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Abstract

In this paper we study the approximation on rotation group SO(3), we consider the partial sum, Féjer and Jackson-type
operators and obtain the approximation theorems in Lp(1 6 p 6 +∞) respectively. c©2017 All rights reserved.
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1. Introduction

Many results of approximation are based on Euclid spaces or their compact subsets. Periodic ap-
proximation is based on compact group {exp(ix)}, whereas matrix group U(n) is the generalization of
{exp(ix)}. We know homomorphism between SU(2) and rotation group SO(3), which has many appli-
cations in Physics and Chemistry. Some approximation problems on compact groups have been studied
since in 1920s Peter and Weyl [7] proved the approximation theorem on compact group, that is, the irre-
ducible character generates a dense subspace of the space of continuous classes function. For instance,
Gong [2] studied the basic problems of Fourier analysis on unitary and rotation groups, including the
degree of convergence of Abel sum based on Poisson kernel. Zheng et al. (see [11, 12]) studied the poly-
nomial approximation on compact Lie groups. Cartwright et al. [1] studied Jackson’s theorem for compact
connected Lie groups, and so on. No matter from the results or research methods, the approximation on
compact Lie groups is different from on the classical cases, Eulid spaces. For example, Riemann-Lebesgue
lemma is not necessarily true in Lp(G)(1 6 p 6 4/3), with G being a compact Lie group (see [8]). In this
paper, we study the approximation of the partial sums, Féjer and Jackson-type operators on SO(3) in
Lp(1 6 p 6 +∞).

Let G = SO(3) = {x ∈ GL(3, R), xTx = E, det x = 1} be the rotation group, where GL(n, R) is the group
of invertible real (n× n)-matrices. For 1 6 p < +∞,Lp(G) = {f : ||f||p = [

∫
G |f(x)|pdµ(x)]1/p < +∞}, and
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µ is the normalized Harr measure on G, conveniently, we write dµ(x) as dx in this paper. When using
Euler angles, the Harr integral of a function f on SO(3) reads as∫

SO(3)
f(x)dµ(x) =

1
8π2

∫ 2π

0
dα

∫π
0

sinβdβ
∫ 2π

0
dγf(α,β,γ).

An element x ∈ SO(3) is identified with a point in the projective spaces Sπ of the closed ball in R3

of radius π by x → ωr, satisfying xr = r, and ||r|| = 1, where r is the rotation axis and ω ∈ [0,π] is the
rotation angle of x. (φ, θ,ϕ) denotes the direction angles of rotation axis r and ω the rotation angle, then
there hold following formulas (see [9]) between (r,ω) and Euler angles (α,β,γ),

cos
ω

2
= cos

β

2
cos

α+ γ

2
,φ = −

sin β2 sin α−γ2
sin ω2

, θ =
sin β2 cos α−γ2

sin ω2
, φ =

cos β2 sin α+γ2
sin ω2

. (1.1)

We know a function f on SO(3) only depends on the rotation angle of the argument coincide exactly
with the class function-functions that are conjugacy classes, i.e., f(x) = f(yxy−1) for all x, y ∈ SO(3).
In other words, for any function f on SO(3) there is a uniquely determined f̃ : [0,π] → C such that
f(x) = f̃(ω(x)). The Haar integral for such a class function reads as∫

SO(3)
f(x)dµ(x) =

∫
SO(3)

f̃(ω(x))dµ(x) =
2
π

∫π
0
f̃(ω) sin2 ω

2
dω. (1.2)

We make the convention that if f is a class function on SO(3) and if no confusion occurs, we subse-
quently drop the tilde. Denote by

SNf(α,β,γ) =
N∑
l=0

l∑
m,n=−l

√
2l+ 1Clm,nD

l
m,n(α,β,γ),

the partial sum operators, where (α,β,γ) ∈ [0, 2π]× [0,π]× [0, 2π] are Euler angles and

