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Abstract
In this paper, we introduce several types of S-γ-φ-ϕ-contractive mappings which are generalizations of α-ψ-contractive

mappings [B. Samet, C. Vetro, P. Vetro, Nonlinear Anal., 75 (2012), 2154–2165] in the structure of S-metric spaces. Furthermore, we
prove existence and uniqueness of fixed points and common fixed points of such contractive mappings. Our results generalize,
extend and improve the existing results in the literature. We also state some illustrative examples to support our results. c©2017
All rights reserved.

Keywords: S-metric space, S-γ-φ-ϕ-contractive mappings, fixed point.
2010 MSC: 47H10, 54H25, 54E50.

1. Introduction

In the last several decades, fixed point theory has attracted many researchers since 1922 with the
famous Banach fixed point theorem. There exists a vast literature on this topic and this is a very active field
of research at present. It is well-known that the contractive-type conditions are very indispensable in the
study of fixed point theory. The first important result on fixed point for contractive-type mappings was the
celebrated Banach Contractive Principle (BCP, for short) in [2, 6]. Due to application potential of the theory,
many authors have directed their attentions to this field and have generalized the Banach contraction
principle in various ways (see, e.g., [4, 9, 11, 13, 15, 21]). Very recently, a new, simple and unified approach
in the theory of contractive mappings was given by Samet et al. [23] by using the concepts of α-ψ-
contractive mappings and α-admissible mappings in metric spaces. The results obtained by Samet et al.
[23] showed the Banach fixed point theorem and some other theorems in the literature became direct
consequences of the results. Further, Karapinar and Samet [12] generalized the α-ψ-contractive type
mappings and obtained various fixed point theorems for this generalized class of contractive mappings.
On the other hand, several authors studied fixed point theory in generalized metric spaces. For details,
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we refer readers to [5, 8, 10, 14, 26]. Not long ago, Sedghi et al. [25] introduced the concept of an S-metric
space and proved some properties of an S-metric space and some fixed point theorems for a self-map
on an S-metric space. After that, Sedghi and Dung [24] proved a generalized fixed point theorem in the
context of S-metric spaces which is an extension of Theorem 3.1 of [25] and obtained many analogues of
fixed point theorem in an S-metric space. Moreover, many authors proved some coupled common fixed
point theorems and coupled coincidence point results for certain contractive contractions in a partially
ordered S-metric spaces. For details, see [7, 28].

Motivated by discussions mentioned above, the purpose of this paper is first to introduce some types
of S-γ-φ-ϕ-contractive mappings which are generalizations of α-ψ-contractive mappings in the structure
of S-metric spaces and to prove some sufficient conditions for the existence and uniqueness of fixed points
and common fixed points for some S-γ-φ-ϕ-contractions in S-metric spaces. Our main results generalize,
extend and improve the existing results on this topic in the literature. Some illustrative examples are
provided to demonstrate the main results and to show the genuineness of our results.

2. Preliminaries

We briefly recall some basic definitions and important results which sever a background to the follow-
ing discussion.

Throughout this paper, N denotes the set of nonnegative integers, and R+ denotes the set of nonneg-
ative real numbers.

Definition 2.1. [23] Let Ψ be the family of functions ψ : [0,∞) 7→ [0,∞) satisfying the following conditions:

1 ψ is nondecreasing;

2 Σ∞n=1ψ
n(t) <∞ ∀t > 0, where ψn is the nth iterate of ψ.

These functions are known in the literature as (c)-comparison functions.

Lemma 2.2 ([3]). If ψ ∈ Ψ, then the following hold:

(1) (ψn(t))n∈N converges to 0 as n→∞ for all t ∈ R+;

(2) ψ(t) < t for any t ∈ (0,∞);

(3) ψ is continuous at 0;

(4) the series
∑∞

k=1ψ
k(t) converges for all t ∈ R+.

Let Φ be a family of functions ϕ : [0,∞) 7→ [0,∞) satisfying the following conditions:

(1) ϕ is lower semi-continuous;

(2) ϕ(t) = 0 if and only if t = 0.

The following definitions were introduced by Samet et al. [23].

Definition 2.3. Let (X,d) be a metric space and let T : X 7→ X be a given mapping. We say that T is an
α-ψ-contractive mapping if there exist two functions α : X×X 7→ [0,∞) and ψ ∈ Ψ such that

α(x,y)d(Tx, Ty) 6 ψ(d(x,y)), ∀x,y ∈ X.

Obviously, any contractive mapping, that is, a mapping satisfying Banach contraction principle is an
α-ψ-contractive mapping with α(x,y) = 1, ∀x,y ∈ X and ψ(t) = kt, ∀t > 0 and some k ∈ [0, 1).

Definition 2.4. Let T : X 7→ X and α : X×X 7→ [0,∞). We say that T is α-admissible if for all x,y ∈ X, we
have

α(x,y) > 1⇒ α(Tx, Ty) > 1.

The main results in [23] are the following fixed point theorems.



M. Zhou, X. L. Liu, S. Radenović, J. Nonlinear Sci. Appl., 10 (2017), 1613–1639 1615

Theorem 2.5. Let (X,d) be a complete metric space and T : X 7→ X be an α-ψ-contractive mapping. Suppose that

(1) T is α-admissible;

(2) there exists x0 ∈ X such that α(x0, Tx0) > 1;

(3) T is continuous.

Then there exists x ∈ X such that Tx = x.

Theorem 2.6. Let (X,d) be a complete metric space and T : X 7→ X be an α-ψ-contractive mapping. Suppose that

(1) T is α-admissible;

(2) there exists x0 ∈ X such that α(x0, Tx0) > 1;

(3) if {xn} is a sequence in X such that α(xn, xn+1) > 1, ∀n ∈ N and xn → x ∈ X as n → ∞, then
α(xn, x) > 1, ∀n ∈N.

Then there exists x∗ ∈ X such that Tx∗ = x∗.

Samet et al. [23] added the following assumption to Theorems 2.5 and 2.6 to guarantee the uniqueness
of the fixed point.

(C) For all x,y ∈ X, there exists z ∈ X such that α(x, z) > 1 and α(y, z) > 1.

Recently, Karapinar and Samet [12] presented the following notion of generalized α-ψ-contractive
type mappings. Further, Karapinar and Samet [12] established fixed point theorems for this new class of
contractive mappings.

Definition 2.7. Let (X,d) be a metric space and let T : X 7→ X be a given mapping. We say that T is a
generalized α-ψ-contractive mapping if there exist two functions α : X×X 7→ [0,∞) and ψ ∈ Ψ such that
for all x,y ∈ X, we have

α(x,y)d(Tx, Ty) 6 ψ(M(x,y)),

where M(x,y) = max{d(x,y), d(x,Tx)+d(y,Ty)
2 , d(x,Ty)+d(y,Tx)

2 }.

Sedghi et al. [25] introduced the notion of S-metric spaces as follows.

Definition 2.8. Let X be a nonempty set. An S-metric on X is a function S : X3 7→ [0,∞) that satisfies the
following conditions for all x,y, z,a ∈ X:

(S1) S(x,y, z) = 0 if and only if x = y = z = 0;

(S2) S(x,y, z) 6 S(x, x,a) + S(y,y,a) + S(z, z,a).

The pair (X,S) is called an S-metric space.

Immediate examples of such S-metric spaces are:

(1) Let R be a real line, then S(x,y, z) = |x− z|+ |y− z| is an S-metric on R. This S-metric is called the
usual S-metric on R.

(2) Let X = R+ and ‖ · ‖ be a norm on X, then S(x,y, z) = ‖2x+ y− 3z‖+ ‖x− z‖ is an S-metric on X for
all x,y, z ∈ X.

(3) Let X be a nonempty set, d is ordinary metric on X, then Sd(x,y, z) = d(x, z) + d(y, z) is an S-metric
on X for all x,y, z ∈ X.
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Lemma 2.9 ([25]). Let (X,S) be an S-metric space. Then

S(x, x, z) 6 2S(x, x,y) + S(y,y, z) and S(x, x, z) 6 2S(x, x,y) + S(z, z,y)

for all x,y, z ∈ X.

Lemma 2.10 ([25]). Let (X,S) be an S-metric space. Then S(x, x,y) = S(y,y, x) for all x,y ∈ X.

Definition 2.11. Let (X,S) be an S-metric space.

(1) A sequence {xn} ⊂ X is said to be convergent to x ∈ X if S(xn, xn, x)→ 0 as n→∞. That is, for each
ε > 0, there exists n0 ∈N such that for all n > n0, we have S(xn, xn, x) < ε.

(2) A sequence {xn} ⊂ X is said to be a Cauchy sequence if S(xn, xn, xm)→ 0 as n,m→∞. That is, for
each ε > 0, there exists n0 ∈N such that for all n,m > n0, we have S(xn, xn, xm) < ε.

(3) The S-metric space (X,S) is said to be complete if every Cauchy sequence is a convergent sequence.

(4) A mapping T : X 7→ X is said to be S-continuous if {Txn} is S-convergent to Tx, where {xn} is an
S-convergent sequence converging to x.

Lemma 2.12 ([25]). Let (X,S) be an S-metric space. If there exist sequences {xn} and {yn} such that xn → x and
yn → y as n→∞, then S(xn, xn,yn)→ S(x, x,y).

Lemma 2.13 ([25]). Let (X,S) be an S-metric space. If the sequences {xn} in X such that xn → x, then x is unique.

3. Main results

We start the main results by introducing the new concept of S-γ-ψ-ϕ-contractive mappings as follows.

Definition 3.1. Let (X,S) be an S-metric space and let T : X 7→ X be a given mapping. We say that T is an
S-γ-ψ-ϕ-contractive mapping of type A if there exist three functions γ : X3 7→ [0,∞),ψ ∈ Ψ, and ϕ ∈ Φ
such that for all x,y, z ∈ X, we have that

γ(x,y, z)S(Tx, Ty, Tz) 6 ψ(S(x,y, z)) −ϕ(S(x,y, z)).

Definition 3.2. Let (X,S) be an S-metric space and let T : X 7→ X be a given mapping. We say that T is an
S-γ-ψ-ϕ-contractive mapping of type B if there exist three functions γ : X3 7→ [0,∞),ψ ∈ Ψ, and ϕ ∈ Φ
such that for all x,y ∈ X, we have that

γ(x,y,y)S(Tx, Ty, Ty) 6 ψ(S(x,y,y)) −ϕ(S(x,y,y)). (3.1)

Definition 3.3. Let (X,S) be an S-metric space and let T : X 7→ X be a given mapping. We say that T is an
S-γ-ψ-ϕ-contractive mapping of type C if there exist three functions γ : X3 7→ [0,∞),ψ ∈ Ψ, and ϕ ∈ Φ
such that for all x,y ∈ X, we have that

γ(x,y, Tx)S(Tx, Ty, T 2x) 6 ψ(S(x,y, Tx)) −ϕ(S(x,y, Tx)). (3.2)

Definition 3.4. Let T : X 7→ X and γ : X3 7→ [0,∞). We say that T is γ-admissible if for all x,y, z ∈ X, we
have that

γ(x,y, z) > 1⇒ γ(Tx, Ty, Tz) > 1.

