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Abstract
In this paper, we construct two iteration schemes for approximating a common element of the set of solutions of equilibrium
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1. Introduction

Let H be an infinite dimensional real Hilbert space. Let C be a nonempty subset of H and let T : C→ C

be a mapping. Recall that T is said to be nonexpansive if and only if

‖Tx− Ty‖ 6 ‖x− y‖, ∀x,y ∈ C, ∀n > 1.

T is said to be asymptotically nonexpansive if and only if there exists a sequence {kn} ⊂ [1,∞) such that

‖Tnx− Tny‖ 6 kn‖x− y‖, ∀x,y ∈ C, ∀n > 1.

A mapping T is called a k-strictly pseudocontractive mapping if and only if there exists a constant k ∈
[0, 1) such that

‖Tx− Ty‖2 6 ‖x− y‖2 + k‖x− y− (Tx− Ty)‖2, ∀x,y ∈ C.

A mapping T is called a k-strictly asymptotically pseudocontractive mapping if and only if there exist a
constant k ∈ [0, 1) and a sequence {kn} ⊆ [1,∞) with limn→∞ kn = 1 such that

‖Tnx− Tny‖2 6 k2
n‖x− y‖2 + k‖(I− Tn)x− (I− Tn)y‖2, ∀x,y ∈ C.
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Recall that T is called uniformly L-Lipschitzian if and only if there exists some L > 0 such that

‖Tnx− Tny‖ 6 L‖x− y‖, ∀x,y ∈ C, ∀n > 1.

It is obvious to observe that

(i) T is a k-strictly pseudocontractive mapping when kn ≡ 1;

(ii) T is an asymptotically nonexpansive mapping when k = 0;

(iii) T is a nonexpansive mapping when kn ≡ 1 and k = 0;

(iv) if {Ti}16i6N is a finite family of {si}16i6N-strictly asymptotically pseudo-contractive mappings with
sequence {si} ⊆ [0, 1) and {kn,i} ⊆ [1,∞) such that limn→∞ kn,i = 1, then we have

‖Tni x− Tni y‖2 6 k2
n‖x− y‖2 + s‖(I− Tni )x− (I− Tni )y‖2, ∀x,y ∈ C,

for all 1 6 i 6 N, where constant s = max{si : 1 6 i 6 N} and sequence {kn} = max{kn,i : 1 6 i 6 N}

with limn→∞ kn = 1.

Recently, the class of k-strictly asymptotically pseudocontractive mappings has been extensively in-
vestigated by many authors as an important extension of asymptotically nonexpansive mappings; see
[13, 16, 22, 23] and the references therein. To study computational fixed points of nonlinear mappings,
various iterative methods, such as mean valued iteration methods, projection iterative methods, splitting
iterative methods, regularization iterative methods and so on, have been introduced and studied based
on different analysis techniques; see [5, 7, 12, 18, 21] and the references.

Recently, Qin et al. [16] constructed a new iterative algorithm for approximating common fixed points
of a finite family of k-strictly asymptotically pseudocontractive mappings in real Hilbert spaces by gener-
ating the sequence {xn} as follows:

xn = αn−1xn−1 + (1 −αn−1)T
h(n)
i(n) xn−1, n > 1. (1.1)

Specifically, 

x1 = α0x0 + (1 −α0)T1x0,
x2 = α1x1 + (1 −α1)T2x1,
...
xN = αN−1xN−1 + (1 −αN−1)TNxN−1,
xN+1 = αNxN + (1 −αN)T

2
1xN,

...
x2N = α2N−1xN−1 + (1 −α2N−1)T

2
Nx2N−1,

x2N+1 = α2Nx2N + (1 −α2N)T
3
1x2N,

...

where we can write that n = (h− 1)N+ i, where i = i(n) ∈ {1, 2, ...N},h = h(n) > 1 is a positive integer
and h(n) → ∞ as n → ∞. When sequence {αn} satisfies certain conditions, the sequence {xn} generated
by algorithm (1.1) converges weakly to a point in

⋂N
i=1 F(Ti).

Let B : C→ H be a monotone mapping, that is,

〈Bx−By, x− y〉 > 0, ∀x,y ∈ C.

Let ϕ : C→ R be a semicontinuous and convex functional and Θ : C×C→ R be a real-valued bifunction.
Assume that Θ satisfies the following conditions:
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(A1) Θ(x, x) = 0, ∀x ∈ C;
(A2) Θ is monotone, i.e., Θ(x,y) +Θ(y, x) 6 0, ∀x,y ∈ C;
(A3) lim supt→0Θ(x+ t(z− x),y) 6 Θ(x,y), ∀x,y ∈ C;
(A4) the function y 7→ Θ(x,y) is convex and lower semicontinuous.

Recall the so-called the system of generalized mixed equilibrium problems (GMEP) is to find x ∈ C
such that

Θ(x,y) + 〈Bx,y− x〉+ϕ(y) −ϕ(x) > 0, ∀y ∈ C. (1.2)

We use GMEP(Θ,B,ϕ) to denote the set of solutions to (1.2), i.e.,

GMEP(Θ,B,ϕ) = {x ∈ C : Θ(x,y) + 〈Bx,y− x〉+ϕ(y) −ϕ(x) > 0, ∀y ∈ C}.

