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Abstract

In this article, we generalize some frequently used metrical notions such as: completeness, closedness, continuity, g-
continuity and compatibility to order-theoretic setting especially in ordered metric spaces and utilize these relatively weaker
notions to prove some existence and uniqueness results on coincidence points for g-comparable mappings satisfying Boyd-Wong
type nonlinear contractivity conditions. We also furnish some illustrative examples to demonstrate our results. Finally, as an
application of our certain newly proved results, we establish the existence and uniqueness of solution of an integral equation.
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1. Introduction

The classical Banach contraction principle and its applications are well-known. It has so many dif-
ferent generalizations with different approaches. One of the remarkable generalizations, known as ¢-
contraction, was given by Browder [10] in 1968, wherein author assumed ¢ to be right continuous and
increasing control function and utilized the same to generalize Banach contraction principle. Later, many
authors generalized Browder’s fixed point theorem by varying the properties of control function ¢. In
1969, Boyd and Wong [9] observed that it is sufficient to assume merely the right-upper semicontinuity of
¢ (without monotonicity requirement on @) and extended Browder’s fixed point theorem by introducing
the following family of control functions:

Y= {(p :[0,00) = [0,00) : @(t) < t for each t > 0 and ¢ is right — upper semicontinuous}.

Inspired by Boyd and Wong [9], in 1977, Mukherjea [24] slightly modified Browder’s fixed point theorem
by introducing the following family of control functions:

e = {(p :[0,00) = [0,00) : @(t) < t for each t > 0 and ¢ is right continuous}.
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The following family of control functions available in the existing literature is more natural:
J= {(p :[0,00) = [0,00) : @(t) < tforeacht > 0and ¢ is continuous}.
The following family of control functions is essentially due to Lakshmikantham and Cirié [23]:
o= {(p :[0,00) = [0,00) : @(t) < t for each t > 0 and Tli}r?+ @(r) < tforeacht > 0}.

The following family of control functions is obtained in Boyd and Wong [9] which was later utilized in
Jotic [19]:

Q= {(p :[0,00) = [0,00) : @(t) < tforeacht>0and limsup ¢(r) < t for each t > O}.
r—tt
Recently, Alam et al. [4] studied the following relation among earlier described classes of control func-
tions.

Proposition 1.1 ([4]). The class Q enlarges the classes ¥, ©, J and © under the following inclusion relation:

JcOcCYcQ, and JCcOCdC Q.

Throughout the manuscript, INy denotes the set of nonnegative integers (i.e., Ny := IN U{0}). In what
follows, by the pair (X, <), we mean a nonempty set X equipped with a partial order =, often called an
ordered set. We denote > by the dual order of < (i.e. x > y means y < x). Two elements x and y in
an ordered set (X, <) are said to be comparable if either x < y or y < x and we denote it as: x <> y. A
subset E of an ordered set is called totally ordered if x <~y for all x,y € E. For a pair of self-mappings
f and g defined on an ordered set (X, <), we say that f is g-increasing (resp. g-decreasing), if for any
x,y € X g(x) =% gly) = f(x) =< f(y)(resp. f(x) = f(y)). Also, f is called g-monotone if f is either g-
increasing or g-decreasing. Further, under the restriction g = I, the identity mapping on X, the notions of
g-increasing, g-decreasing and g-monotone mappings respectively reduce to increasing, decreasing and
monotone mappings. Following O’Regan and Petrusel [28], the triplet (X, d, <) is called ordered metric
space wherein a nonempty set X is equipped with a metric d and a partial order <. If, in addition, d is a
complete metric on X, then we say that (X, d, <) is ordered complete metric space.

In the last decades, there has been a growing interest in studying the existence of fixed points for
monotone contractive mappings in ordered metric spaces. This trend was initiated by Turinici [32, 33].
Later, Ran and Reurings [29] proved a slightly more natural version of the corresponding fixed point
theorems of Turinici (cf. [32, 33]) for continuous monotone mappings with some applications to matrix
equations. In subsequent papers many authors extended and refined the fixed point theorems of Ran and
Reurings [29] and proved various fixed point theorems in ordered metric spaces (e.g. [1, 3, 4, 6,7, 11, 12,
15-18, 25, 26, 28, 37]). All such results involve some variant of monotone mappings.

To avoid the necessity of monotonicity, several authors like as: Nieto and Rodriguez-Lépez [27],
Turinici [34, 35] and Dori¢ et al. [13] assumed the property that the underlying mapping maps compara-
ble elements to comparable elements, which is relatively weaker than monotonicity requirement on the
mapping and often easy to check. Recently, Alam and Imdad [2] termed such mapping as comparable
mappings and also generalized this idea for a pair of mappings (namely: f and g) by introducing the no-
tion of g-comparable mappings. Utilizing the notion of g-comparability, Alam and Imdad [2] proved some
coincidence theorems under linear contractions without using g-monotonicity in two different directions,
namely either the underlying metric space X or the range subspaces (f(X) or g(X)) are complete.

The aim of this paper is to define <>~-analogues of some metrical notions (such as: completeness,
closedness, continuity, g-continuity and compatibility) and utilizing these notions to extend the coin-
cidence theorem under nonlinear contractivity condition due to Boyd and Wong [9]. Particularly, we
observe that in our results neither the whole space X nor the range subspaces (f(X) or g(X)) are required
to be necessarily complete.
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2. Preliminaries and auxiliary results

In this section, we collect some basic notions and auxiliary results needed in our subsequent discus-
sions.

Definition 2.1 ([5]). Let (X, d, <) be an ordered metric space and Y a nonempty subset of X. Then d and
= respectively induce a metric dy and a partial order <y on Y so that

dv(x,y) =dlxy), Vxyey,

and
X2yyeSxy, Yxyey.

Thus (Y, dy, =y) is an ordered metric space, which is called a subspace of (X, d, <).
Conventionally, we opt to refer Y as a subspace of X rather than saying (Y, dy, <y) a subspace of
(X, d, =) and continue to write d and < instead of dy and =<y respectively.