Definition 3.5. Let T , f : X 7→ X and γ : X3 7→ [0,∞). We say that T is f-γ-admissible if for all x,y, z ∈ X,
we have that

γ(fx, fy, fz) > 1⇒ γ(Tx, Ty, Tz) > 1.
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If f is the identity mapping, then T is γ-admissible.

Example 3.6. Let X = [1,∞) and T : X 7→ X. Define Tx = x2 and γ(x,y, z)=

{
2, if x > y > z,
0, otherwise.

Then T

is γ-admissible.

The following example shows that a mapping T which is f-γ-admissible may not be γ-admissible.

Example 3.7. Let X = [0,∞). Define the mapping γ(x,y, z) : X3 7→ [0,∞) by

γ(x,y, z) =

{
e, if x > y > z,
1
2 , otherwise.

Also define the mappings T , f : X 7→ X by Tx = 1
x2 and fx = e−x for all x ∈ X.

Suppose that γ(x,y, z) > 1. This implies from the definition of γ that x > y > z which further implies
that 1

x2 <
1
y2 <

1
z2 . Thus γ(Tx, Ty, Tz) � 1, that is T is not γ-admissible.

Now, we prove that T is f-γ-admissible. Let us assume that γ(fx, fy, fz) > 1. So

γ(fx, fy, fz) > 1⇒ fx > fy > fz⇒ e−x > e−y > e−z ⇒ 1
x2 >

1
y2 >

1
z2 ⇒ γ(Tx, Ty, Tz) > 1.

Therefore, T is f-γ-admissible.

Definition 3.8. We say that:

1. a sequence {xn} in X is (T ,γ)-orbital if xn = Tnx0 and γ(xn, xn+1, xn+1) > 1 for all n ∈N.

2. T is γ-orbital continuous if, for every (T ,γ)-orbital sequence {xn} in X such that xn → x as n → ∞,
there exists a subsequence {xnk

} of {xn} such that Txnk
→ Tx as k→∞.

3. X is (T ,γ)-regular if, for every (T ,γ)-orbital sequence {xn} in X such that xn → x as n → ∞, there
exists a subsequence {xxk

} of {xn} such that γ(xnk
, x, x) > 1 for all k ∈N.

4. X is γ-regular if, for every sequence {xn} in X such that xn → x as n→∞ and γ(xn, xn+1, xn+1) > 1
for all n ∈N, there exists a subsequence {xxk

} of {xn} such that γ(xnk
, x, x) > 1 for all k ∈N.

Remark 3.9.

(1) If T is continuous, then T is γ-orbital continuous (for any γ).

(2) If X is γ-regular, then X is also (T ,γ)-regular (for any γ).

Definition 3.10. Let γ : X3 7→ [0,∞). We say that γ is transitive if{
γ(x,y,y) > 1,
γ(y, z, z) > 1,

implies γ(x, z, z) > 1, for all x,y, z ∈ X.

Lemma 3.11. Let T : X 7→ X and γ : X3 7→ [0,∞) be γ-admissible and transitive, respectively. Assume that there
exists x0 ∈ X such that γ(x0, Tx0, Tx0) > 1. Define a sequence {xn} by xn = Tnx0. Then γ(xm, xn, xn) > 1, for
all m,n ∈N with m < n.

Proof. Since there exists x0 ∈ X such that γ(x0, Tx0, Tx0) > 1, then from the definition of γ-admissibility,
we deduce that γ(x1, x2, x2) = γ(Tx0, Tx1, Tx1) > 1.

By continuing this process, we get γ(xn, xn+1, xn+1) > 1, ∀n ∈ {0}∪N.
Suppose that m < n. Since {

γ(xm, xm+1, xm+1) > 1,
γ(xm+1, xm+2, xm+2) > 1,

by the definition of transitivity of γ, we deduce that γ(xm, xm+2, xm+2) > 1. By continuing this process,
we get γ(xm, xn, xn) > 1, ∀m,n ∈N with m < n.
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Theorem 3.12. Let (X,S) be a complete S-metric space. Suppose that T : X 7→ X is an S-γ-ψ-ϕ-contractive
mapping of type B and satisfies the following assumptions:

(A1) T is γ-admissible;

(A2) there exists x0 ∈ X such that γ(x0, Tx0, Tx0) > 1;

(A3) T is γ-orbital continuous.

Then, there exists x∗ ∈ X such that Tx∗ = x∗.

Proof. Let x0 ∈ X such that γ(x0, Tx0, Tx0) > 1. Define the sequence {xn} in X by xn+1 = Txn for all n > 0.
If xn0 = xn0+1 for some n0, then x∗ = xn0 is a fixed point of T . So we suppose that xn 6= xn+1 for all
n ∈ {0}∪N. Since T is γ-admissible, we have that

γ(x0, x1, x1) = γ(x0, Tx0, Tx0) > 1⇒ γ(Tx0, Tx1, Tx1) = γ(x1, x2, x2) > 1.

By induction, we get that

γ(xn, xn+1, xn+1) > 1, ∀n = 0, 1, 2, · · · . (3.3)

From (3.2) and (3.3), it follows that for all n > 1, we have that

S(xn, xn+1, xn+1) = S(Txn−1, Txn, Txn) 6 γ(xn−1, xn, xn)S(Txn−1, Txn, Txn)
6 ψ(S(xn−1, xn, xn)) −ϕ(S(xn−1, xn, xn))
6 ψ(S(xn−1, xn, xn)).

Since ψ is nondecreasing, by induction, we have that

S(xn, xn+1, xn+1) < ψ
n(S(x0, x1, x1)), ∀n > 1. (3.4)

Using (S2) and (3.4), we have

S(xn, xm, xm) 6 2
m−2∑
k=n

S(xk, xk+1, xk+1) + S(xm−1, xm, xm)

6 2
m−2∑
k=n

ψk(S(x0, x1, x1)) +ψ
m−1(S(x0, x1, x1)).

Since ψ ∈ Ψ and S(x0, x1, x1) > 0, by Lemma 2.2, we get that

lim
n,m→∞S(xn, xm, xm) = 0.

This implies that {xn} is a Cauchy sequence in the S-metric space (X,S).
Since T is γ-orbital continuous, then there exists a subsequence {xnk

} of {xn} such that Txnk
converges

to Tx∗ as k→∞. By the uniqueness of this limit, we get x∗ = Tx∗, that is, x∗ is a fixed point of T .

The next theorem does not require γ-orbital continuity or continuity of T .

Theorem 3.13. Let (X,S) be a complete S-metric space. Suppose that T : X 7→ X is an S-γ-ψ-ϕ-contractive
mapping of type B and satisfies the following assumptions:

(A1) T is γ-admissible;

(A2) there exists x0 ∈ X such that γ(x0, Tx0, Tx0) > 1;
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(A3) (X,S) is (T ,γ)-regular.

Then, there exists x∗ ∈ X such that Tx∗ = x∗.

Proof. From the proof of Theorem 3.12, it follows that the sequence {xn} defined by xn+1 = Txn, for all
n > 0 is a Cauchy sequence in the complete S-metric space (X,S), that is convergent to x∗ ∈ X.

Since {xn} is a (T ,γ)-orbital sequence, by (A3), there exists a subsequence {xnk
} of {xn} such that

γ(xnk
, x∗, x∗) > 1, ∀k ∈N. (3.5)

Using (3.1) and (3.5), we have that

S(xnk+1, Tx∗, Tx∗) = S(Txnk
, Tx∗, Tx∗)

6 γ(xnk
, x∗, x∗)S(Txnk

, Tx∗, Tx∗)
6 ψ(S(xnk

, x∗, x∗)) −ϕ(S(xnk
, x∗, x∗))

6 ψ(S(xnk
, x∗, x∗)).

Letting k→∞, since ψ is continuous at t = 0, it follows that S(x∗, Tx∗, Tx∗) = 0, then x∗ = Tx∗.

With the following examples, we show that the hypotheses in Theorems 3.12-3.13 do not guarantee
uniqueness of fixed point.

Example 3.14. Let X = [0,∞) be an S-metric space with the S-metric defined by S(x,y, z) = |x− z|+ |y−
z|,∀x,y, z ∈ X. For all k > 1, consider the self-mapping T : X 7→ X given by

Tx =

{
2kx− 8k−1

4 , x > 1,
x
4 , 0 6 x 6 1.

Also, define γ : X3 7→ [0,∞) as

γ(x,y, z) =

{
1, x,y, z ∈ [0, 1],
0, otherwise.

Let ψ(t) = t
2 , ∀t > 0 and ϕ(t) = t

4k ,∀t > 0. Then we conclude that T is an S-γ-ψ-ϕ-contractive mapping
of type B. In fact, for all x,y, z ∈ X, we have that

γ(x,y,y)S(Tx, Ty, Ty) 6 ψ(S(x,y,y)) −ϕ(S(x,y,y)).

On the other hand, there exists x0 ∈ X such that γ(x0, Tx0, Tx0) > 1. Indeed, for x0 = 1, we have

γ(1, T1, T1) = γ(1,
1
4

,
1
4
) = 1.

Notice that T is continuous. We only need to check that T is γ-admissible. For this purpose, let x,y, z ∈ X
such that γ(x,y, z) > 1, which implies that x,y, z ∈ [0, 1]. Due to the definitions of γ and T , we have that

Tx =
x

4
∈ [0, 1], Ty =

y

4
∈ [0, 1], Tz =

z

4
∈ [0, 1].

Hence, γ(Tx, Ty, Ty) > 1. As a result, all the assumptions of Theorem 3.12 are satisfied. Note that
Theorem 3.12 guarantees the existence of a fixed point but not the uniqueness. In fact, 0 and 8k−1

8k−4 are two
fixed points of T .

In the following example, T is not continuous.
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Example 3.15. Let (X,S) be defined as in Example 3.14. Let T : X 7→ X be a map given by

Tx =

{
ex−1, x > 1,
3−x

4 , 0 6 x 6 1.

Also, define γ : X3 7→ [0,∞) as

γ(x,y, z) =

{
1, x,y, z ∈ [0, 1],
0, otherwise.

