proof. Let µ0 ∈ CB(X), and µ1 ⊆ F1(µ0), by Lemma 1.2 (ii), we can get

ρ∞(µ0, F1(µ0)) 6 d∞(µ0,µ1).

By induction, we produce a sequence {µn} of points of CB(X) such that{
µn+1 ⊆ Fn+1(µn),
ρ∞(µn, Fn+1(µn)) 6 d∞(µn,µn+1).

(2.2)

Let us define a function k : [0,∞)→ [0, 1) by

k(t) =
1 +ϕ(t)

2
for all t ∈ [0,∞).

Note that we have 0 6 ϕ(t) < k(t) < 1 for all t ∈ [0,∞).
We will start by picking a fuzzy set µ0 ∈ CB(X). We subsequently choose µ1 ⊆ F1(µ0) and a positive

real number ε0 such that ε0 ∈ (
1−k(d∞(µ0,µ1))

2 , 1 − k(d∞(µ0,µ1))). Next, by using this ε0, we can find a
positive real number β0 such that β0 ∈ (1, 1−ε0

k(d∞(µ0,µ1))
). Now, by Lemma 1.3, there exists µ2 ∈ CB(X) such

that µ2 ⊆ F2(µ1) and
d∞(µ1,µ2) 6 β0d∞(F1(µ0), F2(µ1)).

Now, We choose µ2 ⊆ F2(µ1) and a positive real number ε1 such that ε1 ∈ (
1−k(d∞(µ1,µ2))

2 , 1 −

k(d∞(µ1,µ2))). Next, by using this ε1, we can find a positive real number β1 such that β1∈(1, 1−ε1
k(d∞(µ1,µ2))

).
Now, by Lemma 1.3, there exists µ3∈CB(X) such that µ3 ⊆ F3(µ2) and

d∞(µ2,µ3) 6 β1d∞(F2(µ1), F3(µ2)).

By induction, we produce two sequences of points of {εn} and {βn} and a sequence {µn} in CB(X) such
that 

µn+1 ⊆ Fn+1(µn),
d∞(µn+1,µn+2) 6 βnd∞(Fn+1(µn), Fn+2(µn+1)),
εn ∈

(1−k(d∞(µn,µn+1))
2 , 1 − k(d∞(µn,µn+1))

)
,

βn ∈ (1, 1−εn
k(d∞(µn,µn+1))

)

(2.3)

for all n ∈ N.
Next, we prove that {µn} is a Cauchy sequence in CB(X). In fact, for arbitrary positive integer n, by

inequalities (2.1), (2.2), and the formula (2.3), we have

d∞(µn+1,µn+2) 6 βnd∞(Fn+1(µn), Fn+2(µn+1))

6 βnϕ(d∞(µn,µn+1))M(µn,µn+1)

< βnk(d∞(µn,µn+1))M(µn,µn+1),
(2.4)

where

M(µn,µn+1) = g
(
d∞(µn,µn+1), ρ∞(µn, Fn+1(µn))

, ρ∞(µn+1, Fn+2(µn+1)), ρ∞(µn+1, Fn+1(µn)), ρ∞(µn, Fn+2(µn+1))
)

6 g
(
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2)

,d∞(µn+1,µn+1), ρ∞(µn, Fn+2(µn+1))
)

6 g
(
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2), 0, ρ∞(µn, Fn+2(µn+1))

)
6 g

(
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2), 0

,d∞(µn,µn+1) + ρ∞(µn+1, Fn+2(µn+1))
)

6 g
(
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2), 0

,d∞(µn,µn+1) + d∞(µn+1,µn+2)
)
.

(2.5)
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Since 0 < βnk(d∞(µn,µn+1)) < 1 − εn < 1 for all n ∈ N, by (2.4) and (2.5), then for all n, we have

d∞(µn+1,µn+2) < g
(
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2), 0,d∞(µn,µn+1) + d∞(µn+1,µn+2)

)
From Definition 2.1 (ii), we can conclude that

d∞(µn+1,µn+2) 6 hd∞(µn,µn+1),

where 0 < h < 1. By iteration, we have

d∞(µn,µn+1) 6 hd(xn−1, xn) 6 · · · 6 hnd(µ0,µ1).

Furthermore, for m > n,

d(µn,µm) 6 d∞(µn,µn+1) + d∞(µn+1,µn+2) + · · ·+ d∞(µm−1,µm)

6 (hn + hn−1 + · · ·+ hm−1)d∞(µ0,µ1) 6
hn

1 − h
d∞(µ0,µ1).

