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Abstract

In this paper, we study the chaotic phenomena in a topologically transitive, continuous semi-flow, and show that the
erratic time dependence of orbits in such a semi-flow is more complicated than the one described by Li-Yorke chaos. Also,
we generalize the notion of sensitive dependence on initial conditions for semi-flows and explore the chaotic phenomena for
topologically transitive, continuous semi-flows with the generalized sensitivity property. Our results extend the existing results
to semi-flows. c©2017 All rights reserved.
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1. Introduction

A transitive system with sensitive dependence on initial conditions (briefly, sensitivity) was consid-
ered as a chaotic system by Ruelle and Takens [24]. This problem has gained much attention recently
(see [1, 2, 4, 7, 14, 15, 21, 25, 26, 30–36]). A system is Li-Yorke chaotic if there exists an uncountable
scrambled set in its domain [16]. A transitive system is Devaney chaotic if it is a Ruelle-Takens chaotic
system with a dense set of periodic points [7]. However, it is known that a transitive system with a dense
set of periodic points is sensitive (see [4]). Huang and Ye [13] studied the transitive system with a fixed
point, and they proved that such a system is Li-Yorke chaotic. For a transitive system with sensitivity,
in [20] the author gave a scrambled set which is crueller than that in the original sense of Li and Yorke.
Xiong et al. (see [38, 39] described and studied the chaotic phenomena caused by some maps by using the
methods which are different from Li and Yorke’s. In [37] the author followed the ideas and approaches
in [38, 39] to explore, discover and characterize the chaotic phenomena in a transitive system, and he
showed that to characterize the chaotic phenomena it is not adequate only by Li-Yorke chaos. Also, he
gave two generic properties of the power systems of a transitive system and generalized the concept of
sensitivity. Moreover, he discussed the chaotic phenomena for topologically transitive maps with this kind
of sensitivity property and proved that another generic property of the power systems which is relative
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to such a sensitivity property. For transitive maps on topological spaces, Bilokopytov and Kolyada [6]
studied the problem of existence of some nonequivalent definitions of topological transitivity. So, this is a
classical problem of the topological dynamics. Particularly, they used the fact that all available definitions
of this kind imply a condition imposed on the dynamical system and obtained the complete classification
of these dynamical systems, which is an important and useful result. In [40], by using the properties
of weakly almost periodic points of a dynamical system (X, f) having at least two points Yin and Zhou
showed that, if the measure center of f is the whole space, then there are seven equivalent conditions
for the map f to be ergodic mixing. Also, they gave an important application. There exist lots of chaotic
phenomena in the real world. Moreover, there are a lot of important and possible applications of chaotic
maps. In [27], by a nonlinear coupling method the authors studied master-slave synchronization for
the fractional difference equation. By the numerical simulation they showed that the designed synchro-
nization method can effectively synchronize the fractional logistic map, and that the Caputo-like delta
derivative is adopted as the difference operator. In [28], the authors proposed a discrete fractional logistic
map in the left Caputo discrete delta’s sense and showed that the new model holds discrete memory.
Also, they gave the bifurcation diagrams and numerically illustrated the chaotic behaviors. This means
that there are important applications of this map. In [29], the authors presented fractional logistic map
and fractional Lorenz maps of Riemann-Liouville type and studied the general chaotic behaviors of these
maps in comparison with the Caputo one. Furthermore, they designed chaos synchronization accord-
ing to the stability results. By the obtained numerical results we can see the method’s effectiveness and
fractional chaotic map’s potential role for secure communication. In [12], the fractional chaotic map was
applied in physics and engineering to properly treat some real-world phenomena. A shuffling method
was presented based on the fractional logistic map. The fractional difference order plays a key pole in this
problem. An image encryption scheme was designed by using the XOR operation and the security analy-
sis was obtained. The obtained results show that the fractional difference order can make the encryption
scheme highly secure. There have been a lot of results for dynamical properties of semi-flows. In [11],
the authors studied the dynamical properties of continuous semi-flows with topological transitivity and
obtained several interesting results. In [5], the authors proved that for a nonsingular (fixed point free)
C1 flow on a smooth closed 3-dimensional manifold M with H2(M) = 0, if this flow has a dense orbit
then there exists an open dense set N ⊂ M such that any knotted periodic orbit which intersects N is a
nontrivial prime knot. In [8] Gu introduced the asymptotic average-shadowing property for flows and
studied the relationships between this property and transitivity for flows. It was showed that a flow on a
compact metric space is chain transitive if it has positively (or negatively) asymptotic average-shadowing
property and a positively (resp. negatively) Lyapunov stable flow is positively (resp. negatively) topo-
logically transitive provided it has positively (resp. negatively) asymptotic average-shadowing property.
Furthermore, two conditions for which a flow is a minimal flow are given. Therefore, research on dynam-
ical properties of continuous semi-flows is very interesting. Furthermore, from [3, 9, 10, 14, 15, 17–19]
research on dynamical properties of continuous semi-flows is very difficult.