Let ψ(t) = t
2 ,∀t > 0 and ϕ(t) = t

6 , ∀t > 0. Then we conclude that T is an S-γ-ψ-ϕ-contractive mapping of
type B. In fact, for all x,y, z ∈ X, we have that

γ(x,y,y)S(Tx, Ty, Ty) 6 ψ(S(x,y,y)) −ϕ(S(x,y,y)).

On the other hand, there exists x0 ∈ X such that γ(x0, Tx0, Tx0) > 1. Indeed, for x0 = 1, we have that

γ(1, T1, T1) = γ(1,
1
2

,
1
2
) = 1.

Let {xn} be a (T ,γ)-orbital sequence such that xn → x as n→∞. By the definition of γ, we have xn ∈ [0, 1).
Then, there exists a subsequence {xnk

} of {xn} such that γ(xnk
, x, x) > 1 for all k ∈N.

To show that T satisfies all hypotheses of Theorem 3.13, it suffices to observe that T is γ-admissible.
For this purpose, let x,y, z ∈ X such that γ(x,y, z) > 1, which implies that x,y, z ∈ [0, 1). Due to the
definitions of γ and T , we have that

Tx =
3 − x

4
∈ [0, 1), Ty =

3 − y

4
∈ [0, 1), Tz =

3 − z

4
∈ [0, 1).

Hence, γ(Tx, Ty, Tz) > 1. As a result, all the assumptions of Theorem 3.13 are satisfied. In this example,
T is not continuous, and 1 and 3

5 are two fixed points of T .

Theorem 3.16. Let (X,S) be a complete S-metric space. Suppose that T : X 7→ X is an S-γ-ψ-ϕ-contractive
mapping of type C and satisfies the following assumptions:

(A1) T is γ-admissible;

(A2) there exists x0 ∈ X such that γ(x0, Tx0, Tx0) > 1;

(A3) if {xn} is a sequence in X such that γ(xn, xn+1, xn+1)>1 for all n ∈N and xn → x∗, then γ(xn, x∗, xn+1)>
1 for all n ∈N.

Then, there exists x∗ ∈ X such that Tx∗ = x∗.

Proof. Following the proof of Theorem 3.12, we only have to prove that x∗ is a fixed point of T .
Since the sequence {xn} defined by xn+1 = Txn for all n > 0 converges to x∗ ∈ X. From (3.3) and (A3),

we have that

γ(xn, x∗, xn+1) > 1, ∀n > 0. (3.6)

With (3.2) and (3.6), we have

S(xn+1, Tx∗, xn+2) = S(Txn, Tx∗, T 2xn)

6 γ(xn, x∗, xn+1)S(Txn, Tx∗, T 2xn)

6 ψ(S(xn, x∗, Txn)) −ϕ(S(xn, x∗, Txn))
6 ψ(S(xn, x∗, xn+1)).

Letting n→∞, since ψ is continuous at t = 0, it follows that S(x∗, Tx∗, x∗) = 0, that is x∗ = Tx∗.



M. Zhou, X. L. Liu, S. Radenović, J. Nonlinear Sci. Appl., 10 (2017), 1613–1639 1621

The following theorems can be derived easily from Theorems 3.12 and 3.16.

Theorem 3.17. Let (X,S) be a complete S-metric space. Suppose that T : X 7→ X is an S-γ-ψ-ϕ-contractive
mapping of type A and satisfies the following assumptions:

(A1) T is γ-admissible;

(A2) there exists x0 ∈ X such that γ(x0, Tx0, Tx0) > 1;

(A3) T is γ-orbital continuous.

Then, there exists x∗ ∈ X such that Tx∗ = x∗.

Theorem 3.18. Let (X,S) be a complete S-metric space. Suppose that T : X 7→ X is an S-γ-ψ-ϕ-contractive
mapping of type B and satisfies the following assumptions:

(A1) T is γ-admissible;

(A2) there exists x0 ∈ X such that γ(x0, Tx0, Tx0) > 1;

(A3) if {xn} is a sequence in X such that γ(xn, xn+1, xn+1)>1 for all n ∈N and xn → x∗, then γ(xn, x∗, xn+1)>
1 for all n ∈N.

Then, there exists x∗ ∈ X such that Tx∗ = x∗.

Theorem 3.19. Adding the following condition to the hypotheses of Theorem 3.16 (resp. Theorems 3.12 and 3.13),
we obtain the uniqueness of a fixed point T .

(A4) For all x,y ∈ X, there exists z ∈ X such that γ(x, z, z) > 1 and γ(y, z, z) > 1.

Proof. Let u, v ∈ X be two fixed points of T . By (A4), there exists z ∈ X such that γ(u, z, z) > 1 and
γ(v, z, z) > 1.

Since T is γ-admissible, we get by induction that

γ(u,u, Tnz) > 1 and γ(v, v, Tnz) > 1, ∀n ∈N. (3.7)

From (3.7) and (3.2), we have that

S(u, Tnz,u) = S(Tu, T(Tn−1z), T 2u)

6 γ(u, Tn−1z, Tu)S(Tu, T(Tn−1z), T 2u)

6 ψ(S(u, Tn−1z, Tu)) −ϕ(S(u, Tn−1z, Tu))

6 ψ(S(u, Tn−1z, Tu)).

Letting n→∞, and since ψ ∈ Ψ, we have that

S(u, Tnz,u)→ 0.

This implies that {Tnz} is convergent to u. Similarly, we can get {Tnz} is convergent to v. By Lemma 2.13,
we get u = v, that is, fixed point of T is unique.

Definition 3.20. Let (X,S) be an S-metric space and let T : X 7→ X be a given mapping. We say that T is an
S-γ-ψ-ϕ-contractive mapping of type D if there exist three functions γ : X3 7→ [0,∞),ψ ∈ Ψ, and ϕ ∈ Φ
such that for all x,y ∈ X, we have that

γ(x,y,y)S(Tx, Ty, Ty) 6 ψ(M(x,y)) −ϕ(M(x,y)), (3.8)

where M(x,y) = max{S(x,y,y), 2S(x,Tx,Tx)+S(y,Ty,Ty)
3 , 2S(y,Tx,Tx)+S(x,Ty,Ty)

3 }.
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Theorem 3.21. Let (X,S) be a complete S-metric space. Suppose that T : X 7→ X is an S-γ-ψ-ϕ-contractive
mapping of type D and satisfies the following assumptions:

(A1) T is γ-admissible;

(A2) there exists x0 ∈ X such that γ(x0, Tx0, Tx0) > 1;

(A3) (X,S) is (T ,γ)-regular.

Then, there exists x∗ ∈ X such that Tx∗ = x∗.

Proof. In view of assumption (A2), let x0 ∈ X be such that γ(x0, Tx0, Tx0) > 1. Define the sequence {xn} in
X as follows

xn+1 = Txn, ∀n > 0.

Since T is γ-admissible, we have that

γ(x0, x1, x1) = γ(x0, Tx0, Tx0) > 1⇒ γ(Tx0, Tx1, Tx1) > 1.

Using mathematical induction, we get that

γ(xn, xn+1, xn+1) > 1, ∀n = 0, 1, 2, . . . . (3.9)

If xn0 = xn0+1 for some n0, then x∗ = xn0 is a fixed point T , and so we have finished the proof. For this,
we assume that S(xn, xn+1, xn+1) > 0, for all n ∈N. Now, from (3.8) and (3.9), we have that

S(Txn, Txn+1, Txn+1) 6 γ(xn, xn+1, xn+1)S(Txn, Txn+1, Txn+1)

6 ψ(M(xn, xn+1)) −ϕ(M(xn, xn+1))

6 ψ(M(xn, xn+1))

for all n ∈N. On the other hand, we have that

M(xn, xn+1) = max{S(xn, xn+1, xn+1),
2S(xn, Txn, Txn) + S(xn+1, Txn+1, Txn+1)

3

,
2S(xn+1, Txn, Txn) + S(xn, Txn+1, Txn+1)

3
}

= max{S(xn, xn+1, xn+1),
2S(xn, xn+1, xn+1) + S(xn+1, xn+2, xn+2)

3

,
2S(xn+1, xn+1, xn+1) + S(xn, xn+2, xn+2)

3
}

6 max{S(xn, xn+1, xn+1),S(xn+1, xn+2, xn+2)}.

Hence, we have that

S(Txn, Txn+1, Txn+1) 6 ψ(max{S(xn, xn+1, xn+1),S(xn+1, xn+2, xn+2)}), ∀n ∈N. (3.10)

If for some n > 1 we have S(xn, xn+1, xn+1) 6 S(xn+1, xn+2, xn+2), from (3.10), we have that

S(xn+1, xn+2, xn+2) 6 ψ(S(xn+1, xn+2, xn+2)) < S(xn+1, xn+2, xn+2),

which is a contradiction. Thus, for all n > 1, we conclude that

max{S(xn, xn+1, xn+1),S(xn+1, xn+2, xn+2)} = S(xn, xn+1, xn+1).
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So, we have that

S(Txn, Txn+1, Txn+1) = S(xn+1, xn+2, xn+2) 6 ψ(S(xn, xn+1, xn+1)).

Continuing this process inductively, we obtain that

S(xn, xn+1, xn+1) 6 ψ
n(S(x0, x1, x1)), ∀n > 1. (3.11)

From (3.11) and Lemma 2.9, for all k > 1, we have that

S(xn, xn+k, xn+k) 6 2
n+k−2∑
i=n

S(xi, xi+1, xi+1) + S(xn+k−1, xn+k−1, xn+k)

6 2
n+k−2∑
i=n

ψi(S(x0, x1, x1)) +ψ
n+k−1(S(x0, x1, x1)).

Since ψ ∈ Ψ and S(x0, x1, x1) > 0, by Lemma 2.2, we have that

lim
n,k→∞S(xn, xn+k, xn+k) = 0.

This implies that {xn} is a Cauchy sequence. Since (X,S) is complete, then there exists x∗ ∈ X such that
xn → x∗, as n→∞.

Now, we will show that x∗ is a fixed point of T . We assume on contrary that S(x∗, Tx∗, Tx∗) > 0. By
(A3), we have a subsequence {xnk

} of {xn} such that γ(xnk
, x∗, x∗) > 1, for all k ∈N. Then by Lemma 2.9,

Lemma 2.10, and (3.8), we have that

S(x∗, Tx∗, Tx∗) 6 2S(x∗, Txnk
, Txnk

) + S(Txnk
, Tx∗, Tx∗)

6 2S(x∗, Txnk
, Txn(k)

) + γ(xnk
, x∗, x∗)S(Txnk

, Tx∗, Tx∗)

6 2S(x∗, Txnk
, Txn(k)

) +ψ(M(xnk
, x∗)) −ϕ(M(xnk

, x∗))

6 2S(x∗, Txnk
, Txn(k)

) +ψ(M(xnk
, x∗)).

