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Abstract
Neural networks are useful tools to solve mathematical and engineering problems. By using the implicit-explicit-θ method

and the method proposed recently by Mohamad to discretize the continuous-time neural networks, we formulate two classes of
discrete-time analogues to solve a system of variational inequalities. By adopting suitable Lyapunov functions and Razumikhin-
type techniques, exponential stability of the discrete neural networks are established in terms of linear matrix inequalities (LMIs).
Several numerical experiments are performed to compare the convergence rates of the proposed discrete neural networks and it
is shown that:

(a) all of the discrete neural networks converge faster as the step size becomes larger;

(b) the discrete neural networks derived by the semi-implicit Euler method performs best.
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1. Introduction

Neural networks are very powerful tools to solve mathematical and engineering problems, such as
signal processing, associative memory, pattern recognition, combination optimization and so on. In recent
years, there are increasing interests that apply neural networks to solve variational inequality problem. In
[27], Zeng and Liao studied the following variational inequality:

find an element x ∈ Ω such that

(u− x)>(Mx+ q) > 0, ∀u ∈ Ω, (1.1)

where Ω is a nonempty bounded and closed convex subset, M = (Mij)n×n is a real n× n matrix and
q = (q1,q2, · · · ,qn)> ∈ Rn. For (1.1), the author in [24] suggested the following projection neural network

du

dt
= −u+ (En −M)FΩ(u) − q,
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where En denotes the n×n identity matrix and FΩ : Rn → Ω is a projection operator

FΩ(u) = arg min
v∈Ω
‖u− v‖,

with ‖ · ‖ being the l2-norm in Rn.
Other projection neural networks for solving monotone variational inequalities and constrained opti-

mization problems can be found in [7, 12, 20, 25] and the references therein. Particularly, Xia and Wang
gave a general projection neural network in [25], which includes existing neural networks for optimiza-
tion, such as the primal-dual neural networks and the dual neural networks, as special cases. As pointed
out by Hu and Wang [7], the projection neural networks can also be used to solve pseudomonotone
variational inequalities and related pseudoconvex optimization problems.

Most recently, Lan and Cui [10] investigated the neural network method for solving the following
variational inequalities:
find (x,y) ∈ Ω1 ×Ω2 such that{

(α− x)>(x− y+Ny+ p) > 0, ∀α ∈ Ω1,
(β− y)>(y− x+Mx+ q) > 0, ∀β ∈ Ω2,

(1.2)

where Ωi ⊂ Rn (i = 1, 2) is a nonempty bounded and closed convex subset, M = (Mij)n×n and N =
(Nij)n×n are real matrices, p = (p1,p2, . . . ,pn)>,q = (q1,q2, . . . ,qn)> are real vectors.

We note that the variational inequalities (1.2) have numerous applications such as economic equilib-
rium modeling, traffic networks equilibrium modeling, and structural analysis; see, for example [4, 6]. In
[10], the authors transmuted the solution of (1.2) to an equilibrium point of neural networks and analyzed
the stability and convergence rate of the neural networks. The results presented in [10] generalize and
improve the existing works in the literature. While most neural networks mentioned above are studied in
continuous-time level, there exist at least two aspects that make the analysis of the discrete-time analogues
important. First, to accelerate the process and reduce the cost of electric circuit design of the continuous-
time neural networks, we need computer simulation to explore how the properties of the continuous-time
neural networks depend on the involved parameters. To this end, discrete-time analogues are essentially
important (see the same or similar opinion in [5, 14–19, 21, 22, 26]). Second, by some suitable construc-
tion, a discrete-time neural network will approach to the same equilibrium point of its continuous-time
counterpart, but the former is more flexible to be used, since it can be implemented conveniently by both
computers and electric circuit. We note that, discrete-time neural networks can be implemented without
electric circuits and just with a computer, since the final form is a difference equation and therefore the
equilibrium point can be calculated step by step with a computer. Even for the implementation with
electric circuit, the cost of discrete-time neural networks is less than that of the continuous-time ones,
since for the latter we need (additionally) the device of digital integrator (or differentiator).