It follows that {µn} is a Cauchy sequence in CB(X). Since X is complete, it implies that (CB(X),d∞) is
complete. Thus there exists a µ∗ such that lim

n→∞µn = x∗. Next, we show that {µ∗} ⊂ Fiµ∗ for all i ∈ N.
Let i ∈ N be arbitrary. By (ii) and (iii) in Lemma 1.2, we can get

ρ∞(µ∗, Fi(µ∗)) 6 d∞(µ∗,µj) + ρ∞(µj, Fi(µ∗)) 6 d∞(µ∗,µj) + d∞(Fj(µj−1), Fi(µ∗)), (2.6)

since µj ∈ Fj(µj−1) for arbitrary natural numbers j such that i 6= j. Subsequently, by using (2.1), (2.6), and
(iii) in Lemma 1.2, we have

d∞(Fj(µj−1), Fi(µ∗)) 6 ϕ(d∞(µj−1,µ∗))g
(
d∞(µj−1,µ∗), ρ∞(µj−1, Fj(µj−1))

, ρ∞(µ∗, Fi(µ∗)), ρ∞(µ∗, Fj(µj−1)), ρ∞(µj−1, Fi(µ∗))
)

6 ϕ(d∞(µj−1,µ∗))g
(
d∞(µj−1,µ∗), ρ∞(µj−1, Fj(µj−1))

,d∞(µ∗,µj) + ρ∞(µj, Fi(µ∗))
,d∞(µ∗,µj) + ρ∞(µj, Fj(µj−1)),d∞(µj−1,µ∗) + ρ∞(µ∗, Fi(µ∗)))
< g

(
d∞(µj−1,µ∗),d∞(µj−1,µj),d∞(µ∗,µj) + ρ∞(µj, Fi(µ∗))

,d∞(µ∗,µj) + d∞(µj,µj),d∞(µj−1,µ∗) + ρ∞(µ∗, Fi(µ∗))).

(2.7)

Letting j→∞ in inequalities (2.6) and (2.7), we obtain

ρ∞(µ∗, Fi(µ∗)) < g(0, 0, ρ∞((µ∗), Fi(µ∗)), 0, ρ∞(µ∗, Fi(µ∗))).

Using (ii) in Definition 2.1, we can get ρ∞(µ∗, Fiµ∗) = 0. Therefore, we have {µ∗} ⊂ Fiµ∗.

Remark 2.3.

(1) If we choose ϕ(t) = λ(0 < λ < 1) and g(x1, x2, x3, x4, x5) = δmax
{
x1, x2, x3, x4+x5

2

}
(0 < δ < 1), then

by Theorem 2.2, As long as we take 0 < q = λδ < 1, then we can get Theorem 1.6.

(2) Since we are considering a larger class of G-distance function, Theorem 2.2 improves Theorem 1.7.

Next, we want to give some results by using a G-distance function in compact metric spaces.

Theorem 2.4. Let (X,d) be a compact metric space and g be a G-distance function and {Fi}
∞
i=1 a sequence of self-

mappings of C(X). Suppose that there exist φ ∈ Ψ and L > 0 such that for each µ1,µ2 ∈ C(X), and for arbitrary
positive integers i and j, i 6= j,

φ(d∞(Fi(µ1), Fj(µ2))) 6 φ(M(µ1,µ2)) + LN(µ1,µ2), (2.8)
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where

M(µ1,µ2) = g
(
d∞(µ1,µ2), ρ∞(µ1, Fi(µ1)), ρ∞(µ2, Fj(µ2)), ρ∞(µ2, Fi(µ1)), ρ∞(µ1, Fj(µ2))

)
,

N(µ1,µ2) = min
{
d∞(µ1,µ2), ρ∞(µ1, Fi(µ1)), ρ∞(µ2, Fj(µ2)), ρ∞(µ2, Fi(µ1)), ρ∞(µ1, Fj(µ2))

}
.

Then there exists a µ∗ ∈ C(X) such that µ∗ ⊆ Fi(µ∗) for all i ∈ N.

Proof. Let µ0 ∈ C(X), and µ1 ⊆ F1(µ0), by Lemma 1.4, there exists a µ2 such that µ2 ⊆ F2(µ1) and

d∞(µ1,µ2) 6 d∞(F1(µ0), F2(µ1)).