On the other hand, we have

M(xnk
, x∗) = max{S(xnk

, x∗, x∗),
2S(xnk

, Txnk
, Txnk

) + S(x∗, Tx∗, Tx∗)
3

,
2S(x∗, Txnk

, Txnk
) + S(xnk

, Tx∗, Tx∗)
3

}

= max{S(xnk
, x∗, x∗),

2S(xnk
, xnk+1, xnk+1) + S(x

∗, Tx∗, Tx∗)
3

,
2S(x∗, xnk+1, xnk+1) + S(xnk

, Tx∗, Tx∗)
3

}.

From above inequality and equality, we get that

S(x∗, Tx∗, Tx∗) 6 2S(x∗, Txnk
, Txnk

) +ψ(M(xnk
, x∗))

= 2S(x∗, xnk+1, xnk+1) +ψ(max{S(xnk
, x∗, x∗),

2S(xnk
, xnk+1, xnk+1) + S(x

∗, Tx∗, Tx∗)
3

,
2S(x∗, xnk+1, xnk+1) + S(xnk

, Tx∗, Tx∗)
3

}).

Letting k→∞ in above inequality, it yields that

S(x∗, Tx∗, Tx∗) 6 ψ(
S(x∗, Tx∗, Tx∗)

3
) <

S(x∗, Tx∗, Tx∗)
3

,

which is a contradiction. Hence, we have that S(x∗, Tx∗, Tx∗) = 0, that is x∗ = Tx∗. This shows that x∗ is
a fixed point of T .
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Theorem 3.22. In addition to the hypotheses of Theorem 3.21, suppose that for all x,y ∈ X, there exists z ∈ X such
that γ(x, z, z) > 1 and γ(y, z, z) > 1. Then T has a unique fixed point.

Proof. Let u, v ∈ X be two fixed points of T . By hypotheses, then there exists z ∈ X such that

γ(u, z, z) > 1 and γ(v, z, z) > 1. (3.12)

Define the sequence {zn} in X by zn = Tnz for all n > 0 and z0 = z. Since T is γ-admissible, we have from
(3.12) that

γ(u, zn, zn) > 1 and γ(v, zn, zn) > 1, ∀n > 0. (3.13)

Applying (3.8) and (3.13), we obtain that for all n > 0,

S(u, zn+1, zn+1) = S(Tu, Tzn, Tzn) 6 γ(u, zn, zn)S(Tu, Tzn, Tzn)
6 ψ(M(u, zn)) −ϕ(M(u, zn))
6 ψ(M(u, zn)).

On the other hand, we have that for all n > 0

M(u, zn) = max{S(u, zn, zn),
2S(u, Tu, Tu) + S(zn, Tzn, Tzn)

3
,

2S(zn, Tu, Tu) + S(u, Tzn, Tzn)
3

}

6 max{S(u, zn, zn),S(u, zn+1, zn+1)}.

Using above two inequalities, owing to the monotone property of ψ, we obtain that

S(u, zn+1, zn+1) 6 ψ(max{S(u, zn, zn),S(u, zn+1, zn+1)}), ∀n > 0. (3.14)

If max{S(u, zn, zn),S(u, zn+1, zn+1)} = S(u, zn+1, zn+1), we have from (3.14) and Lemma 2.2 that

S(u, zn+1, zn+1) 6 ψ(S(u, zn+1, zn+1)) < S(u, zn+1, zn+1),

which is a contradiction. Hence, max{S(u, zn, zn),S(u, zn+1, zn+1)} = S(u, zn, zn) and S(u, zn+1, zn+1) 6
ψ(S(u, zn, zn)) for all n > 0. This implies that

S(u, zn+1, zn+1) 6 ψ
n(S(u, z, z)), ∀n > 0.

Letting n→∞ in above inequality, we can infer that

lim
n→∞S(u, zn, zn) = 0. (3.15)

Similarly, we also have that

lim
n→∞S(v, zn, zn) = 0. (3.16)

It follows from (3.15) and (3.16) that u = v.

In what follows, we present an illustrative example to show the validity of Theorem 3.21.

Example 3.23. Consider X = R and S(x,y, z) = |x− y|+ |x− z|. Then (X,S) is a complete S-metric space.
Let x0 = 1 and r = 2, then

BS[x0, r] = BS[1, 2] = {y ∈ X|S(x0,y,y) 6 2} = [0, 2].
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Now, let T : BS[1, 2] 7→ X, Tx = x
2 and define γ : X3 7→ [0,∞) as

γ(x,y, z) =

{
1, if x,y, z ∈ [0, 1],
0, otherwise.

Let ψ(t) = t,∀t > 0 and ϕ(t) = t
4 , ∀t > 0. In fact, for all x,y ∈ BS[1, 2],

S(Tx, Ty, Ty) = 2|Tx− Ty| = |x− y| =
1
2
(2|x− y|) =

1
2
S(x,y,y),

and

M(x,y) = max{S(x,y,y),
2S(x, Tx, Tx) + S(y, Ty, Ty)

3
,

2S(y, Tx, Tx) + S(x, Ty, Ty)
3

}.

so, we have that

γ(x,y,y)S(Tx, Ty, Ty) 6 ψ(M(x,y)) −ϕ(M(x,y)).

On the other hand, there exists x0 ∈ X such that γ(x0, Tx0, Tx0) > 1. Indeed, for x0 = 1, we have
γ(1, T1, T1) = γ(1, 1

2 , 1
2) = 1.

Let {xn} be a (T ,γ)-orbital sequence such that xn → x as n → ∞. By the definition of γ, we have that
xn ∈ [0, 1]. Then there exists a subsequence {xnk

} of {xn} such that γ(xnk
, x, x) > 1 for all k ∈N. Now, we

only need to show that T is γ-admissible. For this purpose, let x,y, z ∈ X such that γ(x,y, z) > 1 which
further implies that x,y, z ∈ [0, 1]. Due to the definition of T and γ, we have that

Tx =
x

2
∈ [0, 1], Ty =

y

2
∈ [0, 1], Tz =

z

2
∈ [0, 1].

Hence, γ(Tx, Ty, Tz) > 1.
As a result, all the hypotheses of Theorem 3.21 are satisfied. In fact, x∗ = 0 is a fixed point of T .

Definition 3.24. Let (X,S) be an S-metric space and let T : X 7→ X be a given mapping. We say that T is
an S-γ-ψ-ϕ-contractive mapping of type E if there exist three functions γ : X3 7→ [0,∞),ψ ∈ Ψ, and ϕ ∈ Φ
such that for all x,y ∈ X, we have that

ψ(γ(x,y,y)S(Tx, Ty, Ty)) 6 ψ(M1(x,y)) −ϕ(M1(x,y)), (3.17)

where M1(x,y) = max{S(x,y,y),S(x, Tx, Tx),S(y, Ty, Ty)}.

Theorem 3.25. Let (X,S) be a complete S-metric space. Suppose that T : X 7→ X is an S-γ-ψ-ϕ-contractive
mapping of type E and satisfies the following assumptions:

(A1) T is γ-admissible and transitive;

(A2) there exists x0 ∈ X such that γ(x0, Tx0, Tx0) > 1;

(A3) (X,S) is (T ,γ)-regular;

(A4) either γ(u, v, v) > 1 or γ(v,u,u) > 1, whenever u = Tu and v = Tv.

Then, T has a unique fixed point in X, that is, there exists a unique x∗ ∈ X such that x∗ = Tx∗.

Proof. In view of assumption (A2), let x0 ∈ X such that γ(x0, Tx0, Tx0) > 1. Define the sequence {xn} in X
as follows

xn+1 = Txn, ∀n > 0.



M. Zhou, X. L. Liu, S. Radenović, J. Nonlinear Sci. Appl., 10 (2017), 1613–1639 1626

Since T is γ-admissible, we have that

γ(x0, x1, x1) = γ(x0, Tx0, Tx0) > 1⇒ γ(Tx0, Tx1, Tx1) = γ(x1, x2, x2) > 1.

By induction, we get that

γ(Txn, Txn+1, Txn+1) > 1, ∀n = 0, 1, 2, · · · . (3.18)

If xn0 = xn0+1 for some n0, then x∗ = xn0 is a fixed point of T and so we have finished the proof. For this,
we assume that S(xn, xn+1, xn+1) > 0 for all n > 1.

Now, from (3.17) and (3.18), we have that

ψ(S(xn+1, xn+2, xn+2)) 6 ψ(γ(xn, xn+1, xn+1)S(Txn, Txn+1, Txn+1))

6 ψ(M1(xn, xn+1)) −ϕ(M1(xn, xn+1)), ∀n > 1.

On the other hand, we have

M1(xn, xn+1) = max{S(xn, xn+1, xn+1),S(xn, Txn, Txn),S(xn+1, Txn+1, Txn+1)}

= max{S(xn, xn+1, xn+1),S(xn+1, xn+2, xn+2)}.

Now, if M1(xn, xn+1) = S(xn+1, xn+2, xn+2), from above inequality, for all n ∈N, we deduce that

ψ(S(xn+1, xn+2, xn+2)) 6 ψ(S(xn+1, xn+2, xn+2)) −ϕ(S(xn+1, xn+2, xn+2)) < ψ(S(xn+1, xn+2, xn+2))

and S(xn+1, xn+2, xn+2) = 0 for all n ∈N, which is a contradiction. Thus,

M1(xn, xn+1) = S(xn, xn+1, xn+1) > 0

for all n ∈N, we get that

ψ(S(xn+1, xn+2, xn+2)) 6 ψ(S(xn, xn+1, xn+1)) −ϕ(S(xn, xn+1, xn+1)) < ψ(S(xn, xn+1, xn+1)).

Since ψ is nondecreasing, by induction, we have that

ψ(S(xn, xn+1, xn+1)) 6 ψ
n(S(x0, x1, x1)), ∀n > 0. (3.19)

Letting n→∞ in (3.19) and by (1), (3) of Lemma 2.2, we have

lim
n→∞ψ(S(xn, xn+1, xn+1)) 6 lim

n→∞ψn(S(x0, x1, x1)) = 0,

which implies that

lim
n→∞S(xn, xn+1, xn+1) = 0. (3.20)

Next, we will prove {xn} is a Cauchy sequence. Suppose to the contrary, that is, {xn} is not a Cauchy
sequence. Then there exists ε > 0 for which we can find two subsequences {xmk

} and {xnk
} of {xn} such

that nk is the smallest index for which nk > mk > k,

S(xmk
, xnk

, xnk
) > ε.

This means that

S(xmk
, xnk−1, xnk−1) < ε.