Definition 2.2 ([20, 22]). Let X be a nonempty set and f and g two self-mappings on X. Then,

(i) an element x € X is called a coincidence point of f and g, if

(ii) if x € X is a coincidence point of f and g and X € X such that X = g(x) = f(x), then X is called a point
of coincidence of f and g;

(iii) if x € X is a coincidence point of f and g such that x = g(x) = f(x), then x is called a common fixed
point of f and g;

(iv) f and g are said to be commuting, if
g(fx) = f(gX), Vxe X;

(v) fand g are said to be weakly compatible (or partially commuting or coincidentally commuting), if
f and g commute at their coincidence points, i.e., for any x € X,

g(x) = f(x) = g(fx) = f(gx).
Definition 2.3 ([21, 31]). Let (X, d) be a metric space and f and g two self-mappings on X. Then
(i) fand g are said to be weakly commuting, if
d(gfx, fgx) < d(gx,fx), VxeX;
(ii) f and g are said to be compatible if for any sequence {x,} C X and for any z € X,

lim g(xn) = lim f(xn) =z = lim d(gfxn,fgxn) =0.
n—oo n—o0 n—oo

Definition 2.4 ([30]). Let (X, d) be a metric space, f and g two self-mappings on X and x € X. We say that
f is g-continuous at x, if for any sequence {xn} C X,

g(xn) = g(x) = f(xn) = f(x).
Moreover, f is called g-continuous, if it is g-continuous at each point of X.

Notice that particularly, at g = I, the identity mapping on X, Definition 2.4 reduces to the definition of
continuity.
Now, we introduce the following notion.
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Definition 2.5. Let f and g be two self-mappings defined on a nonempty set X. We say that f is g-
admissible if for any x,y € X,

g(x) = gly) = flx) = fly).
In the following line, we propose a characterization of g-monotone mappings.

Proposition 2.6. Let f and g be two self-mappings defined on an ordered set (X, =). If f is g-monotone, then f is
g-admissible.

Proof. Take x,y € X such that g(x) = g(y). On using reflexivity of <, we have

g(x) 2 gly), and g(x) = g(y).
Suppose that f is g-increasing (resp. g-decreasing), we have
f(x) = fly), and f(x) = fly) (resp.f(x) = f(y), and f(x) = f(y)),

which, in both the cases (owing to anti-symmetric property of <) gives rise that

f(x) = f(y).
Hence f is g-admissible. O
Finally we record the following known results needed in the proof of our main result.
Lemma 2.7 ([4]). Let ¢ € Q. If{an} C (0,00) is a sequence such that an41 < @(an), for all n € Ny, then

lim a, =0.
n—oo

Lemma 2.8 ([8, 18, 36]). Let (X, d) be a metric space and {xn} a sequence in X. If {xn} is not a Cauchy sequence,
then there exist € > 0 and two subsequences {xn, } and {xm, } of {xn} such that

i) k<mg<ng VkeN;
(i) d(xm,, xXn,) >€ VkeN;
(iii) d(xm, Xn,,) <€ VkeN.

Moreover, suppose that lim d(xn,Xn+1) = 0, then
n—oo

(IV) ]}E;I;o d(xmkfxnk) = €,'

(V) ]{1141;130 (ka+11Xnk+1) = €.

Lemma 2.9 ([14]). Let X be a nonempty set and g a self-mapping on X. Then there exists a subset E C X such that
g(E) =g(X) and g : E — X is one-one.

Lemma 2.10 ([4]). Let f and g be two self-mappings defined on a nonempty set X. If f and g are weakly compatible,
then every point of coincidence of f and g is also a coincidence point of f and g.
3. <>-theoretic notions

In this section, we recall and define <-variants of several set-theoretic, metrical and order-relational
notions.

Definition 3.1 ([2]). Let (X, <) be an ordered set and f and g two self-mappings on X. We say that f is
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g-comparable (or weakly g-monotone or (g, <>)-preserving), if for any x,y € X,
g(x) <= gly) = flx) <~ fly).

Notice that if we set g = I, the identity mapping on X in Definition 3.1, then f is called comparable (or
weakly monotone or <>-preserving) mapping. Clearly every g-monotone mapping is g-comparable.

Recently Alam and Imdad [3] formulated the variants of bounded sequences and monotone sequences
with respect to relation <~ by introducing the following.

Definition 3.2 ([3]). Let (X, <) be an ordered set and {x,} a sequence in X. Then

(1) {xn} is said to be termwise bounded, if there is an element z € X such that each term of {xn} is
comparable with z, i.e.,
Xn <> Z, ¥V n € Ny,

so that z is a c-bound of {x}, and
(ii) {xn} is said to termwise monotone (or <>-preserving), if consecutive terms of {x } are comparable,
ie.,
Xn <> Xn+1, VN e Np.

Clearly all bounded above as well as bounded below sequences are termwise bounded and all mono-
tone sequences are termwise monotone.

Definition 3.3 ([3]). An ordered set (X, <) is called sequentially chainable, if range of every termwise
monotone sequence in X remains a totally ordered subset of X.

Proposition 3.4 ([3]). The following are equivalent:
(i) (X, ) is sequentially chainable;
(ii) <> is transitive on range of every termwise monotone sequence in X;

(iii) for every termwise monotone sequence {xn} in X,

Xn <> Xm, Vmn,m e Np.

Let (X, d, <) be an ordered metric space and {x,} a sequence in X. If {x,,} is termwise monotone and

Xn — x, then we denote it symbolically by x, ] x.

Alam and Imdad [3] formulated the following notion by using a suitable property on ordered metric
space (in order to avoid the necessity of continuity requirement in Ran-Reurings Theorem) utilized by
Nieto and Rodriguez-Lépez [27].

Definition 3.5 ([3]). Let (X, d, <) be an ordered metric space. We say that (X, d, <) has TCC (termwise
monotone-convergence-c-bound) property, if every termwise monotone convergent sequence {x,} in X
has a subsequence, which is termwise bounded by the limit (of the sequence) as a c-bound, i.e.,

xn J x = there exists a subsequence {xn, } of {xn} with xn, <> x, Vk € Nj.

Definition 3.6 ([3]). Let (X, d, <) be an ordered metric space and g a self-mapping on X. We say that
(X, d, =) has g-TCC property, if every termwise monotone convergent sequence {x,} in X has a subse-
quence, whose g-image is termwise bounded by g-image of limit (of the sequence) as a c-bound, i.e.,

xn J x = there exists a subsequence {xn, } of {xn} with g(xn,) <> g(x), ¥k & Np.

Notice that under the restriction g = I, the identity mapping on X, Definition 3.6 reduces to Definition
3.5.
Inspired by Jleli et al. [18], Alam and Imdad [2] defined the following notion.
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Definition 3.7 ([2]). Let (X, <) be an ordered set and f and g two self-mappings on X. We say that (X, <)
is (f, g)-directed, if for each pair x,y € X, there exists a z € X such that f(x) <> g(z) and f(y) <> g(z).

In cases g = I and f = g = I (where I denotes the identity mapping on X), (X, <) is called f-directed
and directed respectively.
Inspired by Turinici [34, 35], Alam and Imdad [2] defined the following notion.