Clm,n =

√
2l+ 1
8π2

∫ 2π

0
dα

∫π
0

sinβdβ
∫ 2π

0
dγf(α,β,γ)Dlm,n(α,β,γ),

and for x ∈ SO(3),

Dlm,n(x) = D
l
m,n(α,β,γ) = e−imαPlm,n(cosβ)e−inγ,−l 6 m,n 6 l,

the function Plm,n is given by

Plm,n(u) = C(1 − u)
n−m

2 (1 + u)−(n+m2 ) d
l−m

dul−m
[(1 − u)l−n(1 + u)l+n],

with C =
(−1)l−nin−m

2l

√
(l+m)!

(l−n)!(l+n)!(l−m)! .

2. Theorems and their proofs

We start with the partial sum operator,

SN(f, x) = SNf(α,β,γ)

=

N∑
l=0

l∑
m,n=−l

√
2l+ 1Clm,nD

l
m,n(α,β,γ)
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=

N∑
l=0

l∑
m,n=−l

2l+ 1
8π2

∫ 2π

0
dζ

∫π
0

sinηdη
∫ 2π

0
dξf(ζ,η, ξ)Dlm,n(ζ,η, ξ)Dlm,n(α,β,γ)

=

N∑
l=0

2l+ 1
8π2

∫ 2π

0
dζ

∫π
0

sinηdη
∫ 2π

0
dξf(ζ,η, ξ)

l∑
m,n=−l

Dlm,n(ζ,η, ξ)Dlm,n(α,β,γ)

=

N∑
l=0

(2l+ 1)
∫
SO(3)

f(g)Tr(Dl(g−1x))dg

=

N∑
l=0

(2l+ 1)f ∗ χl(x) = f ∗DN(x),

where Dl(x) =matrix(Dlm,n) is the (2l+ 1)-dimensional irreducible representation of G, χl(x) = Tr[Dl(x)]

is the character of irreducible representation, DN(x) =
N∑
l=0

(2l+ 1)χl(x) is Dirichlet kernel, and the convo-

lution of two functions f and g is defined by

(f ∗ g)(x) =
∫
G

f(g)g(g−1x)dg.

Next orthogonal properties of Dl and χl are well-known (see [3]),

2j1 + 1
8π2

∫ 2π

0
dα

∫π
0

sinβdβ
∫ 2π

0
dγD

j1
m1,n1(α,β,γ)Dj2m2,n2

(α,β,γ) = δj1,j2δm1,m2δn1,n2 ,

1
π

∫π
0
χj1(ω)χj2(ω)(1 − cosω)dω = δj1,j2 .

Furthermore, we discuss the properties of Dirichlet kernel DN.
Noting that χl(x) = Tr[Dl(x)] = sin(2l+1)ω2

sin ω2
with ω as (1.1) being the rotation angle of x and using

Euler formula eiθ = cos θ+ i sin θ, by calculation , we can get the following.

Lemma 2.1.

DN(x) =
sin(N+ 1)ω · cos ω2

2 sin3 ω
2

−
(N+ 1) · cos(N+ 1)ω

sin2 ω
2

,

||DN||L1(SO(3)) = O(N) +O(lnN), ||SN|| = O(N).

For f ∈ Lp(G), 1 6 p 6 +∞, we define the best approximation degree by

EN(f)p = sup
TN∈ΠN

||f− TN||p,

where ΠN is the set of trigonometric polynomial of degree at most N, which needs not to be an integer,
and when p = +∞, L∞(G) is replaced by continuous functions space C(G) and the p-norm is replaced by
sup-norm, we will not repeat this later.

Thanks to the accuracy of SN for the trigonometric polynomial, that is SN(Tn) = Tn(n 6 N), Tn ∈ ΠN,
subsequently we have the following.