Again by Lemma 1.4, we can find µ3 ∈ C(X) such that µ3 ⊆ F3(µ2),

d∞(µ2,µ3) 6 d∞(F2(µ1), F3(µ2)).

By induction, we produce a sequence {µn} of points of C(X) such that{
µn+2 ⊆ Fn+2(µn+1),
d∞(µn+1,µn+2) 6 d∞(Fn+1(µn), Fn+2(µn+1)).

(2.9)

Next, we prove that {µn} is a Cauchy sequence in C(X). In fact, for arbitrary positive integer n, by
inequality (2.8), formula (2.9), and the properties of φ, we have

φ(d∞(µn+1,µn+2)) 6 φ(d∞(Fn+1(µn), Fn+2(µn+1))) 6 φ(M(µn,µn+1)) + LN(µn,µn+1), (2.10)

where

M(µn,µn+1) = g
(
d∞(µn,µn+1), ρ∞(µn, Fn+1(µn))

, ρ∞(µn+1, Fn+2(µn+1)), ρ∞(µn+1, Fn+1(µn)), ρ∞(µn, Fn+2(µn+1))
)

6 g
(
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2)

,d∞(µn+1,µn+1), ρ∞(µn, Fn+2(µn+1))
)

6 g
(
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2), 0, ρ∞(µn, Fn+2(µn+1))

)
6 g

(
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2), 0

,d∞(µn,µn+1) + ρ∞(µn+1, Fn+2(µn+1))
)

6 g
(
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2), 0

,d∞(µn,µn+1) + d∞(µn+1,µn+2)
)
,

(2.11)

N(µn,µn+1) = min
{
d∞(µn,µn+1), ρ∞(µn, Fn+1(µn))

, ρ∞(µn+1, Fn+2(µn+1)), ρ∞(µn+1, Fn+1(µn)), ρ∞(µn, Fn+2(µn+1))
}

6 min
{
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2)

,d∞(µn+1,µn+1), ρ∞(µn, Fn+2(µn+1))
}

6 min
{
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2), 0, ρ∞(µn, Fn+2(µn+1))

}
= 0.

(2.12)

Thus, from (2.12), we can get
N(µn,µn+1) = 0. (2.13)

By (2.10), (2.11), (2.13) and the nondecreasing character of φ, we have

d∞(µn+1,µn+2) 6 g
(
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2), 0,d∞(µn,µn+1) + d∞(µn+1,µn+2)

)
.
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From Definition 2.1 (ii), we can conclude that

d∞(µn+1,µn+2) 6 hd∞(µn,µn+1),

where 0 < h < 1. By iteration, we have

d∞(µn,µn+1) 6 hd(xn−1, xn) 6 · · · 6 hnd(µ0,µ1).

Furthermore, for m > n,

d(µn,µm) 6 d∞(µn,µn+1) + d∞(µn+1,µn+2) + · · ·+ d∞(µm−1,µm)

6 (hn + hn−1 + · · ·+ hm−1)d∞(µ0,µ1) 6
hn

1 − h
d∞(µ0,µ1).

It follows that {µn} is a Cauchy sequence in C(X). Since X is compact, it implies that X is complete. Thus
there exists a µ∗ such that lim

n→∞µn = x∗. Next, we show that {µ∗} ⊂ Fiµ∗ for all i ∈ N.
Let i ∈ N be arbitrary. By (ii) and (iii) in Lemma 1.2, let us notice that

ρ∞(µ∗, Fi(µ∗)) 6 d∞(µ∗,µj) + ρ∞(µj, Fi(µ∗)) 6 d∞(µ∗,µj) + d∞(Fj(µj−1), Fi(µ∗)),

since µj ∈ Fj(µj−1) for arbitrary natural numbers j such that i 6= j. From

|ρ∞(µ∗, Fi(µ∗)) − d∞(µ∗,µj)| 6 d∞(Fj(µj−1), Fi(µ∗)),

(2.8), and the nondecreasing character of φ, we have

φ(|ρ∞(µ∗, Fi(µ∗)) − d∞(µ∗,µj)|) 6 φ(d∞(Fj(µj−1), Fi(µ∗))) 6 φ(M(µj−1,µ∗)) + LN(µj−1,µ∗), (2.14)

where

M(µj−1,µ∗) = g
(
d∞(µj−1,µ∗), ρ∞(µj−1, Fj(µj−1))

, ρ∞(µ∗, Fi(µ∗)), ρ∞(µ∗, Fj(µj−1)), ρ∞(µj−1, Fi(µ∗))
)