Definition 3.8 ([2]). Let (X, <) be an ordered set, E C X and a,b € E. A finite subset {ey, ey, ..., ex} of E is
called <>-chain between a and b in E, if

(i) k=2
(ii) eg = aand ex = b;
(iii) e; <> ej1q foreachi (1 <i<k—1).

In the following lines, we adopt several well-known metrical notions such as: completeness, closed-
ness, continuity, g-continuity and compatibility with respect to relation <>-.

Definition 3.9. An ordered metric space (X, d, <) is called <>-complete, if every termwise monotone
Cauchy sequence in X converges.

Remark 3.10. If (X, d) is a complete metric space, then for each partial order < defined on X, the ordered
metric space (X, d, =) is <>-complete.

Definition 3.11. Let (X, d, <) be an ordered metric space. A subset E of X is called <>-closed if for any
sequence {xn} C E,
xn Jx=x€E.

Remark 3.12. Every closed subset of an ordered metric space is <~-closed.
Proposition 3.13. A <>-complete subspace of an ordered metric space is <>--closed.

Proof. Let (X, d, =) be an ordered metric space. Suppose that Y is <>-complete subspace of X. Take a
sequence {xn} C Y such that x, J x € X. As each convergent sequence is Cauchy, {xn} is a termwise
monotone Cauchy sequence in Y. Hence, <--completeness of Y implies that the limit of {x,,} must lie in
Y, i.e., x € Y. Therefore, Y is <-closed. O

Proposition 3.14. A <>-closed subspace of a <>-complete ordered metric space is <~-complete.

Proof. Let (X, d, =) be a <>-complete metric space. Suppose that Y is <>-closed subspace of X. Take
a termwise monotone Cauchy sequence {x,} in Y. As X is <>-complete, there exists a x € X such that

Xn 4, x and so xn ] x. Hence, <>~-closeness of Y implies that x € Y. Therefore, Y is <>-complete. O

Definition 3.15. Let (X, d, <) be an ordered metric space, f a self-mapping on X and x € X. We say that f
is <>--continuous at x, if for any sequence {xn} C X,

xn Jx = f(xn) 4, f(x).
Moreover, f is called <>-continuous, if it is <>-continuous at each point of X.
Remark 3.16. Every continuous mapping defined on an ordered metric space is <>-continuous.

Definition 3.17. Let (X, d, <) be an ordered metric space, f and g two self-mappings on X and x € X. We
say that f is (g, <>)-continuous at x, if for any sequence {xn} C X,

g(xn) T 9(x) = fxn) - f(x).

Moreover, f is called (g, <>)-continuous, if it is (g, <>>)-continuous at each point of X.
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Notice that particularly, at g = I, the identity mapping on X, Definition 3.17 reduces to Definition 3.15.
Remark 3.18. Every g-continuous mapping defined on an ordered metric space is (g, <>)-continuous.

Definition 3.19. Let (X, d, <) be an ordered metric space and f and g two self-mappings on X. We say
that f and g are <>--compatible, if for any sequence {x,,} C X and for any z € X,

g(xn) P zand f(xn) J z = li_r)n d(gfxn, fgxn) = 0.
n—oo
Remark 3.20. In an ordered metric space, commutativity = weak commutativity = compatibility = <~-
compatibility = weak compatibility.

Finally, we state the recent coincidence theorem in ordered metric spaces for linear contractivity con-
ditions without involving g-monotone mappings proved by Alam and Imdad [2].

Theorem 3.21 ([2]). Let (X, d, <) be an ordered metric space and f and g two self-mappings on X. Suppose that
the following conditions hold:

(a) f(X) € g(X);
(b) fis g-comparable;
(c) there exists xg € X such that g(xo) <> f(xo);
(d) there exists o € [0,1) such that
d(fx, fy) < a d(gx,gy), VxyeX,
with g(x) <> g(y);

el)
e2)
e3)
e4) either f is continuous or (X, d, =) has g-TCC property;

(e) (X, d) is complete;

f and g are compatible;

(
(
( g is continuous;
(

or

(e’) (e'1) either (X, d) or (gX, d) is complete;
(€'2) either f is g-continuous or f and g are continuous or (gX, d, <) has TCC property.

Then f and g have a coincidence point.

4. Results on coincidence points

We are equipped to prove the following result, which guarantees the existence of a coincidence point
under @-contractivity condition.

Theorem 4.1. Let (X, d, %) be an ordered metric space and f and g two self-mappings on X. Let Y be a <>-complete
subspace of X such that (Y, =) is sequentially chainable. Suppose that the following conditions hold:

(a) f(X) S g(X)NY;
(b) fis g-comparable and g-admissible;
(c) there exists xg € X such that g(xo) <> f(xo);

(d) there exists @ € Q such that
d(fx, fy) < @(d(gx,gy)), YxyeX,
with g(x) <> g(y);
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(e) (el) fand g are <>-compatible;
(e2) g is <>-continuous;
(e3) either f is <>-continuous or (Y, d, <) has g-TCC property;
or alternately
(e') (e'l) Y C g(X);
(€'2) either f is (g, <>)-continuous or f and g are continuous or (Y,d, <) has TCC property.
Then f and g have a coincidence point.

Proof. Firstly, we notice that the assumption (a) is equivalent to say that f(X) C g(X) and f(X) C Y. Now,
in view of assumption (c), if g(xo) = f(xo), then x¢ is a coincidence point of f and g and hence proof is
completed. Otherwise, using assumption f(X) C g(X), we can choose x; € X such that g(x;) = f(xo).
Again from f(X) C g(X), we can choose x; € X such that g(x2) = f(x;). Continuing this process, we define
a sequence {xn} C X of joint iterates such that

g(xni1) =f(xn), VneNp. 4.1)
Now, we claim that {gx,,} is a termwise monotone sequence, i.e.,
g(xn) <> g(xn4+1), ¥m € No. (4.2)
We prove this fact by mathematical induction. On using (4.1) with n = 0 and assumption (c), we have
gl(xo) <> f(xo) = g(x1).
Thus, (4.2) holds for n = 0. Suppose that (4.2) holds forn =1 >0, i.e,,

g(xr) <> g(xr41),

which on using (4.1) and g-comparability of f gives rise

g(xr41) = flxr) <= f(xr11) = glxr42),
i.e., (4.2) holds for n = r 4 1. Hence, by induction, (4.2) holds for all n € IN.
In view of (4.1) and (4.2), the sequence {fx,,} is also a termwise monotone sequence, i.e.,

f(xn) <= f(xny1), Vn e Np. (4.3)