In this article, we consider the chaotic phenomena in a topologically transitive, continuous semi-flow
on a complete metric space, and obtain that the erratic time dependence of orbits in such a semi-flow is
more complicated than Li-Yorke chaos. Also, we generalize the notion of sensitive dependence on initial
conditions (briefly, sensitivity) for semi-flows and investigate the chaotic phenomena for topologically
transitive semi-flows with such a sensitivity property. Our results extend some existing results to semi-
flows.

The rest of this paper is organized as follows. In Section 2, we recall some basic concepts and notations.
Main results are established in Section 3.

2. Preliminaries

Let N = {1, 2, · · · } and R+ = [0,+∞). For the related notations and concepts in this paper, we refer the
reader to [37].
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Let Z be a metric space and π : R+ × Z → Z a semi-flow (which is not necessarily continuous). For a
given M ∈N, write π(M) = π× π× · · · × π︸ ︷︷ ︸

M

: R+ ×ZM → ZM. The semi-flow π(M) is called the M-power

semi-flow of the semi-flow π. A point z ∈ Z is said to be a transitive point of the semi-flow π, if the orbit
O+(z,π) of z is dense in Z, whereO+(z,π) = {πa(z) : a ∈ R+}. The semi-flow π is said to be (topologically)
transitive, if there exists a transitive point of the semi-flow π in Z. A point z ∈ Z is called a recurrent point
of the semi-flow π, if there is an increasing sequence {ri} ⊂ R+ with lim

i→∞ ri = ∞ and lim
i→∞ϕri(z) = z. Let

Rec (ϕ) denote the set of all recurrent points of the semi-flow π.
Let Z be a metric space. A subset B ⊂ Z is said to be a Gδ set, if it is a countable intersection of open

subset of Z. A subset B ⊂ Z is said to be residual, if it contains a dense Gδ subset of Z.
In dynamical systems, sensitivity is a remarkable notion and property. Now we generalize it as

follows.

Definition 2.1. Let π : R+×Z→ Z (resp. l : Z→ Z) be a semi-flow (resp. a map) (which is not necessarily
continuous) on a metric space (Z,d). For a given integer M > 2, if there exists a λ ∈ R+ satisfying that for
any nonempty open subset V ⊂ Z there exist z1, z2, · · · , zM ∈ Z with

min{d(πs(zi),πs(zj)) : i, j ∈ {1, 2, · · · ,M}; i 6= j} > λ,

for some s ∈ R+ (resp.
min{d(lk(zi), lk(zj)) : i, j ∈ {1, 2, · · · ,M}; i 6= j} > λ,

for some k > 0), then we say the number λ is called an M-sensitive coefficient of the semi-flow π (resp.
the map l or the system (Z, l)). The supremum of all M-sensitive coefficients of the semi-flow π (resp. the
map l) is said to be the M-critically sensitive coefficient of the semi-flow π (resp. the map l or the system
(Z, l)) and is denoted by λM(π) (resp. λM(l)).