From (3.19), (3.20) and (S2), we obtain that

ε 6 S(xmk
, xnk

, xnk
) 6 2S(xmk

, xnk−1, xnk−1) + S(xnk−1, xnk
, xnk

) < 2ε+ S(xnk−1, xnk
, xnk

).
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Letting k→∞ in above inequality, we obtain that

ε 6 lim
k→∞S(xmk

, xnk
, xnk

) = ε+ < 2ε. (3.21)

From (3.17) and Lemma 3.11, with x = xmk
, y = xnk

, we get that

ψ(S(Txmk
, Txnk

, Txnk
)) 6 ψ(γ(xmk

, xnk
, xnk

)S(Txmk
, Txnk

, Txnk
))

6 ψ(M1(xmk
, xnk

)) −ϕ(M1(xmk
, xnk

))

< ψ(M1(xmk
, xnk

)),

where M1(xmk
, xnk

) = max{S(xmk
, xnk

, xnk
),S(xmk

, xmk+1, xmk+1),S(xnk
, xnk+1, xnk+1)}. Since ψ is non-

decreasing, we have that

S(xmk+1, xnk+1, xnk+1) < M1(xmk
, xnk

).

Letting k→∞ in above inequality, by (3.20) and (3.21), we get that

ε+ = lim
k→∞S(xmk+1, xnk+1, xnk+1) < lim

k→∞M1(xmk
, xnk

) = ε+,

which implies ε = 0, a contradiction with ε > 0.
Hence, {xn} is a Cauchy sequence. Since (X,S) is complete, there exists x∗ ∈ X such that xn → x∗.

Since X is (T ,γ)-regular, there exists a subsequence {xnk
} of {xn} such that γ(xnk

, x∗, x∗) > 1, for all k ∈N.
If x∗ 6= Tx∗, applying contractive mapping assumption (3.17) with x = xnk

, y = x∗, we obtain that

ψ(S(Txnk
, Tx∗, Tx∗)) 6 ψ(γ(xnk

, x∗, x∗)S(Txnk
, Tx∗, Tx∗)) 6 ψ(M1(xnk

, x∗)) −ϕ(M1(xnk
, x∗)),

where M1(xnk
, x∗) = max{S(xnk

, x∗, x∗),S(xnk
, xnk+1, xnk+1),S(x∗, Tx∗, Tx∗)}. Now, from

S(xnk
, x∗, x∗),S(xnk

, xnk+1, xnk+1)→ 0, as k→∞.

We deduce that lim
k→∞M1(xnk

, x∗) = S(x∗, Tx∗, Tx∗). On the other hand, we have that

S(x∗, Tx∗, Tx∗) 6 2S(x∗, xnk
, xnk

) + S(xnk
, Tx∗, Tx∗)

6 2S(x∗, xnk
, xnk

) + 2S(xnk
, Txnk

, Txnk
) + S(Txnk

, Tx∗, Tx∗),

which implies

S(x∗, Tx∗, Tx∗) 6 lim inf
k→∞ S(Txnk

, Tx∗, Tx∗).

Since ψ is nondecreasing, we get that

ψ(S(x∗, Tx∗, Tx∗)) 6 ψ(lim inf
k→∞ S(Txnk

, Tx∗, Tx∗)) 6 ψ(S(x∗, Tx∗, Tx∗)) −ϕ(S(x∗, Tx∗, Tx∗)),

which implies S(x∗, Tx∗, Tx∗) = 0, that is x∗ = Tx∗ and x∗ is a fixed point of T . The uniqueness of the
fixed point is a direct consequence of the assumptions of (A1) and (A4), so we omit the details.

Example 3.26. Let X = [0,∞) and S(x,y, z) = |x − y| + |x − z|,∀x,y, z ∈ X. Then (X,S) is a complete
S-metric space.

Define T : X 7→ X and γ : X3 7→ [0,∞) as follows:

Tx =

{
kx− (k− 1), k > 1, x > 1,
x
4 , x ∈ [0, 1].

and γ(x,y, z) =

{
1, if x,y, z ∈ [0, 1],
0, otherwise.
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Let ψ(t) = t,∀t > 0 and ϕ(t) = t
4 , ∀t > 0.

We first verify that the contractive condition of type E holds true, that is (3.17) is satisfied. If γ(x,y,y) =
0, it obviously follows that (3.17) holds true. If γ(x,y,y) 6= 0, it follows that x,y ∈ [0, 1] and γ(x,y,y) = 1.
Then, we have that S(Tx, Ty, Ty) = S(x4 , y

4 , y
4 ) = 1

2 |x − y|, ψ(S(Tx, Ty, Ty)) = 1
2 |x − y| and M1(x,y) =

max{2|x− y|, 3
2 |x|,

3
2 |y|}.

Indeed, if M1(x,y) = max{2|x− y|, 3
2 |x|,

3
2 |y|} = 2|x− y|, then 1

2 |x− y| 6 2|x− y|− 1
4 2|x− y| = 3

2 |x− y|.
If M1(x,y) = max{2|x− y|, 3

2 |x|,
3
2 |y|} =

3
2 |x|, then 1

2 |x− y| 6
3
2 |x|−

1
4

3
2 |x| =

9
8 |x|. If M1(x,y) = max{2|x−

y|, 3
2 |x|,

3
2 |y|} = 3

2 |y|, then 1
2 |x − y| 6

3
2 |y| −

1
4

3
2 |y| =

9
8 |y|. Hence, the contractive condition of type E is

satisfied. Next, we will show that T is γ-admissible. For this, let x,y, z ∈ X such that γ(x,y, z) > 1 which
further implies that x,y, z ∈ [0, 1]. Due to the definition of T and γ, we have that

Tx =
x

4
∈ [0, 1], Ty =

y

4
∈ [0, 1], Tz =

z

4
∈ [0, 1].

Then, γ(Tx, Ty, Tz) > 1. Set x0 = 1, then γ(1, T1, T1) = γ(1, 1
4 , 1

4) = 1. Hence, assumption (A1) is satisfied.
Let {xn} be a (T ,γ)-orbital sequence such that xn → x as n → ∞. By the definition of γ, we have

that xn ∈ [0, 1]. Then there exists a subsequence {xnk
} of {xn} such that γ(xnk

, x, x) > 1 for all k ∈ N.
Therefore, (A3) holds true. Hence, all hypotheses except (A4) of Theorem 3.25 are satisfied. In fact x∗ = 0
and x∗ = 1 are two fixed points of T .

Next, we prove some common fixed point results for two self-mappings satisfying certain S-γ-ψ-ϕ-
contractive condition.

Now, we first present the new notion of S-γ-ψ-ϕ-contractive pair mappings as follows:

Definition 3.27. Let (X,S) be an S-metric space and let f, T : X 7→ X be two given mappings. We say
that the pair (f, T) is an S-γ-ψ-ϕ-contractive pair of mappings of type D ′ if there exist three functions
γ : X3 7→ [0,∞),ψ ∈ Ψ, and ϕ ∈ Φ such that for all x,y ∈ X, we have that

γ(fx, fy, fy)S(Tx, Ty, Ty) 6 ψ(M2(x,y)) −ϕ(M2(x,y)), (3.22)

where M2(x,y) = max{S(fx, fy, fy), 2S(fx,Tx,Tx)+S(fy,Ty,Ty)
3 , 2S(fy,Tx,Tx)+S(fx,Ty,Ty)

3 }.

Theorem 3.28. Let (X,S) be a complete S-metric space and f, T : X 7→ X be such that T(X) ⊆ f(X). Assume that
the pair (f, T) is an S-γ-ψ-ϕ-contractive pair of mappings of type D ′ and satisfies the following assumptions:

(A1) T is f-γ-admissible;

(A2) there exists x0 ∈ X such that γ(fx0, Tx0, Tx0) > 1;

(A3) if {fxn} is a sequence in X such that γ(fxn, fxn+1, fxn+1) > 1, for all n ∈ {0}∪N and fxn → fx ∈ f(X) as
n→∞, then there exists a subsequence {fxnk

} of {fxn} such that γ(fxnk
, fx, fx) > 1 for all k ∈N.

Also suppose that f(X) is closed. Then, T and f have a coincidence point, that is, there exists x∗ ∈ X such that
Tx∗ = fx∗.

Proof. In view of assumption (A2), let x0 ∈ X be such that γ(fx0, Tx0, Tx0) > 1.
Since T(X) ⊆ f(X), we can choose a point x1 ∈ X such that Tx0 = fx1. Continuing this process having

chosen x1, x2, · · · , xn, we choose xn+1 ∈ X such that

fxn+1 = Txn, ∀n = 0, 1, 2, · · · . (3.23)

Since T is f-γ-admissible, we have that

γ(fx0, Tx0, Tx0) = γ(fx0, fx1, fx1) > 1⇒ γ(Tx0, Tx1, Tx1) = γ(fx1, fx2, fx2) > 1.
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Using mathematical induction, we get that

γ(fxn, fxn+1, fxn+1) > 1, ∀n = 0, 1, 2 · · · . (3.24)

If Txn0 = Txn0+1 for some n0, then by (3.23), Txn0 = fxn0 , that is T and f have a coincidence point at
x∗ = xn0 , and so we have finished the proof. For this, we assume that S(Txn, Txn+1, Txn+1) > 0, for all
n ∈N.

Now, from (3.22) and (3.24), we have that

S(Txn, Txn+1, Txn+1) 6 γ(fxn, fxn+1, fxn+1)S(Txn, Txn+1, Txn+1)

6 ψ(M2(xn, xn+1)) −ϕ(M2(xn, xn+1)), ∀n ∈N.

On the other hand, we have that

M2(xn, xn+1) = max{S(fxn, fxn+1, fxn+1),
2S(fxn, Txn, Txn) + S(fxn+1, Txn+1, Txn+1)

3

,
2S(fxn+1, Txn, Txn) + S(fxn, Txn+1, Txn+1)

3
}

= max{S(Txn−1, Txn, Txn),
2S(Txn−1, Txn, Txn) + S(Txn, Txn+1, Txn+1)

3

,
2S(Txn, Txn, Txn) + S(Txn−1, Txn+1, Txn+1)

3
}

6 max{S(Txn−1, Txn, Txn),S(Txn, Txn+1, Txn+1)}.

Hence, we have that

S(Txn, Txn+1, Txn+1) 6 ψ(max{S(Txn−1, Txn, Txn),S(Txn, Txn+1, Txn+1)}), ∀n ∈N. (3.25)

If for some n > 1, we have S(Txn−1, Txn, Txn) 6 S(Txn, Txn+1, Txn+1), from (3.25), we have that

S(Txn, Txn+1, Txn+1) 6 ψ(S(Txn, Txn+1, Txn+1)) < S(Txn, Txn+1, Txn+1),

which is a contradiction. Thus, for all n > 1, we conclude that

max{S(Txn−1, Txn, Txn),S(Txn, Txn+1, Txn+1)} = S(Txn−1, Txn, Txn).