If g(xn,) = g(xny+1) for some nyg € N, then using (4.1), we have g(xn,) = f(xn,), i.e, Xn, is a
coincidence point of f and g so that we are through. On the other hand, if g(xn) # g(xn41) for each
n € No, we can define a sequence {d,}7_, C (0,00), where

dn = d(gxn/ 9Xn+1)~ (4.4)

On using (4.1), (4.2), (4.4) and assumption (d), we obtain

dny1 = d(gxni1, gxn+2)
= d(fxn, fXnt1)
< @(d(gxn, gxn+1))
= ¢(dn),
so that
dn+1 < @(dn)-
Hence by Lemma 2.7, we obtain

lim dn = lim d(gxn, gxn+1) =0 (4.5)

n—oo

Next, we show that {gx,} is a Cauchy sequence. On contrary suppose that {gx, } is not a Cauchy, then
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owing to Lemma 2.8, there exist ¢ > 0 and two subsequences {gxn,} and {gxm,} of {gxn} such that
k < mg < ng and d(gxm,, gxn,) > € = d(gXm,, gxn, ,) for all k € IN. Further, in view of (4.5), Lemma
2.8 assures us that
lim d(gxm,,9xn,) = lim d(gxm,+1,9Xn, +1) = €. (4.6)
k—o0 k—o0

Denote ¢ = d(gXxm,,gxn,). Owing to (4.1), we have {gxn} C f(X) C Y so that {gxn} is termwise
monotone sequence in Y (due to (4.2)). As (Y, <) is sequentially chainable, by using Proposition 3.4, we
obtain g(Xm,) <> g(xn,). On using (4.1) and assumption (d), we obtain

d(gXm+1, 9%Xn,+1) = d(fxXm,, fxn,)
< ¢(d(gxm,, gxn,))
= ¢(rx),
so that
d(gxmk+1, 9Xnk+1) < @(ry). (4.7)
On taking limit superior as k — oo in (4.7) and using (4.6) and the definition of (3, we have

€ = limsup d(gxm, +1, 9Xn, +1) < limsup @ (1) = limsup @(ri) < €,
k—o00 k—o00 rr—et

which is a contradiction yielding thereby {gxn} is a Cauchy sequence.
Therefore {gxn} is a termwise monotone Cauchy sequence in Y. As Y is <>-complete, there exists
z € Y such that lim g(xn) = z, which combining with (4.2), gives rise
n—oo

g(xn) I z. 4.8)

On using (4.1), (4.3) and (4.8), we obtain
f(xn) I 2. (4.9)

Now, we use assumptions (e) and (e’) to accomplish the proof. Assume that (e) holds. Using assump-
tion (e2) (i.e., <>-continuity of g) in (4.8) and (4.9), we have

Jim g(gxn) = g(2), (4.10)
Jim g(fxn) = g(2). (4.11)

On using (4.8), (4.9) and assumption (el) (i.e., <>>-compatibility of f and g), we obtain
lim d(gfxn, fgxn) =0. (4.12)
n—oo

Now, we show that z is a coincidence point of f and g. To accomplish this, we use assumption (e3).
Suppose that f is <>-continuous. On using (4.8) and <>-continuity of f, we obtain

lim f(gxn) = f(z). (4.13)

n— o0
On using (4.11), (4.12), (4.13) and continuity of d, we obtain
d(gz, fz) = d(T}gI;O gfxn,nlgrgo fgxn)
= r}gr;o d(gfxn/ fgxn)
=0,

so that
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Thus z € X is a coincidence point of f and g and hence we are through. Alternately, suppose that (Y, d, <)
has g-TCC property, then due to availability of (4.8), there exists a subsequence {gxn, } of {gxn} such that

glgxn,) <> g(z), V ke No. (4.14)
On using (4.14) and assumption (d), we obtain
d(fgxn,, fz) < @(d(ggxn,, 9z)), V k€ No.

Now, we asserts that
d(fgxn,, fz) < d(ggxn,,9z), VkeN. (4.15)
On account of two different possibilities arising here, we consider a partition {IN?, N*} of IN, i.e., N° U
N+ =N and N°NINT = {) verifying that
(i) d(ggxn,,gz) =0, Vke N
(i) d(ggxn,,gz) >0, Vke NT.

In case (i), on using g-admissibility of f, we get d(fgxn,,fz) =0, for all k € IN? and hence (4.15) holds
for all k € INC. In case (ii), owing to the definition of Q, we have d(fgxn,,fz) < @(d(ggxn,,gz)) <
d(ggxn,, gz), for all k € NT and hence (4.15) holds for all k € N*. Thus (4.15) holds for all k € IN. On
using triangular inequality, (4.10), (4.11), (4.12) and (4.15), we get

d(gzr fZ’) < d(glz gfxnk) + d(ngnk, ngTLk) + d(ngnk, fZ)
< d(gz, gfxn,) + d(gfxn,, fgxn, ) + d(ggxn,, 92)
—0as k — oo,

so that
Thus z € X is a coincidence point of f and g.

Now, assume that (e’) holds. Owing to assumption (e1) (i.e., Y C g(X)), we can find some u € X such
that z = g(u). Hence, (4.8) and (4.9) respectively reduce to

glxn) T glu), (4.16)

f(xn) T glw). (4.17)

Now, we show that u is a coincidence point of f and g. To accomplish this, we use assumption (e’2).
Firstly, suppose that f is (g, <>)-continuous, then using (4.16), we get

nlgrgo f(xn) = f(u). (4.18)
On using (4.17) and (4.18), we get
g(u) = f(u).

Hence, we are done. Secondly, suppose that f and g are continuous. Owing to Lemma 2.9, there exists a
subset E C X such that g(E) = g(X) and g: E — X is one-one. Now, define T : g(E) — g(X) by

T(ga) =f(a), Vg(a)e€ g(E), wherea € E. (4.19)

As g: E — Xis one-one and f(X) C g(X), T is well-defined. Again since f and g are continuous, it follows
that T is continuous. Using g(X) = g(E), assumptions (a) and (e'1) reduce to respectively f(X) C g(E)NY



A. Alam, Q. H. Khan, M. Imdad, J. Nonlinear Sci. Appl., 10 (2017), 1652-1674 1662

and Y C g(E), which follows that, without loss of generality, we are able to construct {x,}3* ; C E
satisfying (4.1) and to choose u € E. On using (4.16), (4.17), (4.19) and continuity of T, we get

f(u) =T(gu) =T( lim gxn) = lim T(gxn) = lim f(xn) = g(u).

n—o00 n—oo n—o0

Thus u € X is a coincidence point of f and g and hence we are through. Finally, suppose that (Y, d, <) has
TCC property, then due to availability of (4.16), there exists a subsequence {gxn, } of {gxn} such that

g(xn,) <= g(u), VkeNo. (4.20)
On using (4.1), (4.20) and assumption (d), we obtain
d(gxn, +1, fu) = d(fxn,, fu) < @(d(gxn,, gu)), Vk € No.

