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Abstract
The notions of F-sensitivity and (F1,F2)-sensitivity were introduced and studied by Wang et al. via Furstenberg families

in [H.-Y. Wang, J.-C. Xiong, F. Tan, Discrete Dyn. Nat. Soc., 2010 (2010), 12 pages]. In this paper, the concepts of F-collective
sensitivity (resp. (F1,F2)-collective sensitivity) and compact-type F-collective sensitivity (resp. compact-type (F1,F2)-collective
sensitivity) are introduced as stronger forms of the traditional sensitivity for dynamical systems and Hausdorff locally compact
second countable (HLCSC) dynamical systems, respectively, where F, F1 and F2 are Furstenberg families. It is proved that
F-sensitivity (resp. (F1,F2)-sensitivity) of the induced hyperspace system defined on the space of non-empty compact subsets
or non-empty finite subsets (Vietoris topology) is equivalent to the F-collective sensitivity (resp. (F1,F2)-collective sensitivity) of
the original system; F-sensitivity (resp. (F1,F2)-sensitivity) of the induced hyperspace system defined on the space of all non-
empty closed subsets (hit-or-miss topology) is equivalent to the compact-type F-collective sensitivity (resp. (F1,F2)-collective
sensitivity) of the original HLCSC system. Moreover, it is shown that for a given dynamical system (E,d, f) and a given
Furstenberg family F, if (E,d, f) is F-mixing, then it is F-collectively sensitive. Additionally, we prove that for a given dynamical
system (E,d, f) and a given Furstenberg family F, (E,d, f) is F-mixing if and only if f× f× · · · × f︸ ︷︷ ︸

n

is F-mixing for every n > 2.

Our results extend and improve some existing results. c©2017 All rights reserved.
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1. Introduction

It is well-known that sensitivity characterizes the unpredictability of chaotic phenomena. Therefore,
it is very important to study what system is sensitive. This problem has gained much attention recently
(see [1, 2, 6, 10, 12, 14, 15, 20, 29, 31]). There are several forms of sensitivity for dynamical systems (see
[15]). In [29], the concepts of collective sensitivity and compact-type collective sensitivity were introduced
as stronger conditions than the traditional sensitivity for dynamical systems and Hausdorff locally com-
pact second countable (HLCSC) dynamical systems, respectively, and it was proved that sensitivity of
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the induced hyperspace system defined on the space of non-empty compact subsets or non-empty finite
subsets (Vietoris topology) is equivalent to the collective sensitivity of the original system; sensitivity of
the induced hyperspace system defined on the space of all non-empty closed subsets (hit-or-miss topol-
ogy) is equivalent to the compact-type collective sensitivity of the original HLCSC system. Additionally,
relations between these two concepts and other dynamics concepts that describe chaos are investigated
[29].

Let (E, f) be a topological dynamical system, where E is a topological space and f : E → E is a
continuous map, and let 2E be the set of all nonempty closed subsets of E. If an appropriate hyperspace
topology is chosen for 2E and f is compatible, i.e., f(F) ∈ 2E for any F ∈ 2E, then the induced hyperspace
topological dynamical system (2E, 2f) is well-defined, where 2f : 2E → 2E, is defined by 2f(F) = f(F), F ∈
2E. It is well-known that (E, f) is topologically conjugated to the subsystem of (2E, 2f) that consists of
the singleton sets of E when E satisfies certain conditions and an appropriate hyperspace topology is
selected, e.g., hit-or-miss topology (see [28–30]) or Vietoris topology (see [3, 16, 36]). Clearly, an invariant
subset of the original system (E, f) becomes a fixed point of the hyperspace system (2E, 2f). In general, the
induced system (2E, 2f) may inherit some dynamical properties of the system (E, f), but the dynamical
properties of (2E, 2f) are much more complex, as explored by recent studies on mixing, weak mixing,
transitivity, dense set of periodic points, sensitive dependence on initial conditions, entropy, and chaos
(see [8, 11, 13, 16–18, 22–24, 28, 29, 36]).

Recently, Wang et al. [28] first used the hit-or-miss topology to study some dynamical properties of
the hyperspace dynamical system (2E, 2f) induced by a HLCSC dynamical system (E, f). This hyperspace
topology is metrizable when E is HLCSC and a concrete metric is available. Consequently, one can study
sensitivity and other metric-related dynamical properties for locally compact hyperspace systems. How-
ever, for other hyperspace topologies currently employed in the literature of hyperspace dynamics, the
Vietoris topology is non-metrizable (unless E is compact metrizable), thus limiting the scope to compact
(hyperspace) systems when metric-related dynamical properties are concerned.

The Furstenberg family notion is a very useful tool in studying topologically dynamical systems and
ergodic theory (see [25, 27, 31, 35]). In the past few years, some authors [25, 27, 31, 35] investigated
proximity, mixing, chaos and sensitivity via Furstenberg family. Whang et al. introduced and investigated
the concepts of F-sensitivity and (F1,F2)-sensitivity via Furstenberg families, where F, F1 and F1 are
Furstenberg families. They provided some conditions under which a dynamical system is F-sensitive
(resp. (F1,F2)-sensitive), and proved that the one-sided shift σ on ΣN =

∏∞
i=1 Ei is F-sensitive when F

is Furstenberg family and F1 and F1 are full Furstenberg families are compatible with (Σ
N
× Σ

N
,σ× σ),

where Ei = {1, 2, · · · ,N} for all i > 1. Recently, Wu et al. [34] studied the sensitivity of (2E, 2f) in
Furstenberg families. In particular, they proved that F -sensitivity of (2E, 2f) implies that of (E, f), and
the converse is also true if the Furstenberg family F is a filter [34, Corollary 1, Theorem 4]. Wu [33] also
proved that (M(E), fM) is a-transitive (resp., exact, uniformly rigid) if and only if (E, f) is weakly mixing
and a-transitive (resp., exact, uniformly rigid), where (M(E), fM) is the induced dynamical system on the
space of Borel probability measures with weak*-topology.