In this paper, we construct two types of discrete-time neural networks to solve the variational inequal-
ities (1.2). We utilize the implicit-explicit-θ (IMEX-θ) method and the one proposed by Mohamad et al.
[5, 14, 15, 17–19] to discretize the continuous-time neural networks introduced in [10], and then by using
Lyapunov function and Razumikhin-type techniques we investigate exponential stability of the derived
discrete-time analogues. The sufficient stability criteria are established in terms of linear matrix inequal-
ities (LMIs), which can be solved numerically and very efficiently using the interior point algorithms
[2].

The reminder of this paper is organized as follows: in Section 2, we introduce the discrete-time
analogues discussed in this paper. In Section 3, two sufficient conditions for exponential stability are
established for the discrete-time analogues. In Section 4, several numerical examples are given to show
the usefulness of our results. The comparison between different discrete-time analogues with respect to
convergence rates is also given in this section. Finally, Section 5 concludes the paper with some remarks.
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2. Problem description and preliminaries

Let the subsets Ωi in (1.2) take the following form:

Ωi =
[
a
(i)
1 ,b(i)1

]
×
[
a
(i)
2 ,b(i)2

]
× · · · ×

[
a
(i)
n ,b(i)n

]
, i = 1, 2.

Then we define the projection functions FΩi(s) = (FΩi(s1), FΩi(s2), . . . , FΩi(sn))
> as

FΩi(sj) =


b
(i)
j , if sj > b

(i)
j ,

sj, if a(i)j 6 sj 6 b
(i)
j ,

a
(i)
j , if sj < a

(i)
j ,

(2.1)

where i = 1, 2 and j = 1, 2, · · · ,n. It is easy to see that the function FΩi(·) is monotonically increasing and
satisfies the following Lipschitz condition:

0 6
FΩi(s1) − FΩi(s2)

s1 − s2
6 1, ∀s1, s2 ∈ R and s1 6= s2. (2.2)

2.1. Continuous-time neural network method for the variational inequalities
We first review an important lemma which transmutes the solution of the variational inequalities (1.2)

to an equilibrium point of the neural networks.

Lemma 2.1 (Lan and Cui [10]). The following statements are mutually equivalent:

1. (x∗,y∗) is a solution of the variational inequalities (1.2);
2. x∗ = FΩ1(y

∗ −Ny∗ − p),y∗ = FΩ2(x
∗ −Mx∗ − q);

3. (x∗,y∗) is the equilibrium point of the following neural network:{
dx(t)
dt = −x(t) + (I−N)FΩ2(y(t)) − q,
dy(t)
dt = −y(t) + (I−M)FΩ1(x(t)) − p,

(2.3)

where I denotes the n×n identity matrix and FΩi (i = 1, 2) are defined by (2.1).

The results of Lemma 2.1 indicate that obtaining the solution of the the variational inequalities (1.2) is
equivalent to calculating the equilibrium point of neural network (2.3).

2.2. Formulation of discrete-time neural network method for the variational inequalities
A method which is widely used to derive a discrete-time neural network is to discretize the continuous-

time counterpart. There exist many numerical schemes, such as Euler scheme, Runge–Kutta scheme, etc.,
that can be used to obtain discrete-time analogues of (2.3). As shown in [5, 14, 15, 17–19], the dynam-
ical properties of different discrete-time analogues vary considerably. In this paper, it is the dynamical
properties of converging exponentially towards the equilibrium point that are of great interest.

We begin our discussion by reformulating system (2.3) as the following approximation:{
x ′(t) ≈ −x(t) + (I−N)FΩ2

(
y
([
t
h

]
h
))

− q,
y ′(t) ≈ −y(t) + (I−M)FΩ1

(
x
([
t
h

]
h
))

− p,
(2.4)

where h is a fixed positive real number denoting a uniform discretization step size. For any real number
r, [r] denotes its integer part. There is no unique way to obtain a discrete-time analogue from (2.4). We
first recall the idea proposed by Mohamad et al. [5, 14, 15, 17–19]. For this method, we first integrate (2.4)
over [nh, t] with t < (n+ 1)h:{

etx(t) − enhx(nh) ≈
(
et − enh

) [
(I−N)FΩ2

(
y
([
t
h

]
h
))