We asserts that
d(gxn,+1,fu) < d(gxn,,gu), VkeN. (4.21)

On account of two different possibilities arising here, we consider a partition {IN?, N*} of IN, i.e., N° U
N+ =N and N°NINT = {) verifying that

(i) d(gxn,,gu) =0 Vke INO;
(i) d(gxn,,gu) >0 VkeNT.

In case (i), on using g-admissibility of f, we get d(fx,,_,fu) = 0, for all k € IN?, which in view of (4.1),
gives rise d(gxn,41,fu) = 0, for all k € IN? and hence (4.21) holds for all k € IN?. In case (ii), by the
definition of Q, we have d(gxn, 11, fu) < @(d(gxn,, gu)) < d(gxn,,gu), for all k € IN*" and hence (4.21)
holds for all n € IN*. Thus (4.21) holds for all k € IN. On using (4.16), (4.21) and continuity of d, we get

d(gu/ fu) = d( lgn 9Xn+1lfu)
n o0
= lim d(gxn,+1,fu)
k—o0

< lim d(gxn,, gu)
k—o0

=0,
so that
g(u) = f(u).
Hence, u is a coincidence point of f and g. This completes the proof. O

Remark 4.2. In view of Proposition 1.1, Theorem 4.1 remains true, if we replace the class () by anyone of
the classes ¥, ©, J and .

With a view to deduce a natural consequence, we particularize Theorem 4.1 by assuming the <>~-
completeness of whole space X.

Corollary 4.3. Let (X, d, X) be a <>-complete ordered metric space such that (X, =) is sequentially chainable and
f and g two self-mappings on X. Suppose that the following conditions hold:

(a) f(X) € g(X);
(b) fis g-comparable and g-admissible;
(c) there exists xg € X such that g(xg) <> f(xo);

(d) there exists @ € Q such that
d(fx, fy) < e(d(gx, gy)), VxyeX

with g(x) <> g(y);
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(e) (el) fand g are <>-compatible;
(e2) g is <>-continuous;

(e3) either f is <>-continuous or (X, d, =) has g-TCC property;
or alternately

(e’) (e’1) there exists a <>=-closed subspace Y of X such that f(X) CY C g(X);
(e'2) either f is (g, <>)-continuous or f and g are continuous or (Y,d, <) has TCC property.

Then f and g have a coincidence point.

Proof. The result corresponding to part (e) follows easily on setting Y = X in Theorem 4.1, while the same
(result) in the presence of part (e’) follows using Proposition 3.14. O

Corollary 4.4. Theorem 4.1 (also Corollary 4.3) remains true, if we replace condition “f is g-admissible” by one of
the following conditions (besides retaining the rest of the hypotheses):

@) ¢(0) =0
(ii) g is one-one.

Proof. Suppose that (i) holds. Take x,y € X such that g(x) = g(y), then g(x) < g(y) and g(x) > g(y). On
applying these points to the contractivity condition (d), we get

d(fx, fy) < @(d(gx, gy)) = ¢(0) =0,

which implies that f(x) = f(y). It follows that f is g-admissible.
Suppose that (ii) holds. Take x,y € X such that g(x) = g(y). As g is one-one, we get x = y, which
implies that f(x) = f(y). Hence, f is g-admissible. O

Using the fact that g-monotonicity implies g-comparability and Proposition 2.6, the following conse-
quence of Theorem 4.1 and Corollary 4.3 trivially holds:

Corollary 4.5. Theorem 4.1 (also Corollary 4.3) remains true, if we replace condition (b) by the following condition
(besides retaining the rest of the hypotheses):

(b) fis g-monotone.

Remark 4.6. Notice that Corollary 4.5 improves the main result of Alam and Imdad [3].

Now, we prove the corresponding result of Theorem 4.1 under linear contractivity condition, as fol-
lows.

Theorem 4.7. Let (X, d, %) be an ordered metric space and f and g two self-mappings on X. Let Y be a <>-complete
subspace of X. Suppose that the following conditions hold:

(a) f(X) S g(X)NY;
(b) fis g-comparable;
(c) there exists xg € X such that g(xg) <> f(xo);
(d) there exists o € [0,1) such that
d(fx, fy) < e d(gx, gy), Vx,yeX,

with g(x) <> g(y);
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(e) (el) fand g are <>-compatible;
(e2) g is <>-continuous;

(e3) either f is <>~-continuous or (Y,d, <) has g-TCC property;
or alternately

(') (e'l) Y C g(X);
(e'2) either f is (g, <>)-continuous or f and g are continuous or (Y,d, <) has TCC property.

Then f and g have a coincidence point.

Proof. This result follows from Theorem 4.1 on setting ¢(t) = at with « € [0,1) besides removing the
following assumptions:

(i) (Y, R) is sequentially chainable;
(ii) fis g-admissible.

Condition (i) is used to prove that {gx, } is a Cauchy sequence. In this case, using the analogous technique
as utilized in Theorem 4.1, we obtain

d(gxn—l—l/ 9Xn+2) = d(an, fxn+1) < (Xd(gxn/ 9Xn+1), V1 € Ny,

so that
d(gxn/ 9Xn+1) < (Xnd(gx()/ gxl)/ vn S NO'

By classical technique, it can be easily shown that {gx,,} is a Cauchy sequence. Thus, there is no need to
use the condition (i) as we do not need to apply the contractivity condition on d(gxm,, gxn,)-
Further, as ¢(0) = 0, owing to Corollary 4.4, we can remove condition (ii). O]

Remark 4.8. Notice that Theorem 4.7 improves Theorem 3.21 in the following respects:

e In the context of hypotheses (e), the completeness of X is not necessary. Alternately, it can be
replaced by the completeness of any subspace Y satisfying f(X) C Y.

e In the context of hypotheses (e’), the completeness of the range subspaces (f(X) or g(X)) are not
necessary. Alternately, it can be replaced by the completeness of any subspace Y satisfying f(X) C
Y € g(X).

e The involved metrical terms namely: completeness, continuity, g-continuity and compatibility in
Theorem 3.21 are not necessary as they can be alternately replaced by their respective “<>—analo-
gues”.

Using the similar arguments to Corollary 4.3, we have the following consequence of Theorem 4.7.