In the present paper, inspired by [31] and [29], we introduce the concepts of F-collective sensitiv-
ity (resp. (F1,F2)-collective sensitivity) and compact-type F-collective sensitivity (resp. compact-type
(F1,F2)-collective sensitivity) for dynamical systems and and Hausdorff locally compact second count-
able (HLCSC) dynamical systems, respectively, where F, F1, and F2 are Furstenberg families. It is
shown that F-sensitivity (resp. (F1,F2)-sensitivity) of the induced hyperspace system defined on the
space of non-empty compact subsets or non-empty finite subsets (Vietoris topology) is equivalent to the
F-collective sensitivity (resp. (F1,F2)-collective sensitivity) of the original system; F-sensitivity (resp.
(F1,F2)-sensitivity) of the induced hyperspace system defined on the space of all non-empty closed
subsets (hit-or-miss topology) is equivalent to the compact-type F-collective sensitivity (resp. (F1,F2)-
collective sensitivity) of the original HLCSC system. Moreover, it is shown that for a given dynamical
system (E,d, f) and a given Furstenberg family F, if (E,d, f) is F-mixing, then it is F-collectively sensi-
tive. Additionally, we prove that for a given dynamical system (E,d, f) and a given Furstenberg family F,
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(E,d, f) is F-mixing if and only if f× f× · · · × f︸ ︷︷ ︸
n

is F-mixing for every n > 2. As applications, we present

two examples. Our results extend and improve some existing ones.
The organization of this paper is as follows. In Section 2, we recall some notations and basic con-

cepts. In Section 3, we introduce the concepts of F-collective sensitivity and (F1,F2)-collective sensitivity
for any dynamical system to characterize the F-sensitivity and (F1,F2)-sensitivity of induced hyperspace
dynamical systems defined on C and F∞, equipped with the Vietoris topology, respectively, where F, F1,
and F2 are Furstenberg families. Section 4 introduces the concepts of compact-type F-collective sensi-
tivity and compact-type (F1,F2)-collective sensitivity for HLCSC dynamical systems to characterize the
F-sensitivity and (F1,F2)-sensitivity of induced hyperspace dynamical systems defined on 2E, equipped
with the hit-or-miss topology, respectively, where F, F1, and F2 are Furstenberg families. Moreover, the
relation between F-collective sensitivity and F-mixing for any dynamical systems is explored. In addi-
tion, as applications, we provide two examples to explore dynamical properties related to the concepts
introduced and results established in Sections 3 and 4.

2. Preliminaries

For a fixed Hausdorff space E, let F(E) = {F is a closed subset of E}, G(E) = {F : F is an open subset of
E}, and K(E) = {F : F is a compact subset of E}, abbreviated as F, G, and K.

The hit-or-miss topology τf (see [28, 29]) (also known as H-topology [9], Fell topology [4, 5, 21],
Choquet-Matheron topology [26], or weak Vietoris topology [32]) on F is generated by the subbase FK,
K ∈ K; FG, G ∈ G, where FK = {F ∈ F : F

⋂
K = ∅} and FG = {F ∈ F : F

⋂
G 6= ∅}.

A topological base of τf (see [19, 28–30]) is FK, K ∈ K; FKG1G2···Gn , K ∈ K, Gi ∈ G, n > 1, 1 6 i 6 n,
where FKG1G2···Gn = FK

⋂
FG1

⋂
FG2

⋂
· · ·

⋂
FGn .

For simplicity, we suppose that FKG1G2···Gn means FK when n = 0.
Clearly, F0 and 2E are identical, where F0 = F\{∅}. Throughout this paper, E is assumed to be a

Hausdorff locally compact second countable space (HLCSC) and the hit-or-miss topology is equipped on
F0 unless stated otherwise.

For any two topological spaces X and Y, a continuous map f : X→ Y is perfect if f is a closed map and
all fibers f−1(y)(y ∈ Y) are compact (see [7, 28, 29]).

Let E be Hausdorff and let U,V ⊂ E be any two non-empty open sets. If E\U is compact, then U is
called co-compact. If one of the U and V is (or both U and V are) co-compact, then U and V are said to
be a pair of co-compact subsets of E, denoted by (U,V) (see [28, 29]).