− q
]

,
ety(t) − enhy(nh) ≈

(
et − enh

) [
(I−M)FΩ1

(
x
([
t
h

]
h
))

− p
]

.
(2.5)
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Clearly, for t ∈ [nh, (n+ 1)h) we have
[
t
h

]
= n. Therefore, by letting t → (n+ 1)h in (2.5), we get the

following discrete-time system{
xn+1 = e−hxn +

(
1 − e−h

)
[(I−N)FΩ2 (yn) − q] ,

yn+1 = e−hyn +
(
1 − e−h

)
[(I−M)FΩ1 (xn) − p] .

(2.6)

The discrete scheme (2.6) is called ‘semi-exact’ formula throughout this paper.
We next apply the implicit-explicit-θ (IMEX-θ) method [9, 13] to construct another type of discrete-time

analogues. The discrete-time analogues derived by applying the IMEX-θ method to (2.4) reads{
xn+1 = xn + h [−θxn+1 − (1 − θ)xn] + h [(I−N)FΩ2 (yn) − q] ,
yn+1 = yn + h [−θyn+1 − (1 − θ)yn] + h [(I−M)FΩ1 (xn) − p] ,

(2.7)

i.e., {
xn+1 = 1

1+hθ [(1 − h(1 − θ))xn + h(I−N)FΩ2 (yn) − hq] ,
yn+1 = 1

1+hθ [(1 − h(1 − θ))yn + h(I−M)FΩ1 (xn) − hp] ,
(2.8)

where θ ∈ [0, 1]. We note that (2.7) includes a number of discrete-time neural networks by varying the
parameter θ. To perform the stability analysis, we rewrite both (2.6) and (2.8) into a uniform form as{

xn+1 = axn +B2FΩ2 (yn) − q̃,
yn+1 = ayn +B1FΩ1 (xn) − p̃,

(2.9a)

where the quantities a, B1, B2, p̃ and q̃ are given by{
a = e−h, B1 = h̃(I−M), B2 = h̃(I−N), p̃ = h̃p, q̃ = h̃q with h̃ = (1 − e−h), semi-exact,
a =

1−h(1−θ)
1+hθ , B1 =

h(I−M)
1+hθ , B2 =

h(I−N)
1+hθ , p̃ = h

1+hθp, q̃ = h
1+hθq, IMEX-θ.

(2.9b)

Remark 2.2. The idea proposed by Mohamad et al. [5, 14, 15, 17–19] and the explicit Euler method (i.e.,
IMEX-θ method with θ = 0) were used widely to construct discrete-time neural networks; see, e.g.,
[3, 5, 8, 11, 14–19, 21–23, 26, 28] the references therein. However, the IMEX-θ method (except θ = 0) is
rarely used to construct discrete-time neural networks.

Clearly, the equilibrium point (x∗,y∗) of (2.3) satisfies the following algebraic equation{
x∗ = (I−N)FΩ2(y

∗) − q,
y∗ = (I−M)FΩ1(x

∗) − p,

which, together with (2.6) and (2.7), implies{
x∗ = ax∗ +B2FΩ2 (y

∗) − q̃,
y∗ = ay∗ +B1FΩ1 (x

∗) − p̃.

For notational convenience, we will shift the equilibrium point of system (2.9) to the origin. To this end,
we make the transformation un = xn − x∗, vn = yn − y∗, and then we obtain a representation of system
(2.9) as {

un+1 = aun +B2F2 (vn) ,
vn+1 = avn +B1F1 (un) ,

(2.10)

where F1(un) = FΩ1(un + x∗) − FΩ1(x
∗) and F2(vn) = FΩ2(vn + y∗) − FΩ2(y

∗).
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Therefore, to investigate the convergence of (xn,yn) to (x∗,y∗) it suffices to study the convergence of
(un, vn) to (0, 0). Moreover, from (2.2) we know that the functions FΩi satisfy the following conditions:

Fi(0) = 0, 0 6
Fi(s1) −Fi(s2)

s1 − s2
6 1, ∀s1, s2 ∈ R and s1 6= s2. (2.11)