Corollary 4.9. Let (X, d, =) be a <>-complete ordered metric space and f and g two self-mappings on X. Suppose
that the following conditions hold:

(a) f(X) C g(X);
(b) fis g-comparable;
(c) there exists xg € X such that g(xg) <> f(xo);

(d) there exists @ € Q such that
d(fx, fy) < e(d(gx, gy)), Vx,yeX,

with g(x) <> g(y);
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(e) (el) fand g are <>-compatible;
(e2) g is <>-continuous;

(e3) either f is <>-continuous or (X, d, =) has g-TCC property,
or alternately

(e’) (e'1) there exists a <>-closed subspace Y of X such that f(X) CY C g(X);
(€'2) either f is (g, <>)-continuous or f and g are continuous or (Y,d, <) has TCC property.

Then f and g have a coincidence point.

Remark 4.10. If g is onto in Corollary 4.3 (also in Corollary 4.9), then we can drop assumption (a) as in
this case it trivially holds. Also, we can remove assumption (e’1) as it trivially holds for Y = g(X) = X
using Proposition 3.13. Whenever, f is onto, owing to assumption (a), g must be onto and hence again
same conclusion is immediate.

On using Remarks 3.10, 3.12, 3.16, 3.18 and 3.20, we obtain the more natural versions of foregoing
results in the form of the following consequence.

Corollary 4.11. Theorem 4.1 (also Theorem 4.7 and Corollaries 4.3, 4.4, 4.5 and 4.9) remains true, if the usual
metrical terms namely: completeness, closedness, compatibility (or commutativity/weak commutativity), continuity
and g-continuity are used instead of their respective “<>-analogues”.

5. Uniqueness results

In this section, we formulate results ensuring the uniqueness of coincidence point, point of coincidence
and common fixed point corresponding to Theorems 4.1 and 4.7. For a pair of self-mappings f and g
defined on a nonempty set X and a subset E C X, we denote the following sets:

C(f,g) = {x € X: gx = fx}, i.e., the set of all coincidence points of f and g,

C(f,g) ={x € X:x = gx =fx, x € X}, i.e, the set of all points of coincidence of f and g,
C(a,b, <>, E) = the class of all <> —chains between a and b in E.

Theorem 5.1. In addition to the hypotheses of Theorem 4.1 (also Theorem 4.7), suppose that the following condition
holds:

(u1) C(fx,fy, <>, gX) is nonempty, for each x,y € X.
Then f and g have a unique point of coincidence.

Proof. We prove the result for Theorem 4.1 and analogously, similar arguments can be used for Theorem
4.7. In view of Theorem 4.1, C(f, g) # (). Take X,y € C(f, g), then there exist x,y € X such that

x=g(x) =f(x), and y=gly)="f(y). (5.1)

Now, we show that X =Y. As f(x),f(y) € f(X) C g(X), by (u;), there exists a <>-chain {gz1, gz, ..., gzx}
between f(x) and f(y) in g(X), where z1, 25, ..., zi. € X. Owing to (5.1), without loss of generality, we may
choose z; = x and zx =y. We have

g(zi) <= g(ziy1), foreachi(l1<i<k—1). (5.2)

1

Define the constant sequences z;,

g(zﬁﬂ) = f(zl‘l) =7y, for all n € INg. Put z% = 2o, 28 = z3,..., zz)‘*l = zx_1. Since f(X) C ¢g(X), on

= x and zK =y, then using (5.1), we have g(z}wl) = f(z},) = X and
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the lines similar to that of Theorem 4.1, we can define sequences (223, {z3},..., {71} in X such that
g(z%wl) =f(z%), 9(z3 ;) =f(22),..., 9(z n+1) f(zX=1) for all n € INy. Hence, we have

n+1
g(z;H) = f(Zh)r ¥ n €Ny and for each i1 (1 <1i < k). (5.3)
Now we claim that

g(z4) <~ g(z4), ¥n €Ny and foreachi (1 <i<k—1). (54)

We prove this fact by the method of mathematical induction. In view of (5.2), (5.4) holds for n = 0.
Suppose that (5.4) holds forn =r >0, i.e.,

g(zl) <= g(zi™), foreachi (1 <i<k—1).
On using g-comparability of f, we obtain
f(zl) <>~ f(zL™!), foreachi(1<i<k—1),

which on using (5.3), gives rise

g(ziq) <= g(zkH]),

It follows that (5.4) holds for n = r+ 1. Thus, by induction, (5.4) holds for all n € INg. Now for each

foreachi (1 <i<k—1).

n € Ny and for each i (1 < i < k—1), define t} := d(gz},, gz5"!). We claim that
lim t1 =0, foreachi(1<i<k—1). (5.5)
n—oo

On fixing 1, the two cases arise. Firstly, suppose that t}, = d(gz} , gz4"!) = 0 for some ng € Ny, then by

g-admissibility of f, we obtain d(fz}, , fz5/1) =0. Consequently on using (5.4), we get

g’
t;OH = d(gz}lOH, gzi:g}rl) =d(fz no,fz“rl) 0.

Thus by induction, we get t!, = 0, for all n > nyg, yielding thereby nlg}r;o tl, = 0. On the other hand,
suppose that t, > 0, for all n € INy. Then, on using (5.3), (5.4) and assumption (e), we have
th = dlgzy 1, 9z0)

= d(fzt, fz5 )

< o(d(gzn, znh)

= o(ty),
so that

thi < e(th).
Hence on applying Lemma 2.7, we obtain T}grgo tl, = 0. Thus, in both the cases, (5.5) holds for each
i (1 <1< k—1). On using triangular inequality and (5.5), we obtain

dxy) <th + 4+ +t51 =0, as n— oo,

so that

X
I
<l

O

Corollary 5.2. Theorem 5.1 remains true, if we replace the condition (uy) by one of the following conditions (besides
retaining rest of the hypotheses):
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(u}) (fX, =) is totally ordered;

(u%) (X, ) is (f, g)-directed.

Proof. Suppose that (ul) holds, then for each pair x,y € X, we have
fx) <> fly),

which implies that {fx, fy} is a <>-chain between f(x) and f(y) in g(X) so that C(fx, fy, <>, gX) is
nonempty, for each x,y € X, i.e., (u;) holds and hence Theorem 5.1 is applicable. Next, assume that
(u%) holds, then for each pair x,y € X, there exists a z € X such that

f(x) <> g(z) <~ f(y),

which implies that {fx, gz, fy} is a <>-chain between f(x) and f(y) in g(X) so that C(fx, fy, <>, gX) is
nonempty, for each x,y € X, i.e., (u;) holds and hence Theorem 5.1 is applicable. O

Theorem 5.3. In addition to the hypotheses of Theorem 5.1, suppose that the following condition holds:
(up) one of f and g is one-one.
Then f and g have a unique coincidence point.