In the following and here, by a dynamical system we mean a pair (E, f), where E is a metric space
and f : E → E is a continuous map. For a given nonempty set A, let P(A) denote the collection of all
subsets of A and let Z+ be the set of all non-negative integers. For simplicity write P = P(Z+). A subset
F ⊂ P is a Furstenberg family if it is hereditary upwards, i.e., F1 ⊂ F2 and F1 ∈ F imply F2 ∈ F. A
Furstenberg family F is proper if it is a proper subset of P, that is, F is proper if and only if Z+ ∈ F

and ∅ /∈ F. For a given subset A ⊂ P, it can generate a Furstenberg family [A] = {F ∈ P : F ⊃ A for
some A ∈ A}. For a Furstenberg family F, its dual family is defined by κF = {F ∈ P : F

⋂
F ′ 6= ∅ for

any F ′ ∈ F}. Let B be the family of all infinite subsets of Z+. Then its dual family κB is the family of
all cofinite subsets of Z+. Let (E, f) be a dynamical system and A,B ⊂ E. Define the hitting time set
Nf(A,B) = {n ∈ Z+ : fn(A)

⋂
B 6= ∅}. A dynamical system (E, f) is F-transitive if for each pair of open

and nonempty subsets U,V ⊂ E, Nf(U,V) ∈ F. (E, f) is F-mixing if (E× E, f× f) is F-transitive.
A Furstenberg family F is countably generated [25, 27, 31, 35] if there exists a countable subset A ⊂ P

such that [A] = F. It is clear that κB is a countably generated proper family.
For any two Furstenberg families F1 and F2, let F1 · F2 = {F1

⋂
F2 : F1 ∈ F1, F2 ∈ F2}. A Furstenberg

family F is full if it is proper and F · κF ⊂ B. It is obvious that a Furstenberg family F is full if and only
if κB · F ⊂ F. One can easily see that κB and B are full. Clearly, if F is full then κB ⊂ F. A Furstenberg
family F is a filterdual if it is proper and κF ⊃ κF · κF.
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Let (E, f) be a dynamical system and F be a Furstenberg family. For any A ⊂ X and any x ∈ X, write
Nf(x,A) = Nf({x},A). A point x ∈ X is called an F-attaching point of the set A if Nf(x,A) ∈ F. A
Furstenberg family F is said to be compatible with the system (E, f) if the set of F-attaching points of U
is a Gδ set of E for each open and nonempty subset U ⊂ E (see [27, 31, 35]).

Definition 2.1 ([31]). Let (E,d, f) be a topological dynamical system. (E,d, f) (or simply f) is said to be
F-sensitive if there exists a ε > 0 such that for every x ∈ E and every open neighborhood U of x there
exists y ∈ U such that {n ∈ Z+ : d(fn(x), fn(y)) > ε} belongs to F, where F is a Furstenberg family.

Definition 2.2 ([31]). Let (E,d, f) be a topological dynamical system. (E,d, f) (or simply f) is said to be
(F1,F2)-sensitive if there is a ε > 0 such that every x ∈ E is a limit of points y ∈ E such that {n ∈ Z+ :
d(fn(x), fn(y)) < δ} belongs to F1 for any δ > 0 but {n ∈ Z+ : d(fn(x), fn(y)) > ε} belongs to F2, where
F1 and F2 are Furstenberg families.

Definition 2.3 ([31]). Let (E,d, f) be a topological dynamical system. (E,d, f) (or simply f) is said to
be weakly F-sensitive if there is a ε > 0–a weakly F-sensitive constant–such that in every open and
nonempty subset U of X there exist x and y of U such that the pair x,y is not F-ε-asymptotic. That is,
{n ∈ Z+ : d(fn(x), fn(y)) > ε} ∈ F.

3. F-sensitivity and (F1,F2)-sensitivity of induced (sub) hyperspace dynamical systems equipped
with the Vietoris topology

The following two lemmas are needed.

Lemma 3.1. Let (X,d, f) be a subsystem of a given dynamical system (E,d, f) and F a Furstenberg family, where
X is dense in E. If f : E → E is uniformly continuous, then (E,d, f) is F-sensitive (resp. (F1,F2)-sensitive) if and
only if (X,d, f) is F-sensitive (resp. (F1,F2)-sensitive).

Proof. It follows from the definitions.

Lemma 3.2. Let (X,d, f) be a subsystem of a given dynamical system (E,d, f) and F a Furstenberg family, where
X is dense in E. If 2f : (2E, τv)→ (2E, τv) or 2f : (2E, τf)→ (2E, τf) is uniformly continuous, then (C,dH, 2f) is
F-sensitive (resp. (F1,F2)-sensitive) if and only if (F∞,dH, 2f) is F-sensitive (resp. (F1,F2)-sensitive).

Proof. It follows from Lemma 3.1.

Definition 3.3. Let (E,d, f) be a given dynamical system, F a Furstenberg family and δ > 0 a constant.
(E,d, f) is said to be F-collectively sensitive with the collective sensitivity constant δ if for any finitely
many distinct points x1, x2, · · · , xn ∈ E and any ε > 0, there exist the same number of distinct points
y1,y2, · · · ,yn ∈ E satisfying the following two conditions:

(i) d(xi,yi) < ε for all 1 6 i 6 n;

(ii) there exists an i0 with 1 6 i0 6 n such that {k ∈ Z+ : d(fk(xi), fk(yi0)) > δ or d(fk(xi0), f
k(yi)) >

δ, 1 6 i 6 n} ∈ F.

Clearly, if F is a proper Furstenberg family, then F-collective sensitivity is stronger than collective
sensitivity.

Definition 3.4. Let (E,d, f) be a given dynamical system, F1,F2 two Furstenberg families and δ > 0 a
constant. (E,d, f) is said to be (F1,F2)-collectively sensitive with the collective sensitivity constant δ if for
any finitely many distinct points x1, x2, · · · , xn ∈ E and any ε > 0, there exist the same number of distinct
points yj1,yj2, · · · ,yjn ∈ E (j = 1, 2, · · · ) satisfying the following three conditions:

(i) d(xi,y
j
i) < ε for all 1 6 i 6 n (j = 1, 2, · · · );
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(ii) for each j ∈ {1, 2, · · · }, there exists an i0 with 1 6 i0 6 n such that

{k ∈ Z+ : d(fk(xi), fk(y
j
i0
)) > δ or d(fk(xi0), f

k(yji)) > δ, 1 6 i 6 n} ∈ F1

and
{k ∈ Z+ : d(fk(xi), fk(y

j
i0
)) < ε or d(fk(xi0), f

k(yji)) < ε, 1 6 i 6 n} ∈ F2

for any j > 1;

(iii) lim
j→+∞yji = xi, i = 1, 2, · · · ,n.