So, we have that

S(Txn, Txn+1, Txn+1) 6 ψ(S(Txn−1, Txn, Txn)).

Continuing this process inductively, we obtain that

S(Txn, Txn+1, Txn+1) 6 ψ
n(S(Tx0, Tx1, Tx1)), ∀n > 1. (3.26)

From (3.26) and Lemma 2.9, for all k > 1, we have that

S(Txn, Txn+k, Txn+k) 6 2
n+k−2∑
i=n

S(Txi, Txi+1, Txi+1) + S(Txn+k−1, Txn+k−1, Txn+k)

6 2
n+k−2∑
i=n

ψi(S(Tx0, Tx1, Tx1)) +ψ
n+k−1(S(Tx0, Tx1, Tx1)).
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Since ψ ∈ Ψ and S(Tx0, Tx1, Tx1) > 0, by Lemma 2.2, we have that

lim
n,k→∞S(Txn, Txn+k, Txn+k) = 0.

This implies that {Txn} is a Cauchy sequence. Since (X,S) is complete, by (3.23) we have {Txn} = {fxn+1} ⊆
f(X) and f(X) is closed, then there exists x∗ ∈ X such that

lim
n→∞fxn+1 = fx∗. (3.27)

Now, we will show that x∗ is a coincidence point of T and f. We assume on contrary that S(fx∗, Tx∗, Tx∗) >
0.

By (A3) and (3.27), we have a subsequence {xnk
} of {xn} such that γ(fxnk

, fx∗, fx∗) > 1, for all k ∈ N.
Then by Lemma 2.9, Lemma 2.10, and (3.22), we have that

S(fx∗, Tx∗, Tx∗) 6 2S(fx∗, Txnk
, Txnk

) + S(Txnk
, Tx∗, Tx∗)

6 2S(fx∗, Txnk
, Txnk

) + γ(fxnk
, fx∗, fx∗)S(Txnk

, Tx∗, Tx∗)
6 2S(fx∗, Txnk

, Txnk
) +ψ(M2(xnk

, x∗)) −ϕ(M2(xnk
, x∗))

6 2S(fx∗, Txnk
, Txnk

) +ψ(M2(xnk
, x∗)).

On the other hand, we have

M2(xnk
, x∗) = max{S(fxnk

, fx∗, fx∗),
2S(fxnk

, Txnk
, Txnk

) + S(fx∗, Tx∗, Tx∗)
3

,
2S(fx∗, Txnk

, Txnk
) + S(fxnk

, Tx∗, Tx∗)
3

}.

From above inequality and equality, we get that

S(fx∗, Tx∗, Tx∗) 6 2S(fx∗, Txnk
, Txnk

) +ψ(M2(xnk
, x∗))

= 2S(fx∗, fxnk+1, fxnk+1) +ψ(max{S(fxnk
, fx∗, fx∗),

2S(fxnk
, Txnk

, Txnk
) + S(fx∗, Tx∗, Tx∗)

3

,
2S(fx∗, Txnk

, Txnk
) + S(fxnk

, Tx∗, Tx∗)
3

}).

Letting k→∞ in above inequality, it yields that

S(fx∗, Tx∗, Tx∗) 6 ψ(
S(fx∗, Tx∗, Tx∗)

3
) <

S(fx∗, Tx∗, Tx∗)
3

,

which is a contradiction. Hence, we have that S(fx∗, Tx∗, Tx∗) = 0, that is fx∗ = Tx∗. This shows that x∗

is a coincidence point of T and f.

The next theorem shows that under additional hypotheses we can obtain the existence and uniqueness
of a common fixed point.

Theorem 3.29. In addition to the hypotheses of Theorem 3.28, suppose that for all u, v ∈ C(f, T), where C(f, T)
denotes the set of coincidence points of T and f, there existsw ∈ X such that γ(fu, fw, fw) > 1 and γ(fv, fw, fw) >
1, and f and T commute at their coincidence points. Then T and f have a unique common fixed point.

Proof. Let u, v ∈ C(f, T). By hypotheses, then, there exists w ∈ X such that

γ(fu, fw, fw) > 1 and γ(fv, fw, fw) > 1. (3.28)

According to the fact T(X) ⊆ f(X), define the sequence {wn} in X by fwn+1 = Twn for all n > 0 and
w0 = w.
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Since T is f-γ-admissible, we have from (3.28) that

γ(fu, fwn, fwn) > 1 and γ(fv, fwn, fwn) > 1, ∀n > 0.

Applying (3.22) and (3.28), we obtain that for all n > 0,

S(fu, fwn+1, fwn+1) = S(Tu, Twn, Twn)

6 γ(fu, fwn, fwn)S(Tu, Twn, Twn)

6 ψ(M2(u,wn)) −ϕ(M2(u,wn))

6 ψ(M2(u,wn)).

On the other hand, we have that for all n > 0,

M2(u,wn) = max{S(fu, fwn, fwn),
2S(fu, Tu, Tu) + S(fwn, Twn, Twn)

3

,
2S(fwn, Tu, Tu) + S(fu, Twn, Twn)

3
}

6 max{S(fu, fwn, fwn),S(fu, Twn, Twn)}

= max{S(fu, fwn, fwn),S(fu, fwn+1, fwn+1)}.

Using above two inequalities, owing to the monotone property of ψ, we obtain that

S(fu, fwn+1, fwn+1) 6 ψ(max{S(fu, fwn, fwn),S(fu, fwn+1, fwn+1)}), ∀n > 0. (3.29)

If max{S(fu, fwn, fwn),S(fu, fwn+1, fwn+1)} = S(fu, fwn+1, fwn+1), we have from (3.29) and Lemma 2.2
that

S(fu, fwn+1, fwn+1) 6 ψ(S(fu, fwn+1, fwn+1)) < S(fu, fwn+1, fwn+1),

which is a contradiction. Hence,

max{S(fu, fwn, fwn),S(fu, fwn+1, fwn+1)} = S(fu, fwn, fwn),
and

S(fu, fwn+1, fwn+1) 6 ψ(S(fu, fwn, fwn)), ∀n > 0.

This implies that

S(fu, fwn+1, fwn+1) 6 ψ
n(S(fu, fw, fw)),∀n > 0.

Letting n→∞ in above inequality, we can infer that

lim
n→∞S(fu, fwn, fwn) = 0. (3.30)

Similarly, we also have that

lim
n→∞S(fv, fwn, fwn) = 0. (3.31)

It follows from (3.30) and (3.31) that fu = fv. Next, we prove the existence of a common fixed point.
Let u ∈ C(f, T), that is fu = Tu. Owing to the commutativity of f and T at their coincidence points,

we have that

f2u = fTu = Tfu. (3.32)

Let us denote fu = x∗, then from (3.32), fx∗ = Tx∗. Thus, x∗ is a coincidence of point of f and T . Then we
have that fu = fx∗ = x∗ = Tx∗. Hence, x∗ is a common fixed point of f and T . Suppose that x ′ is another
common fixed point of f and T . Then x ′ ∈ C(f, T), so we have x ′ = fx ′ = fx∗ = x∗.
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In what follows, we present an illustrative example to demonstrate Theorem 3.29 on the existence and
uniqueness of a common fixed point.

Example 3.30. Let X = [0,∞) equipped with S-metric S(x,y, z) = |x− y|+ |x− z| for all x,y, z ∈ X. Define
the mappings T : X 7→ X and f : X 7→ X by

T(x) =

{
2x− 3

2 , if x > 2;
x
5 , if 0 6 x 6 2.

and f(x) =
x

2
, ∀x ∈ X.

Now, we also define the mapping γ : X3 7→ [0,∞) by

γ(x,y, z) =

{
1, if x,y, z ∈ [0, 1],
0, otherwise.

Clearly, the pair (T , f) is an S-γ-ψ-ϕ-contractive pair of mappings of type D ′ with ψ(t) = 4
5t,∀t > 0,

ϕ(t) = t
5 , ∀t > 0. In fact, for all x,y ∈ [0, 1],

γ(fx, fy, fy)S(Tx, Ty, Ty) = 1 · 2|x
5
−
y

5
| =

2
5
S(fx, fy, fy) <

3
5
S(fx, fy, fy).

It follows from above that

γ(fx, fy, fy)S(Tx, Ty, Ty) 6 ψ(M2(x,y)) −ϕ(M2(x,y)), ∀x,y ∈ X.

Moreover, there exists x0 ∈ X such that γ(fx0, Tx0, Tx0) > 1. Indeed, for x0 = 1, we have γ( 1
2 , 1

5 , 1
5) = 1.

Next, we will show that T is f-γ-admissible. For this, let x,y, z ∈ X such that γ(fx, fy, fz) > 1. This
implies that fx, fy, fz ∈ [0, 1] and by the definition of f, we have x,y, z ∈ [0, 2]. Therefore, by the definition
of T and f, we have

Tx =
x

5
∈ [0, 1], Ty =

y

5
∈ [0, 1], Tz =

z

5
∈ [0, 1], γ(Tx, Ty, Tz) = 1.

Thus, T is f-γ-admissible. Clearly T(X) ⊆ f(X) and f(X) is closed.
At last, let {fxn} be a sequence in X such that γ(fxn, fxn+1, fxn+1) > 1 for all n ∈ {0} ∪N and

fxn → fx ∈ f(X) as n → ∞. Since γ(fxn, fxn+1, fxn+1) > 1 for all n ∈ {0} ∪N, by the definition of γ, we
have fxn ∈ [0, 1] for all n ∈ {0} ∪N and fx ∈ [0, 1]. Then, γ(fxn, fx, fx) > 1. Hence all the hypotheses
of Theorem 3.28 are satisfied. Consequently, f and T have a coincidence point. Furthermore, all the
hypotheses of Theorem 3.29 are also satisfied, here 0 is the unique common fixed point of f and T .

Definition 3.31. Let (X,S) be an S-metric space and let f, T : X 7→ X be two given mappings. We say
that the pair (f, T) is an S-γ-ψ-ϕ-contractive pair of mappings of type E ′ if there exist three functions
γ : X3 7→ [0,∞),ψ ∈ Ψ, and ϕ ∈ Φ such that for all x,y ∈ X, we have that

ψ(γ(fx, fy, fy)S(Tx, Ty, Ty)) 6 ψ(M3(x,y)) −ϕ(M3(x,y)), (3.33)

where M3(x,y) = max{S(fx, fy, fy),S(fx, Tx, Tx),S(fy, Ty, Ty)}.