Theorem 2.2. If f ∈ Lp(SO(3)), 1 6 p 6∞, then

||f− SN(f)||p 6 CN · EN(f)p,

with C > 0 being an absolute constant.
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Further, we consider the Féjer kernel

FN(x) =
D0(x) +D1(x) + · · ·+DN(x)

N+ 1
.

Using Lemma 2.1, we know

FN(x) =
1

N+ 1

[
cos ω2

2 sin3 ω
2

N∑
k=0

sin(k+ 1)ω−
1

sin2 ω
2

N∑
k=0

(k+ 1) cos(k+ 1)ω

]
.

Note that
N∑
k=0

sin(k+ 1)ω = Im

[
N∑
k=0

(eiω)k+1

]
= (sin

N+ 2
2

ω) ·
sin(N+1

2 ω)

sin ω2
,

and

N∑
k=0

(k+ 1) cos(k+ 1)ω

= Im[

N∑
k=0

(eiω)k+1] ′

=
N+ 2

2
(cos

N+ 2
2

ω) ·
sin N+1

2 ω

sin ω2
+
N+ 1

2
(cos

N+ 1
2

ω) ·
sin N+2

2 ω

sin ω2
−

1
2

cos
ω

2
·

sin N+1
2 ω · sin N+2

2 ω

sin2 ω
2

,

we have

FN(x) =
1

2(N+ 1)
cos ω2
sin2 ω

2

·
sin N+1

2 ω · sin N+2
2 ω

sin2 ω
2

−
1

sin2 ω
2

[ N+ 2
2(N+ 1)

(cos
N+ 2

2
ω) ·

sin N+1
2 ω

sin ω2

+
1
2
(cos

N+ 1
2

ω) ·
sin N+2

2 ω

sin ω2
−

1
2(N+ 1)

cos
ω

2
·

sin N+1
2 ω · sin N+2

2 ω

sin2 ω
2

]
:= I1(ω) + I2(ω) + I3(t) + I4(ω).

(2.1)

Lemma 2.3.
||FN||L1(SO(3)) = O(lnN).

From DN(x) =
N∑
l=0

(2l+ 1)χl(x), and the orthogonal properties of Dl and χl, we have

∫
SO(3)

FN(x)dx = 1.

We consider the next Féjer convolution operator

σN(f, x) =
∫
SO(3)

FN(y)f(y−1x)dy.

Clearly,

|f(x) − σN(f, x)| 6
∫
SO(3)

|f(x) − f(y−1x)||FN(y)|dy 6
∫
SO(3)

ω(f, |y|)|FN(y)|dy, (2.2)

where |y| = dist(y, e) and e is the identity element of SO(3). For x, y ∈ SO(3), dist(x, y) = ω(y−1x) =
ω(x−1y) is defined as the rotational angle of the rotation y−1x (or its inverse x−1y).
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Remark 2.4. The rotational angle of a rotation x ∈ SO(3) is also defined as |x| = arccos 1
2 [Tr(x)− 1], in terms

of Euler angles |x| = |x(α,β,γ)| = 2 arccos
(
cosβ2 cos

α+γ
2

)
= ω(x) = ω (see [4]).

Remark 2.5. ω(f, t)p = sup{||f(x) − f(y−1x)||p : d(x, y) 6 t}(1 6 p 6 ∞), is the first-order moduli of
smoothness. Higher order moduli ωr(f, t) (see Definition 2.8) will also be employed later. We need only
the inequality ωr(f, λt)p 6 (1 + λ)rωr(f, t)p(r ∈N), some other properties can be found in [1, 5].

From Remarks 2.4 and 2.5 and (1.2) we have

|f(x) − σN(f, x)| 6 ω(f,
1
N
) ·
∫
SO(3)

(1 +N|y|)|FN(y)|dy

6 ω(f,
1
N
) · 2
π

∫π
0
(1 +Nω)|FN(ω)| sin2 ω

2
dt

= ω(f,
1
N
) · 2
π

∫π
0
(1 +Nω)

[
|I1(ω)|+ |I2(ω)|+ |I3(ω)|+ |I4(ω)|

]
sin2 ω

2
dt.