It is easily seen that (F1,F2)-collective sensitivity implies (F1,F2)-sensitivity by the above definitions.

Theorem 3.5. Let (E,d, f) be a given dynamical system and F a Furstenberg family. Then (F∞,dH, 2f) is F-
sensitive (resp. (F1,F2)-sensitive) if and only if (E,d, f) is F-collectively sensitive (resp. (F1,F2)-collectively
sensitive).

Proof. Assume that (F∞,dH, 2f) is F-sensitive with a sensitivity constant δ. For any finitely many distinct
points x1, x2, · · · , xn ∈ E and any ε > 0, without loss of generality, we can suppose ε < 1

2 min{d(xi, xj) :
1 6 i, j 6 n and i 6= j}. By hypothesis, there exists B ∈ F∞ with dH(A,B) < ε and {k ∈ Z+ :
dH((2f)k(A), (2f)k(B)) > δ} ∈ F where A = {x1, x2, · · · , xn}. By dH(A,B) < ε and the assumption on ε, for
any y ∈ B there is only one 1 6 i 6 n with d(y, xi) < ε. Let Bi = {y ∈ B : d(y, xi) < ε} for every 1 6 i 6 n.
Obviously, Bi 6= ∅ for any i ∈ {1, 2, · · · ,n}. For any C ∈ F∞, Write S(C, δ) = {x ∈ E : dH(x,C) 6 δ}. For
each k ∈ {k ∈ Z+ : dH((2f)k(A), (2f)k(B)) > δ}, one of the following is not true:

(1) S((2f)k(A), δ) ⊇ (2f)k(B);

(2) S((2f)k(B), δ) ⊇ (2f)k(A).

If (1) does not hold for some k ∈ {k ∈ Z+ : dH((2f)k(A), (2f)k(B)) > δ}, then there exists y ∈ Bi0 with
d(fk(y), fk(xi)) > δ for all 1 6 i 6 n. Pick yi ∈ Bi for each i. In particular, take yi0 = y. Then we have (i)
d(xi,yi) < ε for any i ∈ {1, 2, · · · ,n}; and (ii) there exists an i0 with 1 6 i0 6 n and d(fk(xi), fk(yi0)) > δ
for any i ∈ {1, 2, · · · ,n}.

If (2) does not hold for some k ∈ {k ∈ Z+ : dH((2f)k(A), (2f)k(B)) > δ}, then there exists an i0 with
1 6 i0 6 n and d(fk(xi0), f

k(y)) > δ for any y ∈ B. For each 1 6 i 6 n, pick yi ∈ Bi. We have (i)
d(xi,yi) < ε for any 1 6 i 6 n; and (ii) d(fk(xi0), f

k(yi)) > δ for any 1 6 i 6 n.
From the above argument, it follows that (E,d, f) is F-collectively sensitive.
Now we suppose that (E,d, f) is F-collectively sensitive with a collective sensitivity constant δ. For any

A ∈ F∞ and ε > 0, write A = {x1, x2, · · · , xn}. By hypothesis, there exist n distinct points y1,y2, · · · ,yn ∈ E
satisfying (i) and (ii) in Definition 3.3. Write B = {y1,y2, · · · ,yn}. (i) means dH(A,B) < ε; and (ii) means
that for every k ∈ {k ∈ Z+ : dH((2f)k(A), (2f)k(B)) > δ}, one of the following does not hold:

(3) S((2f)k(A), δ) ⊇ (2f)k(B);

(4) S((2f)k(B), δ) ⊇ (2f)k(A).

Therefore, for each k ∈ {k ∈ Z+ : dH((2f)k(A), (2f)k(B)) > δ}, we have dH((2f)k(A), (2f)k(B)) > δ.
Consequently, from the definition we know that (F∞,dH, 2f) is F-sensitive.

Assume that (F∞,dH, 2f) is (F1,F2)-sensitive with a sensitivity constant δ. For any finitely many dis-
tinct points x1, x2, · · · , xn ∈ E and any ε > 0, without loss of generality, we can assume ε < 1

2 min{d(xi, xj) :
1 6 i, j 6 n and i 6= j}. By hypothesis, for each j ∈ Z+, there exists Bj ∈ F∞ with

{k ∈ Z+ : dH((2f)k(A), (2f)k(Bj)) < ε} ∈ F1, (3.1)

{k ∈ Z+ : dH((2f)k(A), (2f)k(Bj)) > δ} ∈ F2,
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and

lim
j→∞Bj = A, (3.2)

where A = {x1, x2, · · · , xn}. By (3.2) and the assumption on ε, without loss of generality, we can suppose
that for every j ∈ Z+ and any y ∈ Bj, there is only one 1 6 ij 6 n with d(y, xi) < ε. Let Bij = {y ∈
Bj : d(y, xi) < ε} for every 1 6 i 6 n and any j ∈ Z+. Obviously, Bij 6= ∅ for any i ∈ {1, 2, · · · ,n} and
any j ∈ Z+. For any C ∈ F∞, write S(C, δ) = {D ∈ F∞ : dH(C,D) 6 δ}. For every j ∈ Z+ and every
k ∈ {k ∈ Z+ : dH((2f)k(A), (2f)k(Bj)) > δ}, one of the following is not true:

(5) S((2f)k(A), δ) ⊇ (2f)k(Bj);

(6) S((2f)k(Bj), δ) ⊇ (2f)k(A).