Throughout this paper, we will use the notation P > 0 (or P < 0) to denote that P is a symmetric and
positive definite (or negative definite) matrix. If P1 and P2 are symmetric matrices , then P1 > P2 (resp.
P1 > P2) denotes that P1 − P2 is a positive definite (resp. positive semi-definite) matrix. For any matrix
P ∈ Rn×n, let λm(P) and λM(P) denote the maximal and minimal eigenvalue of P, respectively. For any
vector z ∈ Rn and matrix P ∈ Rn×n, ‖z‖ denotes the Euclidean norm of z and ‖P‖ denotes the induced
norm of matrix P, that is ‖P‖ =

√
λM(P>P).

Lemma 2.3 (Berman and Plemmons [1]). For any symmetric matrix P ∈ Rn×n it holds that

λm(P)x>x 6 x>Px 6 λM(P)x>x, ∀x ∈ Rn.

Definition 2.4. If there exist positive scalars C > 0 and γ > 0 such that√
‖un‖2 + ‖vn‖2 6 Ce−γn

√
‖u0‖2 + ‖v0‖2, n > 1,

the discrete-time system (2.10) is said to be globally exponentially stable with convergence rate γ, where
u0 = x0 − x

∗ and v0 = y0 − y
∗ are the initial values of (2.10) and (x0,y0) are the initial values of (2.9).

3. Stability analysis

In this section, we give two criteria that guarantee the globally exponential convergence of the formu-
lated discrete-time neural networks with uniform scheme (2.10).

Theorem 3.1. Let λi be the maximal eigenvalue of the matrix
(

0 aBi
aB>2 B>i Bi

)
with i = 1, 2. If the quantity

µ = max{|a2 + λ2| + |λ1|, |a2 + λ1| + |λ2|} < 1, then the solutions {un} and {vn} generated by formula (2.10)
converges exponentially to zero and the exponential convergence rate is at least γ = − lnu

2 .

Proof. Let Un = u>nun and Vn = v>nvn. From (2.10), it is easy to get

Un+1 −Un = (aun +B2F2(vn))
> (aun +B2F2(vn)) − u

>
nun

= a2u>nun + 2au>nB2F2(vn) +F>2 (vn)B
>
2 B2F2(vn) − u

>
2 un

= (a2 − 1)u>nun +

(
un

F2(vn)

)>( 0 aB2
aB>2 B>2 B2

)(
un

F2(vn)

)
6 (a2 − 1)Un + λ2

(
un

F2(vn)

)>(
un

F2(vn)

)
6 (a2 − 1)Un + λ2(Un +Vn),

(3.1)

where in the first inequality we have used Lemma 2.3 and in the last inequality we have used the fact
F2(vn)

>F2(vn) 6 v>nvn, which is a direct application of (2.11). Similarly, we have the following result for
Vn:

Vn+1 −Vn 6 (a2 − 1)Vn + λ1(Vn +Un). (3.2)

It then follows by combining (3.1) and (3.2) that(
Un+1
Vn+1

)
6 Θ

(
Un
Vn

)
,
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where Θ =

(
a2 + λ2 λ2
λ1 a2 + λ1

)
and the inequality sign “6” used here means less than or equal for each

component of
(
Un+1
Vn+1

)
. It is easy to know that ‖Θ‖1 = µ = max{|a2 + λ2|+ |λ1|, |a2 + λ1|+ |λ2|}. Therefore,

|Un|+ |Vn| 6 µn (|U0|+ |V0|), which implies ‖un‖2 + ‖vn‖2 6 µn(‖u0‖2 + ‖v0‖2), i.e.,
√
‖un‖2 + ‖vn‖2 6

e−(
− lnµ

2 )n(‖u0‖2 + ‖v0‖2).

We point out that, in practice it is difficult to compute the maximal eigenvalue of the symmetric matrix(
0 aBi
aB>2 B>i Bi

)
(i = 1, 2) for very large scale problems. Besides, the assumption

µ = max{|a2 + λ2|+ |λ1|, |a2 + λ1|+ |λ2|} < 1 is too restrictive. Therefore, the applicability of Theorem 3.1
may be limited, and a more practical criterion should be presented. To this end, we use the Lyapunov
function V(n) = e2γn

(
u>nPun + v>nQVn

)
to derive the stability conditions of discrete-time analogues

(2.10).