Proof. Take x,y € C(f, g), then in view of Theorem 5.1, we have

As f or g is one-one, we have

O

Theorem 5.4. In addition to the hypotheses embodied in condition (e’) of Theorem 5.1, suppose that the following
condition holds:

(e’'3) fand g are weakly compatible.
Then f and g have a unique common fixed point.

Proof. Owing to Remark 3.20 as well as assumption (e'3), the mappings f and g are weakly compatible.
Let x be a coincidence point of f and g. Write g(x) = f(x) = X, then in view of Lemma 2.10, X is also
a coincidence point of f and g. It follows from Theorem 5.1 with y = X that g(x) = g(x), i.e., X = g(x),
which yields that

x = g(x) = f(x).

Hence, X is a common fixed point of f and g. To prove uniqueness, assume that x* is another common
fixed point of f and g. Then again from Theorem 5.1, we have

This completes proof. O

6. Fixed point theorems

On setting g = I, the identity mapping on X, in foregoing results, we get the following corresponding
fixed point theorems.

Theorem 6.1. Let (X, d, <) be an ordered metric space and f a self-mapping on X. Let Y be a <~-complete subspace
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of X such that f(X) C Y and (Y, <) is sequentially chainable. Suppose that the following conditions hold:
(i) fis comparable;
(ii) either f is <>-continuous or (Y, d, =) has TCC property;
(iii) there exists xg € X such that xy <= f(xg);

(iv) there exists @ € Q such that
d(fx, fy) < e(d(x,y)), VxyeX

with x <> y.
Then f has a fixed point.

Corollary 6.2. Let (X, d, <) be a <>-complete ordered metric space such that (X, =) is sequentially chainable and
f a self-mapping on X. Suppose that the following conditions hold:

(i) fis comparable;
(ii) either f is <>-continuous or (X, d, <) has TCC property;
(iii) there exists xg € X such that xy <> f(xg);

(iv) there exists @ € Q such that
d(fx, fy) < ¢(d(x,y)), VxyeX,

with x <> y.
Then f has a fixed point.

Theorem 6.3. Let (X, d, <) be an ordered metric space and f a self-mapping on X. Let Y be a <>~-complete subspace
of X such that f(X) C Y. Suppose that the following conditions hold:

(i) fis comparable;
(ii) either f is <>-continuous or (Y, d, =) has TCC property;
(iii) there exists xg € X such that xy <> f(xg);

(iv) there exists « € [0,1) such that
d(fx, fy) < ad(x,y), Vx,y€X,

with x <> y.
Then f has a fixed point.

Corollary 6.4. Let (X, d, =) be a <>-complete ordered metric space and f a self-mapping on X. Suppose that the
following conditions hold:

(i) fis comparable;
(ii) either f is <>-continuous or (X, d, <) has TCC property;
(iii) there exists xg € X such that xg <> f(xg);

(iv) there exists o € [0,1) such that
d(fx, fy) < ad(x,y), Vx,yeX,

with x <> y.
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Then f has a fixed point.

Theorem 6.5. In addition to the hypotheses of Theorem 6.1 (also Theorem 6.3), suppose that the following condition
holds:

(u) C(fx,fy, <>) is nonempty for each x,y € X.
Then f has a unique fixed point.
Corollary 6.6. Theorem 6.5 remains true, if we replace the condition (u) by one of the following conditions:
(ul) (fX, =) is totally ordered;
(u?) (X, =) is f-directed.

7. Examples
In this section, we furnish some examples illustrating our newly proved results.

Example 7.1. Consider the set of real numbers R equipped with usual metric d. Define a partial order
<onRbyx <y & x| <Pyland xy > 0. Then (R, d, <) is a <>-complete ordered metric space. Define
f,g:R — Rby f(x) = %z and g(x) = —x? for all x € R. Then f is g-comparable. Define ¢ : [0, 00) — [0, c0)
by @(t) = ﬁ, for all t € [0,00), then @ € Q. Now, for x,y € R with g(x) < g(y), we have

= 1d(gxfgy)<1d(9x,9y)== e(d(gx, gy)).

d(fx, fy) = 2| c 1

x> y? 1,5,
6 6| ey

Thus, f, g and ¢ satisfy assumption (d) of Theorem 4.1. By a routine calculation, one can also verify other
conditions mentioned in (e) (of Theorem 4.1). Thus, all the conditions of Theorem 4.1 are satisfied (with
Y = X), so that f and g have a coincidence point in R. As (u;) also holds, therefore owing to Theorem 5.1,
f and g have a unique point of coincidence (namely: X = 0). Furthermore, In view of Theorem 5.4, f and
g have a unique common fixed point (namely: x = 0).

Example 7.2. Consider X = R equipped with usual metric d and usual (partial) order <. Define f, g : X —
X by f(x) =9 and g(x) = x*> — 7, for all x € X. Then f is g-comparable. Let ¢ € Q be arbitrary. Then for
x,y € X with g(x) = g(y), we have

d(fx, fy) =19—-9/ =0 < o(X* —y?)) = o(d(gx, gy)),

so that f, g and ¢ satisfy the assumption (d) (of Theorem 4.1). Also, the mappings f and g are not <>-
compatible and hence (e) does not hold. But the subspace Y := g(X) = [-7,00) is <>-complete while f
and g are continuous so that all the conditions mentioned in (e’) are satisfied. Therefore, by Theorem 4.1,
f and g have a coincidence point in X. As (u;) also holds, owing to Theorem 5.1, f and g have a unique
point of coincidence (namely: X = 9). Notice that neither f nor g is one-one (i.e., (u2) does not hold) so
that Theorem 5.3 cannot be applied, which guarantees the uniqueness of coincidence point. Observe that
there are two coincidence points (namely: x = 4 and x = —4). Also, f and g are not weakly compatible
(i.e., (¢’3) does not hold) and hence, we can not apply Theorem 5.4, which ensures the uniqueness of
common fixed point. Notice that there is no common fixed point of f and g.