If (5) does not hold for some k ∈ {k ∈ Z+ : dH((2f)k(A), (2f)k(Bj)) > δ} and some j ∈ Z+, then there
exists yj ∈ Bi0j

with d(fk(yj), fk(xi)) > δ for all 1 6 i 6 n. Pick yij ∈ Bij for each i and each j ∈ Z+.
In particular, take yi0j

= yj for each j ∈ Z+. Then for the above j, we have (i) d(xi,yij) < ε for any i ∈
{1, 2, · · · ,n}; and (ii) there exists an i0j with 1 6 i0 6 n and d(fk(xi), fk(yi0j

)) > δ for any i ∈ {1, 2, · · · ,n}.

If (6) does not hold for some k ∈ {k ∈ Z+ : dH((2f)k(A), (2f)k(B)) > δ} and some j ∈ Z+, then there
exists an i0j with 1 6 i0 6 n and d(fk(xi0j

), fk(y)) > δ for any y ∈ Bj. For each 1 6 i 6 n, pick yij ∈ Bij .
We have (i) d(xi,yij) < ε for any 1 6 i 6 n; and (ii) d(fk(xi0), f

k(yij)) > δ for any 1 6 i 6 n.
From the above argument, it follows that {k ∈ Z+ : d(fk(xi), fk(y

j
i0
)) > δ or d(fk(xi0), f

k(yji)) > δ, 1 6
i 6 n} ∈ F2.

Clearly, for a fixed j ∈ Z+, if dH((2f)k(A), (2f)k(Bj)) < ε for some k > 0 and some ε > 0, then we have
S((2f)k(A), ε) ⊇ (2f)k(Bj) and S((2f)k(Bj), ε) ⊇ (2f)k(A).

If S((2f)k(A), ε) ⊇ (2f)k(Bj) holds, there exists y ∈ Bi0j
with d(fk(yj), fk(xi)) < ε for all 1 6 i 6 n.

Pick yij ∈ Bij for each i and each j ∈ Z+. In particular, we can choose yi0j
= yj for each j ∈ Z+. Then for

the above j, we have (i) d(xi,yij) < ε for any i ∈ {1, 2, · · · ,n}; and (ii) there exists an i0j with 1 6 i0 6 n

and d(fk(xi), fk(yi0j
)) < ε for any i ∈ {1, 2, · · · ,n}.

If S((2f)k(Bj), ε) ⊇ (2f)k(A) holds, then there exists an i0j with 1 6 i0 6 n and d(fk(xi0j
), fk(y)) < ε

for any y ∈ Bj. For each 1 6 i 6 n, pick yij ∈ Bij . We have (i) d(xi,yij) < ε for any 1 6 i 6 n; and (ii)
d(fk(xi0), f

k(yij)) < ε for any 1 6 i 6 n.
Since

{k ∈ Z+ : dH((2f)k(A), (2f)k(Bj)) < ε} ∈ F1,

for each j ∈ Z+, by the definition, the above argument, and (3.1), (E,d, f) is (F1,F2)-collectively sensitive.
Now we suppose that (E,d, f) is (F1,F2)-collectively sensitive with a collective sensitivity constant δ.

For any A ∈ F∞ and ε > 0, write A = {x1, x2, · · · , xn}. By hypothesis, for each j ∈ Z+, there exist n distinct
points y1j ,y2j , · · · ,ynj ∈ E satisfying (i), (ii), and (iii) in Definition 3.4. Write Bj = {y1j ,y2j , · · · ,ynj} for
every j ∈ Z+. By (iii) in Definition 3.4, without loss of generality, we can assume that dH(A,Bj) < ε for
every j ∈ Z+; and (ii) means that for a fixed j ∈ Z+, one of the following does not hold:

(7) S((2f)k(A), δ) ⊇ (2f)k(Bj);

(8) S((2f)k(Bj), δ) ⊇ (2f)k(A).

Therefore, for the above j and each k ∈ {k ∈ Z+ : dH((2f)k(A), (2f)k(Bj)) > δ}, we have

dH((2f)k(A), (2f)k(Bj)) > δ.

By dH(A,Bj) < ε for every j ∈ Z+, without loss of generality, one can suppose that lim
j→∞Bj = A. By the

above argument we obtain that {k ∈ Z+ : dH((2f)k(A), (2f)k(Bj)) > δ} ∈ F2 for every j ∈ Z+. Similarly,
(ii) means that for a fixed j ∈ Z+ and a given ε > 0, one of the following does not hold:
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(7) S((2f)k(A), ε) ⊇ (2f)k(Bj);

(8) S((2f)k(Bj), ε) ⊇ (2f)k(A).

Consequently, by the hypothesis and the above, {k ∈ Z+ : dH((2f)k(A), (2f)k(Bj)) < ε} ∈ F1 for every
j ∈ Z+. From the definition we know that (F∞,dH, 2f) is (F1,F2)-sensitive. Thus, the proof of Theorem
3.5 is finished.