Theorem 3.2. If there exist symmetric matrices P > 0, Q > 0, positive diagonal matrices Di, Ei(i = 1, 2, 3) and
scalar γ > 0 such that

Ω =


Ω11 Ω12 0 Ω14
? Ω22 Ω23 0
? ? Ω33 Ω34
? ? ? Ω44

 < 0, (3.3)

where ? denotes the symmetric terms in a symmetric matrix and

Ω11 =
(
a2e2γ − 1

)
P+ 2D1 +D2,

Ω12 = D3 −D1,

Ω14 = ae2γPB2,

Ω22 = e2γB>1 QB1 −D2 − 2D3,

Ω23 = ae2γQB1,

Ω33 =
(
a2e2γ − 1

)
Q+ 2E1 + E2,

Ω34 = E3 − E1,

Ω44 = e2γB>2 PB2 − E2 − 2E3,

then the solutions {un} and {vn} generated by (2.10) satisfy

√
‖un‖2 + ‖vn‖2 6

√
λ1

λ0
e−γn

√
‖u0‖2 + ‖v0‖2, n > 1, (3.4)

where λ0 = min{λm(P), λm(Q)} and λ1 = max{λM(P), λM(Q)}.

Proof. Let ∆V(n) = V(n+ 1) − V(n). Then, a routine calculation yields

∆V(n) = e2γ(n+1)
(
u>n+1Pun+1 + v

>
n+1QVn+1

)
− e2γn

(
u>nPun + v>nQVn

)
= e2γn

(
e2γ [aun +B2F2 (vn)]

> P [aun +B2F2 (vn)] − u
>
nPun

)
+ e2γn

(
e2γ [avn +B1F1 (un)]

>Q [avn +B1F1 (un)] − v
>
nQvn

)
= u>n

[(
a2e2γ − 1

)
P
]
un + 2u>n

[
ae2γPB2

]
F2 (vn) +F>2 (vn)

[
e2γB>2 PB2

]
F2 (vn)

+ v>n
[(
a2e2γ − 1

)
Q
]
vn + 2v>n

[
ae2γQB1

]
F1 (un) +F>1 (un)

[
e2γB>1 QB1

]
F1 (un) .

(3.5)
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Moreover, by condition (2.11) we have

0 6 2e2γnu>nD1[un −F1(un)],

0 6 e2γn [un +F1(un)]
>D2[un −F1(un)],

0 6 2e2γnF>1 (un)D3[un −F1(un)],

0 6 2e2γnv>nE1[vn −F2(vn)],

0 6 e2γn [vn +F2(vn)]
> E2[vn −F2(vn)],

0 6 2e2γnF>2 (vn)E3[vn −F2(vn)],

(3.6)

since Di and Ei are positive diagonal matrices.
Let Wn =

(
u>n ,F>1 (un), v>n ,F>2 (vn)

)>. Then, from (3.5) and (3.6) we have

∆V(n) 6 e2γnW>nΦW
>
n 6 0.

Therefore, V(n+ 1) 6 V(n) and this together with Lemma 2.3 implies

V(n) 6 V(0) =
(
u>0 Pu0 + v

>
0 Qv0

)
6 λ1(‖u0‖2 + ‖v0‖2),

V(n) > e2γnλ0
(
‖un‖2 + ‖vn‖2) ,

which gives (3.4).

Remark 3.3. For given system parameters a,B1 and B2 and given exponential convergence rate γ, the LMI
given in (3.3) can be calculated efficiently by using the interior point algorithms [2].