Theorem 3.32. Let (X,S) be a complete S-metric space and f, T : X 7→ X be such that T(X) ⊆ f(X). Assume that
the pair (f, T) is an S-γ-ψ-ϕ-contractive pair of mappings of type E ′ and satisfies the following assumptions:

(A1) T is f-γ-admissible and transitive;

(A2) there exists x0 ∈ X such that γ(fx0, Tx0, Tx0) > 1;

(A3) (X,S) is (T ,γ)-regular;
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(A4) either γ(fu, fv, fv) > 1 or γ(fv, fu, fu) > 1, whenever fu = Tu and fv = Tv.

Then, T and f have a unique coincidence point in X. Moreover, if f and T commute at their coincidence points, then
f and T have a unique common fixed point.

Proof. In view of assumption (A2), let x0 ∈ X such that γ(fx0, Tx0, Tx0) > 1. Define the sequences {xn} and
{yn} in X by

yn = fxn+1 = Txn, ∀n > 0.

Moreover, we assume that if yn = Txn = Txn+k = yn+k, then we choose xn+k+1 = xn+1. The proof is
completed, since T(X) ⊆ f(X). In particular, if yn = yn+1, then xn+1 is a point of coincidence of T and f.
So we can suppose that yn 6= yn+1 for all n ∈N.

By assumption (A2), we have γ(fx0, Tx0, Tx0) = γ(fx0, fx1, fx1) > 1. Since T is f-γ-admissible, we have
that

γ(fx0, Tx0, Tx0) = γ(fx0, fx1, fx1) > 1⇒ γ(Tx0, Tx1, Tx1) = γ(fx1, fx2, fx2) > 1.

By induction, we get that

γ(fxn, fxn+1, fxn+1) > 1, ∀n = 0, 1, 2, · · · . (3.34)

Now, from (3.33) and (3.34), we have that

ψ(S(fxn+1, fxn+2, fxn+2)) 6 ψ(γ(fxn, fxn+1, fxn+1)S(Txn, Txn+1, Txn+1))

6 ψ(M3(xn, xn+1)) −ϕ(M3(xn, xn+1)), ∀n > 1.

On the other hand, we have

M3(xn, xn+1) = max{S(fxn, fxn+1, fxn+1),S(fxn, Txn, Txn),S(fxn+1, Txn+1, Txn+1)}

= max{S(yn−1,yn,yn),S(yn,yn+1,yn+1)}.

Now, if M3(xn, xn+1) = S(yn,yn+1,yn+1), from above inequality, for all n ∈N, we deduce that

ψ(S(fxn+1, fxn+2, fxn+2)) 6 ψ(S(yn,yn+1,yn+1)) −ϕ(S(yn,yn+1,yn+1)) < ψ(S(yn,yn+1,yn+1))

and S(yn,yn+1,yn+1) = 0 for all n ∈N, which is a contradiction. Thus,

M3(xn, xn+1) = S(yn−1,yn,yn) > 0

for all n ∈N, we get that

ψ(S(yn,yn+1,yn+1)) 6 ψ(S(yn−1,yn,yn)) −ϕ(S(yn−1,yn,yn)) < ψ(S(yn−1,yn,yn)).

Since ψ is nondecreasing, by induction, we have that

ψ(S(yn,yn+1,yn+1)) 6 ψ
n(S(y0,y1,y1)), ∀n > 0. (3.35)

Letting n→∞ in (3.35) and by (1), (3) of Lemma 2.2, we have

lim
n→∞ψ(S(yn,yn+1,yn+1)) 6 lim

n→∞ψn(S(y0,y1,y1)) = 0,

which implies that

lim
n→∞S(yn,yn+1,yn+1) = 0. (3.36)
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Next, we will prove {yn} is a Cauchy sequence. Suppose to the contrary, that is, {yn} is not a Cauchy
sequence. Then there exists ε > 0 for which we can find two subsequences {ymk

} and {ynk
} of {yn} such

that nk is the smallest index for which nk > mk > k,

S(ymk
,ynk

,ynk
) > ε.

This means that

S(ymk
,ynk−1,ynk−1) < ε.

From (3.35), (3.36), and (S2), we obtain that

ε 6 S(ymk
,ynk

,ynk
) 6 2S(ymk

,ynk−1,ynk−1) + S(ynk−1,ynk
,ynk

) < 2ε+ S(ynk−1,ynk
,ynk

).

Letting k→∞ in above inequality, we obtain that

ε 6 lim
k→∞S(ymk

,ynk
,ynk

) = ε+ < 2ε. (3.37)

From (3.33) and Lemma 3.11, with x = xmk
, y = xnk

, we get that

ψ(S(Txmk
, Txnk

, Txnk
)) 6 ψ(γ(fxmk

, fxnk
, fxnk

)S(Txmk
, Txnk

, Txnk
))

6 ψ(M3(xmk
, xnk

)) −ϕ(M3(xmk
, xnk

))

< ψ(M3(xmk
, xnk

)),

where M3(xmk
, xnk

) = max{S(fxmk
, fxnk

, fxnk
),S(fxmk

, Txmk
, Txmk

),S(fxnk
, Txnk

, Txnk
)}. Since ψ is

nondecreasing, we have that

S(Txmk+1, Txnk
, Txnk

) < M3(xmk
, xnk

).

Letting k→∞ in above inequality, by (3.36) and (3.37), we get that

ε+ = lim
k→∞S(ymk

,ynk
,ynk

) < lim
k→∞M3(xmk

, xnk
) = ε+,

which implies ε = 0, a contradiction with ε > 0. Hence, {yn} is a Cauchy sequence. Since (X,S) is
complete, there exists z ∈ X such that yn → z. Let y ′ ∈ X be such that fy ′ = z. Since X is (T ,γ)-regular,
there exists a subsequence {ynk

} of {yn} such that γ(ynk
, fy ′, fy ′) > 1 for all k ∈N. If fy ′ 6= Ty ′, applying

contractive mapping assumption (3.33) with x = xnk
, y = y ′, we obtain that

ψ(S(Txnk
, Ty ′, Ty ′)) 6 ψ(γ(fxnk

, fy ′, fy ′)S(Txnk
, Ty ′, Ty ′)) 6 ψ(M3(xnk

,y ′)) −ϕ(M3(xnk
,y ′)),

where M3(xnk
,y ′) = max{S(fxnk

, fy ′, fy ′),S(fxnk
, Txnk

, Txnk
),S(fy ′, Ty ′, Ty ′)}.

Now, from

S(fxnk
, fy ′, fy ′),S(fxnk

, Txnk
, Txnk

)→ 0, as k→∞,

we deduce that lim
k→∞M3(xnk

,y ′) = S(fy ′, Ty ′, Ty ′). On the other hand, we have that

S(fy ′, Ty ′, Ty ′) 6 2S(y ′, fxnk−1, fxnk−1) + S(fxnk−1, Ty ′, Ty ′)
6 2S(fy ′, fxnk−1, fxnk−1) + 2S(fxnk−1, Txnk

, Txnk
) + S(Txnk

, Ty ′, Ty ′),

which implies

S(fy ′, Ty ′, Ty ′) 6 lim inf
k→∞ S(Txnk

, Ty ′, Ty ′).
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Since ψ is nondecreasing, we get that

ψ(S(fy ′, Ty ′, Ty ′)) 6 ψ(lim inf
k→∞ S(Txnk

, Ty ′, Ty ′)) 6 ψ(S(fy ′, Ty ′, Ty ′)) −ϕ(S(fy ′, Ty ′, Ty ′)),

which implies S(fy ′, Ty ′, Ty ′) = 0, that is fy ′ = Ty ′ and y ′ is a coincidence point of T and f.
The uniqueness of the coincidence point is a direct consequence of the assumptions of (A1) and (A4).
Now, if z is the point of coincidence of f and T , since T and f commute at their coincidence points, so

z = fz = Tz. Consequently, z is the unique common fixed point of T and f.

Example 3.33. Let X = [0,∞) equipped with S-metric S(x,y, z) = |x− y|+ |x− z| for all x,y, z ∈ X. Define
the mappings T , f : X 7→ X by

T(x) =
x

5
, ∀x ∈ X and f(x) =

x

3
,∀x ∈ X.

Now, we also define the mapping γ : X3 7→ [0,∞) by

γ(x,y, z) =

{
1, if x,y, z ∈ [0, 1],
0, otherwise.

Clearly, the pair (T , f) is an S-γ-ψ-ϕ-contractive pair of mappings of type E ′ with ψ(t) = 4
5t, ϕ(t) =

t
5 ,∀t > 0. In fact, for all x,y ∈ [0, 3],

γ(fx, fy, fz) = γ(
x

3
,
y

3
,
z

3
) = 1,

S(Tx, Ty, Ty) = 2|Tx− Ty| = 2|
x

5
−
y

5
| =

2
5
|x− y|,

ψ(γ(fx, fy, fy)S(Tx, Ty, Ty)) = ψ(S(Tx, Ty, Ty)) =
4
5
· 2

5
|x− y| =

8
25

|x− y|,

M3(x,y) = max{S(fx, fy, fy),S(fx, Tx, Tx),S(fy, Ty, Ty)} = max{
2
3
|x− y|,

4
15
x,

4
15
y}.

(1) If 0 6 x < 3
5y, then, M3(x,y) = max{ 2

3(y− x),
4

15x, 4
15y} =

2
3(y− x).

(2) If 3
5y 6 x < y, then, M3(x,y) = max{2

3(y− x),
4
15x, 4

15y} =
4

15y.

(3) If y 6 x < 5
3y, then, M3(x,y) = max{2

3(y− x),
4
15x, 4

15y} =
4

15x.

(4) If 5
3y 6 x, then, M3(x,y) = max{2

3(y− x),
4
15x, 4

15y} =
2
3(x− y).

From the discussion above, we have that

(1) 0 6 x < 3
5y, 8

25 |x− y| =
8

25(y− x) <
3
5 ·

2
3(y− x);

(2) 3
5y 6 x < y, 8

25 |x− y| =
8
25(y− x) <

3
5 ·

4
15y = 4

25y;

(3) y 6 x < 5
3y, 8

25 |x− y| =
8
25(x− y) <

3
5 ·

4
15x =

4
25x;

(4) 5
3y 6 x, 8

25 |x− y| =
8
25(x− y) <

3
5 ·

2
3(x− y) =

10
25(x− y).

It follows from above that

ψ(γ(fx, fy, fy)S(Tx, Ty, Ty)) 6 ψ(M3(x,y)) −ϕ(M3(x,y)), ∀x,y ∈ X.