Theorem 3.6. Let (E,d, f) be a given dynamical system and F a Furstenberg family. If 2f : (2E, τv)→ (2E, τv) is
uniformly continuous, then the following conditions are equivalent:

(i) (C,dH, 2f) is F-sensitive (resp. (F1,F2)-sensitive);

(ii) (F∞,dH, 2f) is F-sensitive (resp. (F1,F2)-sensitive);

(iii) (E,d, f) is F-collectively sensitive (resp. (F1,F2)-collectively sensitive).

Proof. It follows from Theorem 3.5 and Lemmas 3.1 and 3.2.

In particular, for compact dynamical systems, we get the following result.

Corollary 3.7. Let (E,d, f) be a given compact dynamical system and F a Furstenberg family. Then the following
conditions are equivalent:

(i) (2E,dH, 2f) is F-sensitive (resp. (F1,F2)-sensitive);

(ii) (F∞,dH, 2f) is F-sensitive (resp. (F1;F2)-sensitive);

(iii) (E,d, f) is F-collectively sensitive (resp. (F1,F2)-collectively sensitive).

4. F-sensitivity and (F1,F2)sensitivity of induced hyperspace dynamical systems equipped with the
hit-or-miss topology

Throughout this section, let E be a non-compact HLCSC space, d be a compact-type metric of E, and ρ
be a metric of the hit-or-miss topology on F = 2E

⋃
{∅}, and let f : E→ E be a perfect mapping and C,F∞

be subspaces of (F, τf), where τf is the hit-or-miss topology.

Definition 4.1 ([29]). A metric d of E is of compact-type if it can be extended to a metric d of the Alexan-
droff compactification ωE.

Definition 4.2. Let d be a metric of ωE and d be the restriction of d on E, and let (E,d, f) be a given
dynamical system, F a Furstenberg family and δ > 0 a constant. (E,d, f) is said to be compact-type
F-collectively sensitive with the collective sensitivity constant δ if for any finitely many distinct points
x1, x2, · · · , xn ∈ E and any ε > 0, there exist the same number of distinct points y1,y2, · · · ,yn ∈ E

satisfying the following two conditions:

(i) d(xi,yi) < ε for all 1 6 i 6 n;

(ii) there exists an i0 with 1 6 i0 6 n such that K1
⋃
K2 ∈ F, where

K1 = {k ∈ Z+ : d(fk(xi), fk(yi0)) > δ and d(fk(yi0),ω) > δ, 1 6 i 6 n}

and
K2 = {d(fk(xi0), f

k(yi)) > δ and d(fk(xi0),ω) > δ, 1 6 i 6 n}.

Clearly, if F is a proper Furstenberg family, then compact-type F-collective sensitivity is stronger than
compact-type collective sensitivity.
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Definition 4.3. Let (E,d, f) be a given dynamical system, F1,F2 two Furstenberg families and δ > 0 a
constant. (E,d, f) is said to be compact-type (F1,F2)-collectively sensitive with the collective sensitivity
constant δ if for any finitely many distinct points x1, x2, · · · , xn ∈ E and any ε > 0, there exist the same
number of distinct points yj1,yj2, · · · ,yjn ∈ E (j = 1, 2, · · · ) satisfying the following three conditions:

(i) d(xi,y
j
i) < ε for all 1 6 i 6 n (j = 1, 2, · · · );

(ii) for each j ∈ {1, 2, · · · }, there exists an i0 with 1 6 i0 6 n such that K1
⋃
K2 ∈ F1 and K3

⋃
K4 ∈ F2 for

any ε > 0, where

K1 = {k ∈ Z+ : d(fk(xi), fk(y
j
i0
)) > δ and d(fk(yji0

),ω) > δ, 1 6 i 6 n},

K2 = {d(fk(xi0), f
k(yji)) > δ and d(fk(xi0),ω) > δ, 1 6 i 6 n},

K3 = {k ∈ Z+ : d(fk(xi), fk(y
j
i0
)) < ε and d(fk(yji0

),ω) < ε, 1 6 i 6 n},
and

K4 = {d(fk(xi0), f
k(yji)) < ε and d(fk(xi0),ω) < ε, 1 6 i 6 n};

(iii) lim
j→+∞yji = xi, i = 1, 2, · · · ,n.

It is easy to see that compact-type (F1,F2)-collective sensitivity implies (F1,F2)-sensitivity by the def-
initions.

With the hit-or-miss topology, we obtain the following theorem:

Theorem 4.4. If (2E, ρ, 2f) is uniformly continuous, then the following conditions are equivalent:

(i) (2E, ρ, 2f) is F-sensitive (resp. (F1,F2)-sensitive);

(ii) (C, ρ, 2f) is F-sensitive (resp. (F1,F2)-sensitive);

(iii) (F∞, ρ, 2f) is F-sensitive (resp. (F1,F2)-sensitive).

Proof. Since C and F∞ are dense subsets of 2E under the hit-or-miss topology, it follows from Lemma 3.1
and Lemma 3.2.

Theorem 4.5. Let E be non-compact HLCSC, d1 and d2 be any two compact-type metrics of E, and f : E→ E be a
continuous map. Then (E,d1, f) is F-sensitive (resp. (F1,F2)-sensitive) if and only if (E,d2, f) is F-sensitive (resp.
(F1,F2)−sensitive).