4. Numerical experiments

In this section, we provide numerical results to compare the discrete neural networks studied in this
paper. We perform two types of comparisons: for a given step size h we compare the convergence rates of
the discrete neural networks and for given exponential convergence rate we compare the threshold values
of the step size h such that the discrete neural networks are still stable. Our model in this section is:
find (x,y) ∈ Ω1 ×Ω2 such that{

(α− x)>(x− y+Ny+ p) > 0, ∀α ∈ Ω1,
(β− y)>(y− x+Mx+ q) > 0, ∀β ∈ Ω2,

(4.1)

where Ω1 = [−2, 3]× [−3, 4], Ω2 = [−1, 2]× [1, 4], M =

(
0.68 −0.75
1.05 0.68

)
, N =

(
0.68 −1.05
0.75 0.68

)
, p = (1.1, 1)>

and q = (−2.5, 1.1)>.
To solve the variational inequality (4.1) by the neural network method, we discretize the continuous-

time neural network (2.3) by the semi-exact scheme (2.6) and the IMEX-θ scheme (2.8) with step size h. We
shall test IMEX methods with θ = 0, 0.5 and θ = 1. For the variational inequality (4.1), with a sufficiently
small step size, all of the four discrete neural networks converge to a solution

x∗ = (0.38262790219848,−1.69397164577768)>, y∗ = (1.35196219437025,−2.04383022395726)>.

Example 4.1. We first investigate how the maximal exponential convergence rate (denoted by γmax in this
section) varies with respect to the step size h. By solving the LMI presented in Theorem 3.2, we list in
Table 4.1 the maximal exponential convergence rate γmax for several to different step sizes h. In all tables,
we use ‘S.-E.’ to denote the semi-exact formula (2.6).
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Table 4.1: γmax corresponding to different step size h.

Methods h = 0.01 h = 0.02 h = 0.04 h = 0.05 h = 0.10 h = 0.25 h = 0.40

θ = 0 0.000410 0.000816 0.001616 0.002009 0.003894 0.008520 0.010673
θ = 1

2 0.000408 0.000808 0.001585 0.001961 0.003721 0.007809 0.010121
θ = 1 0.000406 0.000801 0.001555 0.001916 0.003562 0.007185 0.009313
S.-E. 0.000408 0.000808 0.001585 0.001961 0.003718 0.007781 0.010069

We see from Table 4.1 that the IMEX method with θ = 0, i.e., the explicit Euler method slightly
outperforms the other three methods. Moreover, for each method, as h varies from small to large,
we see clearly from Table 4.1 that the convergence rate becomes better. The above observations have
been illustrated in Figure 4.1, in which we plot the actually measured convergence rate of the four dis-
cretization methods with step size h = 0.01, 0.05 and 0.1. The measured convergence rate is defined as
Errn=max{‖xn − x∗‖∞, ‖yn − y∗‖∞}.

Figure 4.1: Convergence rates of the four numerical methods with step size h = 0.01 (left), 0.05 (right) and 0.1 (middle).

For these four methods, we see clearly that: compared to h = 0.01, each method possesses 5 and 10
times improvement with respect to convergence rate when h = 0.05 and h = 0.1, respectively, and this
confirms very well with the results shown in Table 4.1. Moreover, it is interesting to see in the three
panels of Figure 4.1 that the discrete neural network formulated by the semi-exact method is obviously
the worst one and this slightly contradicts the results given in Table 4.1, since the results in Table 4.1 imply
almost equal convergence rates of the four methods. For this observation, we do not have a reasonable
explanation at the moment, but this really encourages us to deeply investigate the difference between the
IMEX-θ method and the semi-exact method in our future work.

Example 4.2. We next study how the threshold step size h varies with respect to different exponential
convergence rate γ. In Table 4.2, we list the maximal step size (denoted by hmax hereafter) for to several
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different exponential convergence rates γ for each discrete-time neural network. For each γ given in Table
4.2, the hmax is also calculated by solving LMI (3.3).

Table 4.2: hmax corresponding to different exponential convergence rate γ.