6 g
(
d∞(µj−1,µ∗),d∞(µj−1,µj),d∞(µ∗,µj) + ρ∞(µj, Fi(µ∗))

,d∞(µ∗,µj) + d∞(µj,µj)),d∞(µj−1,µ∗) + ρ∞(µ∗, Fi(µ∗)))
(2.15)

and

N(µj−1,µ∗) = min
{
d∞(µj−1,µ∗), ρ∞(µj−1, Fj(µj−1))

, ρ∞(µ∗, Fi(µ∗)), ρ∞(µ∗, Fj(µj−1)), ρ∞(µj−1, Fi(µ∗))
}

6 min
{
d∞(µj−1,µ∗),d∞(µj−1,µj)),d∞(µ∗,µj) + ρ∞(µj, Fi(µ∗))

,d∞(µ∗,µj) + d∞(µj,µj)),d∞(µj−1,µ∗) + ρ∞(µ∗, Fi(µ∗))}.

(2.16)

Letting j→∞ in inequalities (2.14)-(2.16), we obtain

φ(ρ∞(µ∗, Fi(µ∗))) 6 φ(g(0, 0, ρ∞(µ∗, Fi(µ∗)), 0, ρ∞(µ∗, Fi(µ∗)))).

By the nondecreasing character of φ, we have

ρ∞(µ∗, Fi(µ∗)) < g(0, 0, ρ∞(µ∗, Fi(µ∗)), 0, ρ∞(µ∗, Fi(µ∗))).

Using (ii) in Definition 2.1, we can get ρ∞(µ∗, Fiµ∗) = 0. Therefore, we have {µ∗} ⊂ Fiµ∗.

If in Theorem 2.4 we choose φ(t) = t, we can get the following corollary.
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Corollary 2.5. Let (X,d) be a compact metric space and g be a G-distance function and {Fi}
∞
i=1 be a sequence of

self-mappings of C(X). Suppose that there exists an L > 0 such that for each µ1,µ2 ∈ C(X), and for arbitrary
positive integers i and j, i 6= j,

d∞(Fi(µ1), Fj(µ2)) 6M(µ1,µ2) + LN(µ1,µ2),

where

M(µ1,µ2) = g
(
d∞(µ1,µ2), ρ∞(µ1, Fi(µ1)), ρ∞(µ2, Fj(µ2)), ρ∞(µ2, Fi(µ1)), ρ∞(µ1, Fj(µ2))

)
,

N(µ1,µ2) = min
{
d∞(µ1,µ2), ρ∞(µ1, Fi(µ1)), ρ∞(µ2, Fj(µ2)), ρ∞(µ2, Fi(µ1)), ρ∞(µ1, Fj(µ2))

}
.

Then there exists a µ∗ ∈ C(X) such that µ∗ ⊆ Fi(µ∗) for all i ∈ N.

Corollary 2.6. Let (X,d) be a compact metric space and g be a G-distance function and {Fi}
∞
i=1 be a sequence of

self-mappings of C(X). Suppose that there exist φ ∈ Ψ and R-function ϕ : [0,∞) → [0, 1) such that for each
µ1,µ2 ∈ C(X), and for arbitrary positive integers i and j, i 6= j,

φ(d∞(Fi(µ1), Fj(µ2))) 6 φ(M(µ1,µ2)) −ϕ(d∞(µ1,µ2)),

where

M(µ1,µ2) = g
(
d∞(µ1,µ2), ρ∞(µ1, Fi(µ1)), ρ∞(µ2, Fj(µ2)), ρ∞(µ2, Fi(µ1)), ρ∞(µ1, Fj(µ2))

)
.

Then there exists a µ∗ ∈ C(X) such that µ∗ ⊆ Fi(µ∗) for all i ∈ N.

Proof. Since

φ(d∞(Fi(µ1), Fj(µ2))) 6 φ(M(µ1,µ2)) −ϕ(d∞(µ1,µ2)) 6 φ(M(µ1,µ2)) + LN(µ1,µ2),

Hence, by using Theorem 2.4, there exists a point µ∗ in C(X) such that {µ∗} ⊂ Fi(µ∗).

If in Corollary 2.6 we chose φ(t) = t, we can obtain the following corollary.