Proof. Clearly, It is enough to show that if (E,d1, f) is F-sensitive (resp. (F1,F2)-sensitive), then (E,d2, f) is
too. Let (E,d1, f) be F-sensitive (resp. (F1,F2)-sensitive) with a sensitivity constant δ1 > 0. By hypothesis,
there are two metrics d1 and d2 of ωE with d1 = d1|E×E and d2 = d2|E×E. Since the identity mapping
i : (ωE,d1) → (ωE,d2) is a homeomorphism, there is δ2 > 0 satisfying that d2(x,y) 6 δ2 (x,y ∈ ωE)
implies that d1(x,y) 6 δ1. So, d2(x,y) 6 δ2 (x,y ∈ E) implies that d1(x,y) 6 δ1. For any x ∈ E and
σ > 0, it is easy to see that Sd2(x,σ) is an open neighborhood of x under d2. This means that Sd2(x,σ)
is also an open neighborhood of x under d1. By the F-sensitivity of (E,d1, f), there exists y ∈ Sd2(x,σ)
with {n ∈ Z+ : d1(f

n(x), fn(y))} > δ1} ∈ F. From the above relation of d1 and d2, we have {n ∈ Z+ :
d2(f

n(x), fn(y))} > δ2} ∈ F. Therefore, we obtain that if (E,d1, f) is F-sensitive, then so does (E,d2, f). By
a similar argument and the definition, one can easily prove that if (E,d1, f) is (F1,F2)-sensitive, then so is
(E,d2, f). Thus, the proof is ended.

Theorem 4.6. Let (E,d, f) be a given dynamical system and F a Furstenberg family. Then (F∞, ρ, 2f) is F-sensitive
if and only if (E,d, f) is compact-type F-collectively sensitive.
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Proof. Since the proof is similar to that of Theorem 3.5, it is omitted here.

Theorem 4.7. Let (E,d, f) be a given dynamical system and F a Furstenberg family. If (2E, ρ, 2f) is uniformly
continuous, then the following conditions are equivalent:

(i) (2E, ρ, 2f) is F-sensitive;

(ii) (C, ρ, 2f) is F-sensitive;

(iii) (F∞, ρ, 2f) is F-sensitive;

(iv) (E,d, f) is compact-type F-collectively sensitive.

Proof. It follows from Theorems 4.4 and 4.6.

The following lemma is needed to prove Theorem 4.10.

Lemma 4.8. Let f : X→ X be a continuous map of a metric space X and F a Furstenberg family. Then the following
are equivalent:

(1) f is F-mixing;

(2) f× f× · · · × f︸ ︷︷ ︸
n

is F-transitive for every n > 2;

(3) f× f× · · · × f︸ ︷︷ ︸
n

is F-mixing for every n > 2.

Proof. (1)⇒ (2). By hypothesis and the definition, f× f is F-transitive. Assume that f× f× · · · × f︸ ︷︷ ︸
n

is F-

transitive for some n > 2. Let Ui,Vi ⊂ X be nonempty and open for all 1 6 i 6 n+ 1. By hypothesis and
the definition, there exists s ∈ Z+ satisfying that U and V are nonempty and open subsets of X, where
U = Un

⋂
f−s(Un+1) and V = Vn

⋂
f−s(Vn+1). By the above assumption, we get that

{m ∈ Z+ : (f× f× · · · × f︸ ︷︷ ︸
n

)m(U1 ×U2 × · · · ×Un−1 ×U)
⋂

(V1 × V2 × · · · × Vn−1 × V) 6= ∅} ∈ F.

This implies that

{m ∈ Z+ : (f× f× · · · × f︸ ︷︷ ︸
n+1

)m(U1 ×U2 × · · · ×Un+1)
⋂

(V1 × V2 × · · · × Vn+1) 6= ∅} ∈ F.

By induction, f× f× · · · × f︸ ︷︷ ︸
n

is F-transitive for every n > 2.

(2)⇒ (3). By hypothesis, f× f× · · · × f︸ ︷︷ ︸
n

× f× f× · · · × f︸ ︷︷ ︸
n

is F-transitive for every n > 2. So, f× f× · · · × f︸ ︷︷ ︸
n

is F-mixing for every n > 2.
(3)⇒ (1). The proof is easy by the definition and is omitted.

Remark 4.9. In Lemma 4.8 it is not required that Furstenberg families are full. So, this lemma extends and
improves some existing results.

Theorem 4.10. Let (E,d, f) be a given dynamical system and F a Furstenberg family. If (2E, ρ, 2f) is uniformly
continuous, then the following conditions are equivalent:

(i) (2E, ρ, 2f) is F-sensitive;

(ii) (C, ρ, 2f) is F-sensitive;
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(iii) (F∞, ρ, 2f) is F-sensitive;

(iv) (E,d, f) is compact-type F-collectively sensitive.

Proof. Let e1, e2 ∈ E be any two points with d(e1, e2) > 10δ. Write Bi = {x ∈ E : d(ei, x) < δ} for i ∈ {1, 2}.
Then B1 and B2 are two disjoint open balls. Given a finite set of distinct points xi ∈ E, i = 1, 2, · · · ,n
and ε > 0, let Oi denote the open ball centered at xi with radius ε for each 1 6 i 6 n. By Lemma 4.8,
any n-product of f is F-transitive n > 2. This implies, for n = 2m, that {k ∈ Z+ : fk(Oi)

⋂
Bj 6= ∅, i =

1, 2, · · · ,m, j = 1, 2} ∈ F. Then, for any given k ∈ {k ∈ Z+ : fk(Oi)
⋂
Bj 6= ∅, i = 1, 2, · · · ,m, j = 1, 2}, there

are two points zi, z ′i ∈ Oi with fk(zi) ∈ G1 and fk(z ′i) ∈ G2 for each i = 1, 2, · · · ,m. Therefore, we have
d(fk(zi), fk(z ′i)) > 8δ for each i = 1, 2, · · · ,m. This means that for the above k, either d(fk(x1), fk(z1)) > 4δ
or d(fk(x1), fk(z ′1)) > 4δ. Let yi = zi or yi = z ′i for i = 1, 2, · · · ,m. This implies d(fk(x1), fk(yi) > δ for
the above k and each i = 1, 2, · · · ,m. Consequently, by the definition, (E,d, f) is F-collectively sensitive
with constant δ.