Let π : R+×Z→ Z (resp. l : Z→ Z) be a semi-flow (resp. a map) (which is not necessarily continuous)
on a metric space (Z,d). For any integer M > 2 and any p ∈ {1, 2, · · · ,M}, one can give three real-valued
functions as follows.

φM,p(π, (z1, z2, · · · , zM)) = sup
t>0

min{d(πt(zp),πt(zq)) : q = 1, 2, · · · ,M;q 6= p},

(resp. φM,p(l, (z1, z2, · · · , zM)) = sup
m>0

min{d(lm(zp), lm(zq)) : q = 1, 2, · · · ,M;q 6= p}),

φM(π, (z1, z2, · · · , zM)) = min
16p6M

φM,p(π, (z1, z2, · · · , zM)),

(resp. φM(l, (z1, z2, · · · , zM)) = min
16p6M

φM,p(l, (z1, z2, · · · , zM))) and

ΦM(π, (z1, z2, · · · , zM)) = min
16p6M

lim sup
t→∞ min{d(πt(zp),πt(zq)) : q = 1, 2, · · · ,M;q 6= p},

(resp. ΦM(l, (z1, z2, · · · , zM)) = min
16p6M

lim sup
m→∞ min{d(lm(zp), lm(zq)) : q = 1, 2, · · · ,M;q 6= p}).

Throughout this article, we always assume that π is a continuous semi-flow on a complete metric
space.

3. Main results

In [37] the author established that for any transitive system (Z, l), the set of all transitive points of l is
a dense Gδ set. However, for continuous semi-flows one can obtain the following lemma.
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Lemma 3.1. For a continuous semi-flow π : R+ × Z → Z on a compact metric space Z with a countable base, the
set of all transitive points of π is a dense Gδ set.

Proof. Let {Vj}∞j=1 be a countable base of Z and Tr(π) be the set of all transitive points of π. Then one has
that

Tr(π) =
⋂
j>1

(
⋃
t>0

π−1
t (Vj)).

This implies that the set of all transitive points of π is a dense Gδ set by the definition.

In [37], the author induced that for a transitive system (Z, l) on a complete metric space Z, Rec (l(M))
is a dense Gδ set in ZM for each integer M > 1. The following lemma is the semi-flow version of this
result.

Proposition 3.2. For a transitive and continuous semi-flow π : R+×Z→ Z on a compact metric space Z and any
integer M > 1, Rec (π(M)) is a dense Gδ set in ZM.

Proof. Let z ∈ Z be a transitive point of π. Then the point z is a recurrent point of π. So, there is a sequence
{ri} ⊂ R+ with lim

i→∞ ri = ∞ and lim
i→∞πri(z) = z. Consequently, for any s1, s2, · · · , sM ∈ R+ one obtains

that

lim
i→∞(π(M))ri(πs1(z),πs2(z), · · · ,πsM(z))

= lim
i→∞(πs1(πri(z)),πs2(πri(z)), · · · ,πsN(πri(z))) = (πs1(z),πs2(z), · · · ,πsM(z)).

Hence, (πs1(z),πs2(z), · · · ,πsM(z)) ∈ Rec (π(M)). This means every point of ZM is a non-wandering point
of π(M). By [22, 23], we know that Rec (π(M)) is a dense Gδ set in ZM for any integer M > 1.

Proposition 3.3. Let π : R+ ×Z→ Z be a transitive and continuous semi-flow on a complete metric space Z such
that πs is transitive for some s > 0 and r0 > 0 be the infimum of the diameters of all invariant sets of the semi-flow
π. Then, for any integer M > 1 there exists a dense Gδ set LM ⊂ ZM with

lim inf
t→∞ max{d(πt(zm),πt(zn)) : m,n ∈ {1, 2, · · · ,M}} 6 r0,

for any (z1, z2, · · · , zM) ∈ LM.