Corollary 2.7. Let (X,d) be a compact metric space and g be a G-distance function and {Fi}
∞
i=1 be a sequence of

self-mappings of C(X). Suppose that there exists an R-functionϕ : [0,∞)→ [0, 1) such that for each µ1,µ2 ∈ C(X),
and for arbitrary positive integers i and j, i 6= j,

d∞(Fi(µ1), Fj(µ2)) 6M(µ1,µ2) −ϕ(d∞(µ1,µ2)),

where

M(µ1,µ2) = g
(
d∞(µ1,µ2), ρ∞(µ1, Fi(µ1)), ρ∞(µ2, Fj(µ2)), ρ∞(µ2, Fi(µ1)), ρ∞(µ1, Fj(µ2))

)
.

Then there exists a µ∗ ∈ C(X) such that µ∗ ⊆ Fi(µ∗) for all i ∈ N.

3. Fuzzy fixed point theorems under a G′-distance function

In this section, inspired by Constantin [17] and Chen et al. [11], we will show some fuzzy fixed point
theorems on a space of fuzzy sets via a G ′-distance function. In what follows, we give the definition of
G ′-distance functions which are introduced by Chen et al. [11].

Definition 3.1. A function g is said to be a G ′-distance function if g : [0,∞)5 → [0,∞) is continuous
function with the following properties hold:

(i) g is increasing in each co-ordinate variable;
(ii) g(t, t, t,at,bt) 6 t for every t ∈ [0,∞), where a+ b = 2.
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Now, we establish and prove the following fixed point theorem.

Theorem 3.2. Let (X,d) be a compact metric space and g be a G ′-distance function and {Fi}
∞
i=1 be a sequence of

self-mappings of C(X). Suppose that there exist ψ ∈ Ω, η ∈ Υ and L > 0 such that for each µ1,µ2 ∈ C(X), and for
arbitrary positive integers i and j, i 6= j,

d∞(Fi(µ1), Fj(µ2)) 6 ψ(M(µ1,µ2)) + Lη(N(µ1,µ2)), (3.1)

where

M(µ1,µ2) = g
(
d∞(µ1,µ2), ρ∞(µ1, Fi(µ1)), ρ∞(µ2, Fj(µ2)), ρ∞(µ2, Fi(µ1)), ρ∞(µ1, Fj(µ2))

)
,

N(µ1,µ2) = min
{
d∞(µ1,µ2), ρ∞(µ1, Fi(µ1)), ρ∞(µ2, Fj(µ2)), ρ∞(µ2, Fi(µ1)), ρ∞(µ1, Fj(µ2))

}
.

Then there exists a µ∗ ∈ C(X) such that µ∗ ⊆ Fi(µ∗) for all i ∈ N.

Proof. Let µ0 ∈ C(X) and µ1 ⊆ F1(µ0), by Lemma 1.4, there exists a µ2 such that µ2 ⊆ F2(µ1) and

d∞(µ1,µ2) 6 d∞(F1(µ0), F2(µ1)).

Again by Lemma 1.4, we can find µ3 ∈ C(X) such that µ3 ⊆ F3(µ2),

d∞(µ2,µ3) 6 d∞(F2(µ1), F3(µ2)).

By induction, we produce a sequence {µn} of points of C(X) such that{
µn+2 ⊆ Fn+2(µn+1),
d∞(µn+1,µn+2) 6 d∞(Fn+1(µn), Fn+2(µn+1)).

(3.2)

Next, we prove that {µn} is a Cauchy sequence in C(X). In fact, for arbitrary positive integer n, by the
inequality (3.1), the formula (3.2) and the properties of ψ, we have

d∞(µn+1,µn+2) 6 d∞(Fn+1(µn), Fn+2(µn+1)) 6 ψ(M(µn,µn+1)) + Lη(N(µn,µn+1)), (3.3)

where

M(µn,µn+1) = g
(
d∞(µn,µn+1), ρ∞(µn, Fn+1(µn))

, ρ∞(µn+1, Fn+2(µn+1)), ρ∞(µn+1, Fn+1(µn)), ρ∞(µn, Fn+2(µn+1))
)

6 g
(
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2)

,d∞(µn+1,µn+1), ρ∞(µn, Fn+2(µn+1))
)

6 g
(
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2), 0, ρ∞(µn, Fn+2(µn+1))

)
6 g

(
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2), 0

,d∞(µn,µn+1) + ρ∞(µn+1, Fn+2(µn+1))
)

6 g
(
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2), 0

,d∞(µn,µn+1) + d∞(µn+1,µn+2)
)
,

(3.4)

N(µn,µn+1) = min
{
d∞(µn,µn+1), ρ∞(µn, Fn+1(µn))

, ρ∞(µn+1, Fn+2(µn+1)), ρ∞(µn+1, Fn+1(µn)), ρ∞(µn, Fn+2(µn+1))
}

6 min
{
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2)

,d∞(µn+1,µn+1), ρ∞(µn, Fn+2(µn+1))
}

6 min
{
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2), 0, ρ∞(µn, Fn+2(µn+1))

}
= 0.