Moreover, there exists x0 ∈ X such that γ(fx0, Tx0, Tx0) > 1. Indeed, for x0 = 1, we have γ(f1, T1, T1) =
γ( 1

3 , 1
5 , 1

5) = 1.
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Next, we will show that T is f-γ-admissible. For this, let x,y, z ∈ X such that γ(fx, fy, fz) > 1. This
implies that fx, fy, fz ∈ [0, 1] and by the definition of f, we have x,y, z ∈ [0, 3]. Therefore, by the definition
of T and f, we have

Tx =
x

5
∈ [0, 1], Ty =

y

5
∈ [0, 1], Tz =

z

5
∈ [0, 1], γ(Tx, Ty, Tz) = 1.

Thus, T is f-γ-admissible. Clearly T(X) ⊆ f(X) and f(X) is closed.
At last, let {fxn} be a sequence in X such that γ(fxn, fxn+1, fxn+1) > 1 for all n and fxn → fx ∈ f(X),

as n → ∞. Since γ(fxn, fxn+1, fxn+1) > 1 for all n ∈ {0} ∪N, by the definition of γ, we have fxn ∈ [0, 1]
for all n ∈ {0}∪N and fx ∈ [0, 1]. Then γ(fxn, fx, fx) > 1.

Hence all the hypotheses of Theorem 3.32 are satisfied. Consequently, f and T have a unique coinci-
dence point x = 0. Furthermore, here 0 is the unique common fixed point of f and T .

In the past several decades, there have been enormous results in the study of fixed point problems
of contractive mappings in metric spaces endowed with a partial order. The first famous result in this
direction was given by Turinici [27], where he extended the BCP in partially ordered set. After then, Ran
and Reurings [20] generalized Turinici’s theorem to matrix equations. Moreover, many interesting and
useful results have been obtained relating to the existence of a fixed point for contraction type mappings
in partially ordered metric spaces (see, e.g., [1, 9, 13, 16–19, 21, 22]). In what follows, we will present some
fixed and common point results on an S-metric space endowed with a partial order. For this, we require
the following concepts.

Definition 3.34. Let (X,�) be a partially ordered set and T : X 7→ X be a given mapping. We say that T is
nondecreasing with respect to � if x,y ∈ X, x � y then Tx � Ty.

Definition 3.35. Let (X,�) be a partially ordered set. A sequence {xn} ⊂ X is said to be nondecreasing
with respect to � if xn � xn+1 for all n ∈N.

Definition 3.36. Let (X,�) be a partially ordered set and S be an S-metric on X. We say that (X,�,S) is
regular if for every nondecreasing sequence {xn} ⊂ X such that xn → x ∈ X as n → ∞, there exists a
subsequence {xnk

} of {xn} such that xnk
� x for all k ∈N.

Definition 3.37. Let (X,�) be a partially ordered set and S be an S-metric on X. We say that (X,�,S) is
f-regular where f : X 7→ X, if for every nondecreasing sequence {fxn} ⊂ X such that fxn → fx ∈ X as
n→∞, there exists a subsequence {fxnk

} of {fxn} such that fxnk
� fx for all k ∈N.

Definition 3.38. Let (X,�) be a partially ordered set and T , f : X 7→ X be two given mappings. We say that
T is f-nondecreasing with respect to � if x,y ∈ X, fx � fy then Tx � Ty. In particular, if we choose f = Ix,
where Ix denotes the identity mapping, then we can get that f-nondecreasing reduces to nondecreasing.

Theorem 3.39. Let (X,�) be a partially ordered set and S be an S-metric on X such that (X,S) is complete. Let
T , f : X 7→ X be such that T(X) ⊆ f(X) and T be a f-nondecreasing mapping w.r.t. �. Suppose that there exist two
functions ψ ∈ Ψ and ϕ ∈ Φ such that

S(Tx, Ty, Ty) 6 ψ(M2(x,y)) −ϕ(M2(x,y)),

where M2(x,y) = max{S(fx, fy, fy), 2S(fx,Tx,Tx)+S(fy,Ty,Ty)
3 , 2S(fy,Tx,Tx)+S(fx,Ty,Ty)

3 } for all x,y ∈ X with
fx � fy. Suppose that the following assumptions hold:

(A1) there exists x0 ∈ X such that fx0 � Tx0;

(A2) (X,�,S) is f-regular.

Also suppose that f(X) is closed. Then, T and f have a coincidence point in X. Moreover, if every pair (u, v) ∈
C(f, T)×C(f, T), there exists w ∈ X such that fu � fw and fu � fw, and f and T commute at their coincidence
points, then f and T have a unique common fixed point.
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Proof. Define the mapping γ : X3 7→ [0,∞) by

γ(x,y,y) =

{
1, if x � y,
0, otherwise.

It is easily to check that the pair (T , f) is an S-γ-ψ-ϕ-contractive pair of mappings of type D ′, that is

γ(fx, fy, fy)S(Tx, Ty, Ty) 6 ψ(M2(x,y)) −ϕ(M2(x,y))

for all x,y ∈ X.
Notice that in view of (A1), we have γ(fx0, Tx0, Tx0) > 1. Moreover, for all x,y ∈ X, from the f-

monotone property of T , we have

γ(fx, fy, fy) > 1⇒ fx � fy⇒ Tx � Ty⇒ γ(Tx, Ty, Ty) > 1,

which implies that T is f-γ-admissible.
Now, let {fxn} be a sequence in X such that γ(fxn, fxn+1, fxn+1) > 1 for all n ∈N and fxn → fx ∈ X as

n→∞. From the f-regularity, there exists a subsequence {fxnk
} of {fxn} such that fxnk

� fx for all k ∈N.
Then, by the definition of γ, we have that γ(fxnk

, fx, fx) > 1. Hence, all the hypotheses of Theorem 3.28
are satisfied. Therefore, we deduce that f and T have a coincidence point x∗, that is fx∗ = Tx∗.

Next, we need to show the existence and uniqueness of common fixed point. For this purpose, let
u, v ∈ C(f, T). By assumption, there exists w ∈ X such that fu � fw and fv � fw, which accounts to say
from the definition of γ that γ(fu, fw, fw) > 1 and γ(fv, fw, fw) > 1. Thus, we deduce the existence and
uniqueness of common fixed point by Theorem 3.29.

Theorem 3.40. Let (X,�) be a partially ordered set and S be an S-metric on X such that (X,S) is complete. Let
T , f : X 7→ X be such that T(X) ⊆ f(X) and T be a f-nondecreasing mapping w.r.t. �. Suppose that there exist two
functions ψ ∈ Ψ and ϕ ∈ Φ such that

S(Tx, Ty, Ty) 6 ψ(M3(x,y)) −ϕ(M3(x,y)),

where M3(x,y) = max{S(fx, fy, fy),S(fx, Tx, Tx),S(fy, Ty, Ty)} for all x,y ∈ X with fx � fy. Suppose that the
following assumptions hold:

(A1) there exists x0 ∈ X such that fx0 � Tx0;

(A2) if a sequence {xn} ⊂ X such that xn � xn+1 for all n ∈ N and xn → x ∈ X as n → ∞, there exists a
subsequence {xnk

} of {xn} such that xnk
� x for all k ∈N;

(A3) for all u, v ∈ C(f, T), then fu � fv or fu � fv.

Then, T and f have a unique coincidence point in X. Moreover, if f and T commute at their coincidence points, then
f and T have a unique common fixed point.

Proof. Define the mapping γ : X3 7→ [0,∞) by

γ(x,y,y) =

{
1, if x,y ∈ f(X) and x � y,
0, otherwise.

Clearly, the pair (T , f) is an S-γ-ψ-ϕ-contractive pair of mappings of type E ′, that is,

ψ(γ(fx, fy, fy)S(Tx, Ty, Ty)) 6 ψ(M3(x,y)) −ϕ(M3(x,y))

for all x,y ∈ X.
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Notice that in view of (A1), we have γ(fx0, Tx0, Tx0) > 1. Moreover, for all x,y ∈ X, from the f-
monotone property of T , one can show easily that T is f-γ-admissible.

Now, let {xn} be a sequence in X such that γ(xn, xn+1, xn+1) > 1 and xn → x as n → ∞. By the
definition of γ, we have that

xn, xn+1 ∈ f(X), xn � xn+1, ∀n ∈N.

Since X is complete, we deduce that x ∈ X. By (A2), there exists a subsequence {xnk
} of {xn} such that

xnk
� x for all k ∈ N and γ(xnk

, x, x) > 1 for all k ∈ N and so X is γ-regular. Moreover, from the
transitive property of partial order, we have that γ(xm, xn, xn) > 1 for all m,n ∈ N with m < n. Hence,
the hypotheses (A1)-(A4) of Theorem 3.32 are satisfied. Then, T and f have a unique common fixed
point.

From Theorem 3.39 and Theorem 3.40, if we set f = Ix the identity mapping on X, we deduce the
following corollaries on fixed point results on an S-metric space endowed with a partial order.

Corollary 3.41. Let (X,�) be a partially ordered set and S be an S-metric on X such that (X,S) is complete. Let
T : X 7→ X be a nondecreasing mapping w.r.t. �. Suppose that there exist two functions ψ ∈ Ψ and ϕ ∈ Φ such
that

S(Tx, Ty, Ty) 6 ψ(M
′
2(x,y)) −ϕ(M

′
2(x,y)),

where M
′
2(x,y) = max{S(x,y,y), 2S(x,Tx,Tx)+S(y,Ty,Ty)

3 , 2S(y,Tx,Tx)+S(x,Ty,Ty)
3 } for all x,y ∈ X with fx � fy.

Suppose that the following assumptions hold:

(A1) there exists x0 ∈ X such that x0 � Tx0;

(A2) (X,�,S) is regular.

Then, T has a fixed point in X. Moreover, if u � v or v � u, whenever u = Tu and v = Tv, then T has a unique
common fixed point in X.

Corollary 3.42. Let (X,�) be a partially ordered set and S be an S-metric on X such that (X,S) is complete. Let
T : X 7→ X be a nondecreasing mapping w.r.t. �. Suppose that there exist two functions ψ ∈ Ψ and ϕ ∈ Φ such
that

S(Tx, Ty, Ty) 6 ψ(M
′
3(x,y)) −ϕ(M

′
3(x,y)),

where M
′
3(x,y) = max{S(x,y,y),S(x, Tx, Tx),S(y, Ty, Ty)} for all x,y ∈ X with x � y. Suppose that the

following assumptions hold:

(A1) there exists x0 ∈ X such that fx0 � Tx0;

(A2) if a sequence {xn} ⊂ X such that xn � xn+1 for all n ∈ N and xn → x ∈ X as n → ∞, there exists a
subsequence {xnk

} of {xn} such that xnk
� x for all k ∈N;

(A3) if u � v or v � u, whenever u = Tu and v = Tv.

Then, T has a unique fixed point in X.
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