Example 7.3. Consider X = [0,2]. Then (X, d, <) is a <>-complete ordered metric space under the usual
metric d and the usual (partial) order <. Define f : X — X by f(x) = x — 3x2, then f is comparable but not
monotone. Define ¢ : [0,00) — [0,00) by @(t) =t— %tz, for all t € [0,00), then @ € Q. Also, for x,y € X
with x <>y, we have

1
dﬁnm)zm—mu—§u+yn
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1
<hx—ylll— §|X*UH

1
< |><—y|—§\x—y|2
= @(d(x,y)),
so that
d(fx, fy) < @(d(x,y)).

i.e., f satisfies the contractivity condition (iv) of Corollary 6.2. Thus, all the conditions mentioned in
Corollary 6.2 and Theorem 6.5 are satisfied and hence f has a unique fixed point in X (namely: x = 0).
Suppose there exists « € [0,1) such that

d(fx, fy) < ad(x,y). (7.1)
Then, for x # y with x <> y, we have
Ix—lx2 y+ -y < ofx —y
2 2
= (x—y) — 508~y < e~y
= eyl — 5 (e +y)l < eyl
= -yl < o

so that for x, y small enough o — 1, which yields that there isno « € [0, 1) such that contractivity condition
(7.1) holds, i.e., f is not comparable linear contraction. Henceforth Corollary 6.4 (i.e., comparable Banach
contraction principle) is not applicable in the context of present example.

8. An application to integral equation

In this section, using certain results (particularly, Corollary 6.2 and Theorem 6.5), we study the exis-
tence and uniqueness of solution of the following integral equation:

)
u(t) = L Mt & w(E))dE, Viel, 8.1)

where T>0,I=1[0,T], u: I = R is unknown function and M : I x I x R — R is known function.
We denote C(S) by the space of all real-valued continuous functions on a nonempty set S.

Definition 8.1. A function 1 € C(I) is called a lower solution of (8.1), if

n(t) <J0 M(t, &,n(E))dE, Viel

Definition 8.2. A function n € C(I) is called an upper solution of (8.1), if

n(t) >L M(t,&,n(E))dE, Vtel

Let § denote the family of functions ¢ : [0, co] — [0, 0o] satisfying the following conditions:

(i) ¢ is continuous and increasing;
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(ii) ¢(t) < tforeacht > 0.

Typical examples of § are ¢(t) = a.t, 0 < x <1, p(t) = 1+t and ¢(t) =In(1+1t). Also, clearly § C Q.
Now, we prove the following result on the existence and uniqueness of the solution of the problem
described by (8.1) in the presence of a lower solution (or an upper solution).
Theorem 8.3. In respect of the problem described by (8.1), suppose that the following assumptions hold:
(a) MeCIxIxR)and M(t,&,x) 20, Vt,Eel,xeR;
(b) there exists ¢ € § such that for all t,& € 1 and for all x,y € R with x <y,

M(t, &, x) —M(t, &, y) < p(t, &) Py —x),

where p : I x I — [0, 00) is a continuous function satisfying

N
supJ p(t,&)dE <1

tel JO

Then the existence of a lower solution (or an upper solution) of the problem (8.1) ensures the existence and uniqueness
of the solution of this problem.

Proof. Define a function A : C(I) — C(I) by
-

)it = | Mt EuE)de Vel 52
0
Clearly, if u € C(I) is a fixed point of A then u is a solution of (8.1). On C(I), define a metric d given by:
d(u,v) =suplu(t) —v(t)l, Yu,ve (). (8.3)
tel
On €(I), define a partial order < given by:
uvellusve=ut)<v(t), Vtel (8.4)

Now, we check that all the conditions of Corollary 6.2 are satisfied. Clearly, (C(I), d, <) is a <>-complete
ordered metric space and (C(I), <) is sequentially chainable.

(i) Take u,v € €(I) such that u <> v, then by (8.4), we obtain
u(E) <v(E), vVEel or u(E) >v(E), VEEL

which, for each t € I, using assumption (b) gives rise

M(t, & u(E)) = M(t,Ev(E)), YEET or M(t,Eu(E)) < M(t,EV(E), VEel (8.5)
On using (8.2), (8.5) and assumption (a), we get

(Au)(t) = J Mt &, u(E))dE

0

or
-
JMtEu )dé§,
0
JMt&v d§
0
=(Av)(t) Vtel,

which owing to (8.4) implies that A(u) <> A(v) so that A is comparable.
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(i) Take a sequence {un} C C(I) such that un, § u € C(I). Then for each t € I, {u,(t)} is a sequence in R
converging to u(t). Hence, {u,(t)} has a monotone subsequence {un, (t)}. Therefore, for all k € INy and
for all t € I, we have

Un, (1) (t), if {un,(t)}is increasing,

<u
Un, (t) > u(t), if {un, (t)}is decreasing,

which by using (8.4) implies that u,,, <> u, for all k € INg so that (C(I), d, %) has TCC property.

(iii) If n € C(I) is a lower (resp. an upper) solution of (8.1), then using (8.2) and (8.4), we can verify that
n < A(n) (resp. n = A(n)). Hence, in both the cases, we have n <> A(n), for some lower or upper solution
n.

(iv) Take u,v € C(I) such that u < v. On using (8.2), (8.3) and assumption (b), we obtain

T T
d(Aw, Av) = sup |(Aw)(t) — (AV)(1)] = sup|J MUt &, u(E))dE — J M(t, &, v(£))dé|
tel tel 0 0
T
= sup [ (M(t, & u(E) ~ Mt & v(ED)a 86)
tel JO

)
<supj p(t, £)D(E) — u(E))dE,

tel JO

Given that ¢ is increasing on [0, c0) and u < v, which implies that ¢(v(&) —u(&)) < $(d(u,v)) for all
& € 1. Hence, (8.6) reduces to

]
d(Au, Av) < b(d(w,v)) supj p(t, £)dE,
tel JO

which again using assumption (b) gives rise
d(Au, Av) < ¢(d(u,v)), Vu,ve C(l) such thatu <,

where ¢ € § C Q.

Thus, all the conditions of Corollary 6.2 are satisfied, which ensures that A has a fixed point.

Finally, choose arbitrary u,v € C(I) and write w := max{Au, Av} € C(I). As A(u) <= wand A(v) =w,
{Au, w, Av} is a <>-chain between A(u) and A(v). Now, in view of Theorem 6.5, A has a unique fixed
point, which is, indeed, a unique solution of the problem described by (8.1). O

9. Conclusion

In an attempt to extend Theorem 3.21 from linear contractions to Boyd-Wong type nonlinear contrac-
tions, we were compelled to add two extra conditions in Theorem 4.1 (namely: sequential chainability and
g-admissibility), which substantiate the utility of this extension. As per new work, readers may attempt
to prove such results under various well-known contractions such as: quasi contractions, Matkowski type
contractions, weak nonlinear contractions, rational type contractions, Meir-Keeler type contractions, cyclic
contractions, Geraghty-type contractions etc. besides using implicit relations.
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