(3.5)
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Thus, from (3.5) and the properties of η, we can get

η(N(µn,µn+1)) = 0. (3.6)

By (3.3), (3.4), (3.6), and the nondecreasing character of ψ, we have

d∞(µn+1,µn+2) 6 ψ
(
g
(
d∞(µn,µn+1),d∞(µn,µn+1),d∞(µn+1,µn+2), 0

,d∞(µn,µn+1) + d∞(µn+1,µn+2)
))

.
(3.7)

Now, we prove that d∞(µn+1,µn+2) 6 d∞(µn,µn+1). If d∞(µn+1,µn+2) > d∞(µn,µn+1), then from (3.7)
and the nondecreasing character of ψ and g, we can get

d∞(µn+1,µn+2) 6 ψ
(
g
(
d∞(µn+1,µn+2),d∞(µn+1,µn+2),d∞(µn+1,µn+2), 0, 2d∞(µn+1,µn+2)

))
.

Since g is a G ′-distance function, by (ii) of Definition 3.1, we can conclude that

d∞(µn+1,µn+2) 6 ψ
(
g
(
d∞(µn+1,µn+2),d∞(µn+1,µn+2),d∞(µn+1,µn+2), 0× d∞(µn+1,µn+2)

, 2d∞(µn+1,µn+2)
))

6 ψ(d∞(µn+1,µn+2)) < d∞(µn+1,µn+2),
(3.8)

which is a contradiction. Hence, we have d∞(µn+1,µn+2) 6 d∞(µn,µn+1). By (3.8) and the nondecreasing
character of ψ, we have d∞(µn+1,µn+2) 6 ψ(d∞(µn+1,µn+2)) 6 ψ(d∞(µn,µn+1)). Therefore, for all n,
we can conclude that d∞(µn,µn+1) 6 d∞(µn−1,µn). Therefore, for positive integers m,n (n > m), we
get

d∞(µm,µn) 6 d∞(µm,µm+1) + · · ·+ d∞(µn−1,µn)

< ψm(d∞(µ0,µ1)) + · · ·+ψn−1(d∞(µ0,µ1))

=

n−1∑
k=m

ψn(d∞(µ0,µ1)).

(3.9)

In (3.9), as m,n→∞, we have d∞(µm,µn)→ 0. It follows that {µn} is a Cauchy sequence in C(X). Since
X is compact, it implies that X is complete. Thus there exists a µ∗ such that lim

n→∞µn = x∗. Next, we show

that {µ∗} ⊂ Fiµ∗ for all i ∈ N.
Let i ∈ N be arbitrary. By (ii) and (iii) in Lemma 1.2, let us notice that

ρ∞(µ∗, Fi(µ∗)) 6 d∞(µ∗,µj) + ρ∞(µj, Fi(µ∗))
6 d∞(µ∗,µj) + d∞(Fj(µj−1), Fi(µ∗))
6 d∞(µ∗,µj) +ψ(M(µj−1,µ∗)) + Lη(N(µj−1,µ∗)),

(3.10)

since µj ∈ Fj(µj−1) for arbitrary natural numbers j such that i 6= j, where

M(µj−1,µ∗) = g
(
d∞(µj−1,µ∗), ρ∞(µj−1, Fj(µj−1)),

, ρ∞(µ∗, Fi(µ∗)), ρ∞(µ∗, Fj(µj−1)), ρ∞(µj−1, Fi(µ∗)))
6 g

(
d∞(µj−1,µ∗),d∞(µj−1,µj),d∞(µ∗,µj) + ρ∞(µj, Fi(µ∗))

,d∞(µ∗,µj) + d∞(µj,µj),d∞(µj−1,µ∗) + ρ∞(µ∗, Fi(µ∗)))
(3.11)

and

N(µj−1,µ∗) = min
{
d∞(µj−1,µ∗), ρ∞(µj−1, Fj(µj−1))

, ρ∞(µ∗, Fi(µ∗)), ρ∞(µ∗, Fj(µj−1)), ρ∞(µj−1, Fi(µ∗))
}

6 min
{
d∞(µj−1,µ∗),d∞(µj−1,µj),d∞(µ∗,µj) + ρ∞(µj, Fi(µ∗))

,d∞(µ∗,µj) + d∞(µj,µj),d∞(µj−1,µ∗) + ρ∞(µ∗, Fi(µ∗))}.