By (2.1) and subdividing the integration interval [0,π] = [0, π
N+2 ]∪ [

π
N+2 ,π], we get∫π

0
(1 +Nω)|Ij(ω)| sin2 ω

2
dω = O(ln(N)), j = 1, 2, 3, 4.

Thus, by using Lemma 2.3 and (2.2), we have the following result.

Theorem 2.6. If f ∈ Lp(SO(3)), 1 6 p 6 +∞, then,

||f− σN(f)||p = O(ln(N) ·ω(f,
1
N
))p, 1 6 p 6∞.

Generally, we conclude the result as follows.

Theorem 2.7. If f ∈ Lp(SO(3)), 1 6 p 6 +∞, and VN ∈ ΠN satisfies

(i): VN ∗ TN = TN, ∀TN ∈ ΠN, (ii): ||VN||L1(G) 6 K, with K being an absolute constant,

then for LN(f) = VN ∗ f,
||f− LN(f)||p 6 (1 +K)EN(f)p.

Proof. The proof is trivial. The kernel VN, which satisfies the conditions of Theorem 2.7, can be found in
[6].

Next we give the Jackson-type approximation theorem.
We first give the definition of the r-th moduli of smoothness of function f on the rotation group.
As classical case, for x, h ∈ G = SO(3), let

(∆rhf)(x) =
r∑
j=0

(−1)r−j
(
r

j

)
f(h−jx)

be the r-th difference of f at the point x.

Definition 2.8. Let f ∈ Lp(G)(1 6 p 6∞), for any integer r > 1 and t > 0, write

ωr(f, t)p = sup
{
||∆rhf||p : h ∈ G,d(e, h) = |h| 6 t

}
.

We can also write
ωr(f, t)p = sup

{
||∆rexpHf||p : H ∈ g, ||H|| 6 t

}
,

where g is the Lie algebras of G, and || · || is the norm induced by Killing inner product lm on g (see [10]).
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Let T be a maximal torus of SO(3) given by (see [7])

T =

{ cosω sinω 0
− sinω cosω 0

0 0 1

∣∣∣ω ∈ R/2πZ

}
,

and t denotes its respective Lie algebras also called Cartan subalgebras, in fact given by

t =

{ 0 ω 0
−ω 0 0

0 0 0

∣∣∣ω ∈ R/2πZ

}
.

For u ∈ SO(3), let φN,s(u) = λ−1
N,s[

sin(N+ 1
2 )ω

sin 1
2ω

]2s = φN,s(ω), satisfying
∫
SO(3)φN,s(u)du = 1, where

ω = ω(u) is the rotation angle of u, and s > 2 + r/2.
As the classical case, we have λN,s = O(N

2s−3), and∫
SO(3)

|u|kφN,s(u)du =
2
π

∫π
0
φN,s(ω) sin2 ω

2
dω = O(N−k),k = 0, 1, · · · , 2s− 4. (2.3)

Following the thought of classical case, we construct the Jackson-type approximate operator as follows,
which is different from [1].

JN(f, x) =
∫
G

φN,s(u)
r∑
j=1

(−1)j−1

(
r

j

)
f(u−jx)du.