Methods γ = 10−4 γ = 5× 10−4 γ = 10−3 γ = 5× 10−3 γ = 10−2

θ = 0 0.6911 0.6864 0.6804 0.6241 0.4919
θ = 1

2 1.0560 1.0452 1.0313 0.9071 0.6524
θ = 1 2.2373 2.1892 2.1294 1.6600 0.9683
S.-E. 1.1747 1.1597 1.1408 0.9783 0.6772

The results listed in Table 4.2 reveal that the discrete neural network formulated by the IMEX method
with θ = 1, i.e., the semi-implicit Euler method, can tolerate much larger step size. For example, under
the condition that the solutions (xn,yn) converge to the equilibrium point (x∗,y∗) with rate γ = 10−4,
we can use a step size h = 2.2373 for the discrete neural network formulated by the semi-implicit Euler
method, while the step size can be only 0.6911, 1.0560 and 1.1747 for the neural networks formulated
by the other three discretization methods. In Figure 4.2 and 4.3 we plot the discrete solutions {xn} and
{yn} which are computed by the four discrete-time neural networks with step size h = 2.23, respectively.
The results of these two figures show that the discrete neural network formulated by the semi-implicit
Euler method has the best convergence rate, and the ones formulated by the IMEX method with θ = 1

2 ,
i.e., the well-known IMEX trapezoid formula, and the semi-exact method converge slowly, while the one
formulated by the explicit Euler method diverges.

Figure 4.2: Behavior of the numerical solutions {x1,n} and {x2,n} generated by the four discrete-time neural networks with step
size h = 2.23. From left to right: IMEX-(θ = 0), IMEX-(θ = 1

2 ), IMEX-(θ = 1), and semi-exact.

Example 4.3. To finish this section, we compare the accuracy of the converged solution at the final time
point generated by the discrete neural networks, formulated by the IMEX trapezoid formula, semi-implicit
Euler method and the semi-exact method. To this end, we fix the time interval t ∈ [0, 1000] and run the
three discrete neural networks with different step size h. We remark that with step size h, a discrete
neural network needs to run N = 1000

h steps to arrive the end time point T = 1000. For a given step size h,
we denote the discrete solution at the end point T = 1000 by XhN and YhN. And the error between

(
XhN, YhN

)
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Figure 4.3: Behavior of solutions {y1,n} and {y2,n} for the four discrete-time neural networks with step size h = 2.23. From left
to right: IMEX-(θ = 0), IMEX-(θ = 1

2 ), IMEX-(θ = 1), and semi-exact.

and (x∗,y∗) is defined by Err(h)= max
{
‖XhN − x∗‖∞, ‖YhN − y∗‖∞}. In Table 4.3, we list Err(h) of these

three methods with respect to different step size h.

Table 4.3: max
{
‖XhN − x∗‖∞, ‖YhN − y∗‖∞} corresponding to different step size h.

Methods h = 2.5 h = 4.0 h = 5.0 h = 10 h = 20 h = 25 h = 40

θ = 1
2 6.43e-15 9.28e-5 1.615956 10.39942 12.23441 22.6146 25.2876

θ = 1 6.44e-15 6.66e-15 6.44e-15 6.22e-15 8.23e-10 7.81e-8 6.18e-5
S.-E. 6.43e-15 6.64e-15 6.22e-15 3.83e-10 2.07e-5 1.48e-4 0.00424

We see from Table 4.3 that the semi-implicit Euler method results in more accurate solutions than the
other two methods. For example, if we want to calculate an approximation to (x∗,y∗) with a degree of
accuracy O

(
10−5

)
, the discrete neural network formulated by the IMEX trapezoid formula needs to run

1000
4 = 250 steps and the network formulated by the semi-exact method needs to run 10000

20 = 50 steps,
while the one formulated by the semi-implicit Euler method needs only 25 steps. This means that the
discrete neural network derived by using semi-implicit Euler method is more efficient.

5. Conclusions

We formulate two types of discrete-time projection neural networks to solve a system of variational
inequalities. The discrete analogues are formulated by using the IMEX-θ method and the one introduced
recently by Mohamad et al. [5, 14, 15, 17–19] to discretize the continuous-time neural network with a
uniform step size h. Sufficient conditions which guarantee that the discrete neural networks converge
exponentially to the equilibrium point are established in terms of LMIs. Numerical experiments are
performed and the results confirm our theoretical predication very well.

Moreover, we find that when the step size varies from small to large, all of the discrete analogues
converge faster to the solution of the variational inequalities, and that for large step size the semi-implicit
Euler method is superior to the other discretization methods. We therefore suggest to use the semi-implicit
Euler method to construct a discrete-time projection neural network in practice.
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