(3.12)
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Letting j→∞ in inequalities (3.10)-(3.12), we obtain

ρ∞(µ∗, Fi(µ∗)) 6 0 +ψ
(
g(0, 0, ρ∞(µ∗, Fi(µ∗)), 0, ρ∞(µ∗, Fi(µ∗))))+ Lη(0).

By the nondecreasing character of ψ, we have

ρ∞(µ∗, Fi(µ∗)) 6 g(0, 0, ρ∞(µ∗, Fi(µ∗)), 0, ρ∞(µ∗, Fi(µ∗)))
6 ψ

(
g
(
ρ∞(µ∗, Fi(µ∗)), ρ∞(µ∗, Fi(µ∗)), ρ∞(µ∗, Fi(µ∗)), ρ∞(µ∗, Fi(µ∗)), ρ∞(µ∗, Fi(µ∗))))

6 ψ
(
ρ∞(µ∗, Fi(µ∗))) < ρ∞(µ∗, Fi(µ∗)),

which is a contradiction. Hence, we can get ρ∞(µ∗, Fiµ∗) = 0. Therefore, we have {µ∗} ⊂ Fiµ∗.

If in Theorem 3.2 we choose L = 0, then we can get the following corollary.

Corollary 3.3. Let (X,d) be a compact metric space and g be a G ′-distance function and {Fi}
∞
i=1 be a sequence

of self-mappings of C(X). Suppose that there exists a ψ ∈ Ω such that for each µ1,µ2 ∈ C(X), and for arbitrary
positive integers i and j, i 6= j,

d∞(Fi(µ1), Fj(µ2)) 6 ψ(M(µ1,µ2)),

where

M(µ1,µ2) = g
(
d∞(µ1,µ2), ρ∞(µ1, Fi(µ1)), ρ∞(µ2, Fj(µ2)), ρ∞(µ2, Fi(µ1)), ρ∞(µ1, Fj(µ2))

)
.

Then there exists a µ∗ ∈ C(X) such that µ∗ ⊆ Fi(µ∗) for all i ∈ N.

Remark 3.4. If in Corollary 3.3, we choose g(x1, x2, x3, x4, x5) = max
{
x1, x2, x3, x4+x5

2

}
, then we can get

Theorem 1.8.

If in Corollary 3.3, we choose ψ(t) = qt where 0 < q < 1, then we can get the following corollary.

Corollary 3.5. Let (X,d) be a compact metric space and g be a G ′-distance function and {Fi}
∞
i=1 be a sequence of

self-mappings of C(X). Suppose that there exists a q ∈ (0, 1) such that for each µ1,µ2 ∈ C(X), and for arbitrary
positive integers i and j, i 6= j,

d∞(Fi(µ1), Fj(µ2)) 6 q(M(µ1,µ2)),

where

M(µ1,µ2) = g
(
d∞(µ1,µ2), ρ∞(µ1, Fi(µ1)), ρ∞(µ2, Fj(µ2)), ρ∞(µ2, Fi(µ1)), ρ∞(µ1, Fj(µ2))

)
.

Then there exists a µ∗ ∈ C(X) such that µ∗ ⊆ Fi(µ∗) for all i ∈ N.

If in Corollary 3.5, we choose g(x1, x2, x3, x4, x5) = max
{
x1, x2, x3, x4+x5

2

}
, then we can get the following

corollary.

Corollary 3.6. Let (X,d) be a compact metric space and g be a G ′-distance function and {Fi}
∞
i=1 be a sequence of

self-mappings of C(X). Suppose that there exists a q ∈ (0, 1) such that for each µ1,µ2 ∈ C(X), and for arbitrary
positive integers i and j, i 6= j,

d∞(Fi(µ1), Fj(µ2)) 6 q
(

max
{
d∞(µ1,µ2), ρ∞(µ1, Fi(µ1)), ρ∞(µ2, Fj(µ2)),

ρ∞(µ2, Fi(µ1)) + ρ∞(µ1, Fj(µ2))

2
})

.

Then there exists a µ∗ ∈ C(X) such that µ∗ ⊆ Fi(µ∗) for all i ∈ N.