By the Weyl integral formula (see [10]),

JN(f, x) =
∫
G

φN,s(u)
r∑
j=1

(−1)j−1

(
r

j

)
f(u−jx)du

=

r∑
j=1

(−1)j−1

(
r

j

) ∫
G

φN,s(u)f(u−jx)du

= |W(G)|−1
r∑
j=1

(−1)j−1

(
r

j

) ∫
T

d(v)φN,s(v)
∫
G/T

f(gv−jg−1x)dTd(G/T)

= |W(G)|−1|Q|−1
r∑
j=1

(−1)j−1

(
r

j

) ∫
Q

|D(H)|2φN,s(H)

∫
G/T

f(g exp(−jH)g−1x)dgTdH

= |W(G)|−1|Q|−1
∫
Q

∫
G/T

r∑
j=1

(−1)j−1

(
r

j

)
1
j
|D(H/j)|2φN,s(H/j)f(g exp(−H)g−1x)dgTdH

= |W(G)|−1|Q|−1
∫
Q

∫
G/T

r∑
j=1

(−1)j−1

(
r

j

)
1
j
|D(H/j)|2φN,s(H/j)f(g exp(−H)g−1x)dgTdH

= |W(G)|−1|Q|−1
∫
Q

∫
G/T

|D(H)|2KN(exp H)f(g exp(−H)g−1x)dgTdH

= |W(G)|−1
∫
T

∫
G/T

d(v)KN(v)f(gv−1g−1x)dgTdv

=

∫
G

KN(u)f(u−1x)du,
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where

KN(u) = KN(v) = KN(exp H) =

r∑
j=1

(−1)j−1

(
r

j

)
1
j
φN,s(H/j)

∣∣∣∣D(H/j)
D(H)

∣∣∣∣2

=

r∑
j=1

(−1)j−1

(
r

j

)
1
j
φN,s(ω/j)

∣∣∣∣sin(ω/2j)
sinω/2

∣∣∣∣2 ,

(2.4)

with u = gvg−1, v ∈ T , and v = exp H, H ∈ t, and D(H) = 2i sin ω2 ,D(H/j) = 2i sin(ω/2j),d(v) =

4 sin2 ω
2 := d(ω), exp : g→ G is the exponential map, exp |t : t→ T .

Weyl group W = W(G) is defined by W = N/T , with N = {g ∈ G|gTg−1 = T }, T as above is maximal
torus of G, |W(G)| = |W(SO(3))| = 2 denotes the order of W. Q is called fundamental domain centered at
the origin, which satisfies exp(Q) = T , here in fact Q = t ∼= [−π,π], |Q| = 2π denotes the volume of Q.

Lemma 2.9. If f ∈ Lp(SO(3)), 1 6 p 6 +∞, then JN(f) ∈ ΠN.

Proof. In fact

JN(f, x) = (KN ∗ f)(x) =
∫
G

KN(u)f(u−1x)du =

∫
G

KN(xu−1)f(u)du.

Clearly, from (2.4), KN(u) is a trigonometric polynomial of degree N, which has not to be an integer.

We write KN(u) =
N∑
l=0

l∑
m,n=−l

clm,nD
l
m,n(u), and note that (see [4])

Dlm,n(u1u2) =

l∑
k=−l

Dlm,k(u1)D
l
k,n(u2), Dlm,n(u

−1) = [Dlm,n(u)]
−1 = [Dlm,n(u)]̀ = Dln,m(u),

JN(f, x) =
∫
G

KN(xu−1)f(u)du =

N∑
l=0

l∑
m,n=−l

l∑
k=−l

clm,nD
l
m,k(x)

∫
G

Dln,k(u)f(u)du.

So, JN(f) ∈ ΠN.

Theorem 2.10. If f ∈ Lp(SO(3)), 1 6 p 6 +∞, then

||f− JN(f)||p 6 Cωr(f,
1
N
)p,

with C > 0 being a constant independent of f and N.

Proof.

f(x) − JN(f, x) =
∫
G

φN,s(u)
r∑
j=0

(−1)j−1

(
r

j

)
f(u−jx)du.

By Minkowski’s inequality and (2.3),

||f− JN(f||p 6
∫
G

φN,s(u)||∆rhf||pdu

6
∫
G

φN,s()ωr(f, |u|)pdu

6 ωr(f, 1/N)up

∫
G

φN,s(u)(1 +N|u|)rdu

6 Cωr(f, 1/N)p.
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