Remark 4.11. It is known that if (E,d, f) is weakly mixing, then it is B-mixing. By the definition one can
easily prove that f is weakly mixing if and only if f× f is weakly mixing. We also know that if (E,d, f)
is weakly mixing, then it is τB-mixing. Since B-collective sensitivity and τB-collective sensitivity imply
collective sensitivity, this theorem extends and improves some existing results.

Theorem 4.12. Let (E,d, f) be a given dynamical system and F1,F2 two Furstenberg families. Then (F∞, ρ, 2f) is
(F1,F2)-sensitive if and only if (E,d, f) is compact-type (F1,F2)-collectively sensitive.

Proof. Since the proof is similar to that of Theorem 3.5, it is omitted here.

Theorem 4.13. Let (E,d, f) be a given dynamical system and F1,F2 two Furstenberg families. If (2E, ρ, 2f) is
uniformly continuous, then the following conditions are equivalent:

(i) (2E, ρ, 2f) is (F1,F2)-sensitive;

(ii) (C, ρ, 2f) is (F1,F2)-sensitive;

(iii) (F∞, ρ, 2f) is (F1,F2)-sensitive;

(iv) (E,d, f) is compact-type (F1,F2)-collectively sensitive.

Proof. It follows from Theorems 4.4 and 4.12.

The dynamical system given in the following example has the compact-type F-collective sensitivity, F
is the family of all cofinite subsets of Z+.

Example 4.14 ([29, Example 6.1]). For a given integer p > 2. Let Σ(p) = {s = (· · · , s−1, s0, s1, · · · ) : sn ∈
{1, 2, · · · ,p},n ∈ Z} and (Σ(p),σ) be the full two-sided p-shift, where Z is the set of all integers and σ :
Σ(p)→ Σ(p) is defined by σ(s) = t, where tn = sn+1 for any n ∈ Z. The metric d of (Σ(p),σ) is defined as
d(s, t) =

∑
n∈Z

δ(sn,tn)
2|n| , where δ(i, j) = 1 if i 6= j and δ(i, j) = 0 if i = j. Let E = Σ(p) \ {(· · · , 1, 1, 1, · · · )} and

f = σ|E. Then (E, fk) is compact-type F-collective sensitive and compact-type (B,B)-collective sensitive
for any integer k > 1, where F is the family of all cofinite subsets of Z+ and B is the family of all infinite
subsets of Z+.

Proof. It is enough to show that (E, f) is compact-type F-collective sensitive and compact-type (B,B)-
collective sensitive.

Clearly, E is an open and dense subset of Σ(p). Since (Σ(p),σ) is topologically mixing, (E, f) is topo-
logically mixing by the definition, which implies (E, f) is c-mixing. By Theorem 3.4 in [28], (2E, ρ, 2f)
is topologically mixing. So, (2E, ρ, 2f) is c-mixing. By Theorem 4.10, (2E, ρ, 2f) is F-sensitive. Since
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(2Σ(p), ρ, 2σ) is uniformly continuous, (2E, ρ, 2f) is uniformly continuous. So, it follows from Theorem 4.7
that (E, f) is compact-type F-collective sensitive.

By the above argument, (2E, ρ, 2f) is topologically mixing. Hence, (2E, ρ, 2f) is B-mixing. It is easily
seen that B is a full filterdual, and κB is countably generated. From Theorem 4.5 in [31], we know that
(2E, ρ, 2f) is (B,B)-sensitive. By Theorem 4.13, (E, f) is compact-type (B,B)-collective sensitive.

Remark 4.15. The result in the above example improves that of Examples 6.1 from [29]. It follows from the
example that (Σ(p),σ) is κB−collective sensitive and (B,B)-collective sensitive.

Example 4.16 ([29, Example 6.2]). Let E=(0,+∞), equipped with the subspace topology of R =(−∞,+∞).
Let f : E → E be a continuous map defined as f(x) = 1

x2 for any x ∈ E. Now we consider two metrics
d1 and d2 on E, where d1 is the restriction of the usual metric of R (i.e., d1(x,y) = |x − y|) and d2 is
defined as follows. Let h(x) = 1 − 1

x for x ∈ (0, 1), and h(x) = x − 1 for x ∈ [1,+∞). Let S1 be the
circle x2 + (y− 1)2 = 1 (north pole P = (0, 2) removed) equipped with the metric dS induced by the usual
metric of R2, and let g : R → S1 be the stereographical projection with g(0) = (0, 0). Clearly, h and g
are homeomorphisms, which implies that g ◦ h : E → S1 is a homeomorphism. Now, we define d2 by
d2(x,y) = dS(g ◦ h(x),g ◦ h(y)) for any (x,y) ∈ E× E. Then (E,d1, f) is F-collectively sensitive and any
δ > 0 is a F-collective sensitivity constant, and (E,d2, f) is not F-collectively sensitive, where F is the
family of all cofinite subsets of Z+.

Proof. It follows from Example 6.2 in [29] and its proof.

Remark 4.17. The result of Example 4.16 improves that of Examples 6.2 in [29].
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