4. Applications

In this section, we mainly want to give some applications by using our mainly results. Firstly, we give
an application to illustrate the usefulness of Theorem 2.2.
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Theorem 4.1. Let (X,d) be a compact metric space and {Fi}
∞
i=1 a sequence of self-mappings of C(X) satisfying the

following conditions:

[d∞(Fi(µ1), Fj(µ2))]
2 6 α1[d∞(µ1,µ2)]

2 +α2ρ(µ1, Fi(µ1))ρ(µ2, Fj(µ2)) +α3ρ(µ2, Fi(µ1))ρ(µ1, Fj(µ2))

+α4d∞(µ1,µ2)ρ(µ1, Fi(µ1)) +α5d∞(µ1,µ2)ρ(µ2, Fj(µ2)),

where αi > 0 (i = 1, 2, 3, 4, 5), α1 + α2 + α4 + α5 < 1, α1 + α3 < 1. Then there exists a point µ∗ in C(X) such
that {µ∗} ⊂ Fi(µ∗).

Proof. We can consider the function g : [0,∞)5 → [0,∞) defined by

g(x1, x2, x3, x4, x5) =
[
α1x1

2 +α2x2x3 +α3x4x5 +α4x1x2 +α5x1x3
] 1

2 .

Next, we prove g is a G-distance function. Firstly, obviously, g is nondecreasing in the 2nd, 3rd, 4th, and
5th variables. Secondly,

u 6 g(v,u, v, 0,u+ v) =
[
α1v

2 +α2uv+α4uv+α5v
2] 1

2 =
[
(α1 +α5)v

2 + (α2 +α4)uv
] 1

2 . (4.1)

If u 6 v, from (4.1), we can get

u2 6 (α1 +α5)v
2 + (α2 +α4)uv 6 (α1 +α2 +α4 +α5)v

2.

Hence, there exists h =
√
α1 +α2 +α4 +α5 < 1 such that u 6 hv, where 0 < h < 1. If u > v, from (4.1),

we can get
u2 6 (α1 +α5)v

2 + (α2 +α4)uv < (α1 +α2 +α4 +α5)u
2 < u2,

which is a contradiction. Therefore, (ii) of Definition 2.1 holds. Thirdly, since u 6 g(u, 0, 0,u,u) =

[(α1 + α3)u
2]

1
2 =
√
α1 +α3u < u, which is a contradiction. Hence, u = 0. If in Theorem 2.2 we choose

L = 0 and φ(t) = t, Theorem 4.1 is satisfied with all conditions of Theorem 2.2. Hence, there exists a point
µ∗ in C(X) such that {µ∗} ⊂ Fiµ∗.

Secondly, we give an application to illustrate the usefulness of Theorem 3.2 by slightly modifying
Theorem 4.1.

Theorem 4.2. Let (X,d) be a compact metric space and {Fi}
∞
i=1 is a sequence of self-mappings of C(X) satisfying

the following conditions:

[d∞(Fi(µ1), Fj(µ2))]
2 6 q

{
α1[d∞(µ1,µ2)]

2 +α2ρ(µ1, Fi(µ1))ρ(µ2, Fj(µ2))

+α3d∞(µ1,µ2)ρ(µ1, Fi(µ1)) +α4d∞(µ1,µ2)ρ(µ2, Fj(µ2))
}

,

where q ∈ (0, 1), αi > 0 (i = 1, 2, 3, 4), and α1 + α2 + α3 + α4 6 1. Then there exists a point µ∗ in C(X) such
that {µ∗} ⊂ Fi(µ∗).

Proof. We can consider the function g : [0,∞)5 → [0,∞) defined by

g(x1, x2, x3, x4, x5) =
[
α1x1

2 +α2x2x3 +α3x1x2 +α4x1x3
] 1

2 .

Next, we prove g is a G ′-distance function. Firstly, obviously, g is nondecreasing in the each co-ordinate
variable. Secondly,

g(t, t, t,at,bt) =
[
α1v

2 +α2t
2 +α3t

2 +α4t
2] 1

2 =
[
(α1 +α2 +α3 +α4)t

2] 1
2 = (α1 +α2 +α3 +α4)

1
2 t 6 t.

If in Theorem 3.2, we choose L = 0 and ψ(t) = qt (0 < q < 1), Theorem 4.2 is satisfied with all conditions
of Theorem 3.2. Hence, there exists a point µ∗ in C(X) such that {µ∗} ⊂ Fiµ∗.
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