Proof. For the above s > 0, we let r ′0 > 0 be the infimum of the diameters of all invariant sets of the map
πs. By [37, Proposition 3.5], for any integer M > 1 there exists a dense Gδ set LM ⊂ ZM with

lim inf
k→∞ max{d(πks (zm),πks (zn)) : m,n ∈ {1, 2, · · · ,M}} 6 r ′0,

for any (z1, z2, · · · , zM) ∈ LM. Clearly, one has that

lim inf
t→∞ max{d(πt(zm),πt(zn)) : m,n ∈ {1, 2, · · · ,M}}

6 lim inf
k→∞ max{d(πks (zm),πks (zn)) : m,n ∈ {1, 2, · · · ,M}}.

Since r ′0 6 r0,
lim inf
t→∞ max{d(πt(zm),πt(zn)) : m,n ∈ {1, 2, · · · ,M}} 6 r0,

for any (z1, z2, · · · , zM) ∈ LM.

Remark 3.4. For a transitive continuous semi-flow π, we do not know whether the conclusion of Proposi-
tion 3.3 holds.
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Proposition 3.5. Let π : R+ ×Z → Z be a semi-flow on a locally connected metric space Z. Then, for any integer
M > 2 one has that

λM(π) >
λ2(π)

M− 1
.

Proof. Assume that β is a base of Z such that each member in β is connected. By the definition, for any
V ∈ β there exist two points u, v ∈ V with d(πs(u),πs(v)) > λ2(π) for some s > 0. Let h : V → R

be a function which is defined by h(w) = d(πs(w),πs(u)) for any w ∈ V . As V is connected, for any
integer M > 2 there exist M points u = u1,u2, · · · ,uM = v ∈ V with h(um) = m−1

M−1d(πs(v),πs(u)) for all
1 6 m 6M. For any m,n ∈ {1, 2, · · · ,M} with m < n, one can get

d(πs(u1),πs(un)) 6 d(πs(u1),πs(um)) + d(πs(um),πs(un)).

Therefore, for any m,n ∈ {1, 2, · · · ,M} with m < n, we get

d(πs(um),πs(un)) >
n−m

M− 1
d(πs(u),πs(v)) >

1
M− 1

d(πs(u),πs(v)) >
1

M− 1
λ2(π).

This means that λm(π) > 1
M−1λ2(π).

Proposition 3.6. Let π : R+ × Z → Z be a continuous semi-flow on a complete metric space Z such that πs is
transitive for some s > 0 and let λ > 0 be an M-sensitive coefficient of the map πs, where M > 2. Then, the set
consisting of the points (u1,u2, · · · ,uM) with

ΦM(π, (u1,u2, · · · ,uM)) >
λ

2
,

is a residual set in the product space ZM.

Proof. By [37, Proposition 5.2], the set consisting of the points (u1,u2, · · · ,uM) with

ΦM(πs, (u1,u2, · · · ,uM)) >
λ

2
,

is a residual set in the product space ZM for any integer M > 2, where λ is an M-sensitive coefficient of
the map πs. By the definition,

ΦM(π, (u1,u2, · · · ,uM)) > ΦM(πs, (u1,u2, · · · ,uM)).

So, the set consisting of the points (u1,u2, · · · ,uM) with

ΦM(π, (u1,u2, · · · ,uM)) >
λ

2
,

is a residual set in the product space ZM.

Remark 3.7. For a transitive continuous semi-flow π, we do not know whether the conclusion of Proposi-
tion 3.6 holds.

Lemma 3.8. Let π : R+ × Z → Z be a continuous semi-flow on a complete metric space Z such that πs is
topologically transitive for some s ∈ R+ and w ∈ Z be a transitive point of the map πs, and let M > 2 be an integer
and j ∈ {1, 2, · · · ,M}. If λ > 0 is anM-sensitive coefficient of the map πs, then for any integers k1,k2, · · · ,kM > 1
and any neighborhood W of the point (πk1

s (w),πk2
s (w), · · · ,πkMs (w)), there exists a point (u1,u2, · · · ,uM) ∈ W

with
φM,j(π, (u1,u2, · · · ,uM)) >

λ

2
.
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Proof. From [37, Lemma 5.1] we know that for any integers k1,k2, · · · ,kM and any neighborhood W of
the point (πk1

s (w),πk2
s (w), · · · ,πkMs (w)), there exists a point (u1,u2, · · · ,uM) ∈W with

φM,j(πs, (u1,u2, · · · ,uM)) >
λ

2
.

As
φM,j(π, (u1,u2, · · · ,uM)) > φM,j(πs, (u1,u2, · · · ,uM)),

for the above integers k1,k2, · · · ,kN and the above neighborhood W of the point

(πk1
s (w),πk2

s (w), · · · ,πkMs (w)),

there exists a point (u1,u2, · · · ,uM) ∈W with

φM,j(π, (u1,u2, · · · ,uM)) >
λ

2
.

Remark 3.9. For a transitive continuous semi-flow π, we do not know whether the conclusion of Lemma
3.8 holds.

Theorem 3.10. Let π : R+ ×Z→ Z be a continuous semi-flow on a complete metric space Z with a metric d such
that Z is dense in itself, and that πs is topologically transitive for some s ∈ R+. Then there exists a subset K ⊂ Z
such that K ∩ V contains a nonempty compact perfect set for any nonempty open subset V ⊂ Z. Moreover, the
following are true:

(1) each point in K is transitive;

(2) for any integer M > 2 and any pairwise different M points u1,u2, · · · ,uM in K, we have

lim sup
t→∞ min{d(πt(um),πt(un)) : m,n ∈ {1, 2, · · · ,M};m 6= n} > 0;

(3) for any integer M > 2 and any pairwise different M points u1,u2, · · · ,uM in K, we have

lim inf
t→∞ max{d(πt(um),πt(un)) : m,n ∈ {1, 2, · · · ,M}} 6 r0,

where r0 is the infimum of the diameters of all invariant sets of the map πs;

(4) for any integer M > 2 and any pairwise different M points u1,u2, · · · ,uM in K,

min
16i6N

lim sup
t→∞ min{d(πt(um),πt(un)) : n ∈ {1, 2, · · · ,M};n 6= m} >

λM(πs)

2
,

where λM(πs) is the M-critically sensitive coefficient of the map πs; and if the space Z is locally connected
then for any integer M > 2 and any pairwise different M points u1,u2, · · · ,uM in K,

min
16j6M

lim sup
t→∞ min{d(πt(um),πt(un)) : n ∈ {1, 2, · · · ,M};n 6= m} >

λ2(π)

2M− 2
.

Proof. It is noted that for any v1, v2, · · · , vM ∈ Z, we have

lim sup
t→∞ min{d(πt(vm),πt(vn)) : m,n ∈ {1, 2, · · · ,M};m 6= n}

> lim sup
p→∞ min{d(πps (vm),πps (vn)) : m,n ∈ {1, 2, · · · ,M};m 6= n},

lim inf
t→∞ max{d(πt(vm),πt(vn)) : m,n ∈ {1, 2, · · · ,M}}

6 lim inf
p→∞ max{d(πps (vm),πps (vn)) : m,n ∈ {1, 2, · · · ,M}},
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and
min

16m6M
lim sup
t→∞ min{d(πt(vm),πt(vn)) : n ∈ {1, 2, · · · ,M};n 6= m}

> min
16m6M

lim sup
p→∞ min{d(πps (vm),πps (vn)) : n ∈ {1, 2, · · · ,M};n 6= m}.

By Theorem in [37] and Proposition 3.5, the results of Theorem 3.10 are true.

Remark 3.11. For a transitive continuous semi-flow π, we do not know whether the conclusion of Theorem
3.10 holds.
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