If ϕ ≡ 0, problem (1.2) turns into the mixed equilibrium problem for Θ,B, denoted by GEP(Θ,B)
which is to find x ∈ C such that

Θ(x,y) + 〈Bx,y− x〉 > 0, ∀y ∈ C.

If B ≡ 0 and ϕ ≡ 0, problem (1.2) turns into the equilibrium problem for Θ, denoted by EP(Θ) which
is to find x ∈ C such that

Θ(x,y) > 0, ∀y ∈ C.

The generalized mixed equilibrium problem, which includes many important problems, for instance,
complementarity problems, variational inequality problems, optimization problems, and fixed point prob-
lems as special cases, has been extensively investigated by many authors; see [2, 6, 9, 11] and the references
therein. There are numerous problems in physics, optimization and economics which can be reduced to
find a solution of generalized equilibrium problem. For exploring its solutions, various iterative methods
have been proposed, see [15, 19, 24] and the references therein.

Due to extensive applications of equilibrium problems and k-strictly asymptotically pseudo-contrac-
tions, the topic of approximating common element of the set of solutions of the equilibrium problem and
the set of the fixed points of k-strictly asymptotically pseudo-contractions attract more attention recently.
For solving these problems, Liu [13] proposed the following iterative method:

x0 ∈ C chosen arbitrarily,
yn−1 = αn−1xn−1 + (1 −αn−1)T

h(n)
i(n) xn−1,

xn ∈ C, such that Θ(xn,y) + 〈Byn−1,y− xn〉+ 1
λn−1
〈y− xn, xn − yn−1〉 > 0, ∀y ∈ C,

(1.3)

where {Ti}16i6N is a finite family of strictly asymptotically pseudo-contractive mappings, ϕ : C → R is a
proper lower semi-continuous and convex functional, B : C→ H is a continuous and monotone mapping
and Θ : C× C → R satisfies (A1)–(A4). Under appropriate conditions imposed on sequences {αn} and
{βn} satisfied, they obtained weak and strong convergence theorems.

Motivated by the above mentioned results and the on-going research, we construct several new it-
eration schemes for approximating a common element of the set of solutions of equilibrium problems
(GMEP and GEP) and the set of common fixed points of a finite family of k-strictly asymptotically pseudo-
contractions in Hilbert spaces.

The main contributions of this paper are the following:

(i) The Modified Mann iteration method in algorithm (1.3) is replaced by a new iteration in our paper.
Moreover, we also consider approximating the common element of the set of solutions of generalized
mixed equilibrium problems (GMEP), not only equilibrium problem (GEP), and the set of common
fixed points of a finite family of k-strictly asymptotically pseudo-contractions. And we obtain two
different weak convergence theorems.
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(ii) By means of hybrid algorithms, we obtain two strong convergence theorems corresponding to weak
convergence theorems.

(iii) We apply the results to approximate the common element of the set of solutions of equilibrium
problems (GMEP and GEP) and the set of common fixed points of a finite family of asymptotically
nonexpansive mappings under suitable conditions.

(iv) We apply our results to (mixed) equilibrium problem (EP and MEP), (mixed) variational inequality,
convex minimization problem and convex feasibility problem.

The rest of the paper is organized as follows: Section 2 describes several definitions and lemmas
which we will use in proving our main results. Also, we give an example of a k-strictly asymptotically
pseudocontractive mapping with nonempty set of fixed points to support our results. Section 3 presents
our main results which include two weak convergence theorems and two strong convergence theorems.
Section 4 introduces several interesting applications of our results. Finally, we conclude our paper in
Section 5.

2. Preliminaries

Throughout the paper, → and ⇀ denote the strong convergence and weak convergence, respectively.
In addition, F(T) and ωw(xn) denote the fixed point set of T and the weak ω-limit set of xn, respectively,
that is, F(T) = {x ∈ C : Tx = x} and ωw(xn) = {u : ∃xnj ⇀ u}.

In an infinite dimensional real Hilbert space H, for all x,y ∈ H, the following properties hold:

‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y,y〉,

‖λx+ (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x− y‖2, ∀λ ∈ [0, 1]. (2.1)

Let C be a nonempty closed and convex subset of H, for each x ∈ H, there exists a nearest point from x

to C. We denote the nearest point by PCx, i.e., ‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}, where PC is called metric
projection from H onto C, and we have that

〈x− PCx,PCx− y〉 > 0, ∀y ∈ C. (2.2)

Let B be a mapping of C into H. Recall that B is an α-inverse-strongly monotone mapping if and only if
there exists α > 0 such that

〈Bx−By, x− y〉 > α‖Bx−By‖2, ∀x,y ∈ C.

It is clear that if B is an α-inverse-strongly monotone mapping, then it must be a 1
α -Lipschitz operator.

Moreover, for all x,y ∈ C and r > 0, we can observe that

‖(I− rB)x− (I− rB)y‖2 = ‖(x− y) − r(Bx−By)‖2

= ‖x− y‖2 − 2r〈x− y,Bx−By〉+ r2‖Bx−By‖2

6 ‖x− y‖2 + r(r− 2α)‖Bx−By‖2.

(2.3)

From the last inequality, we can see that I − rB : C → H is nonexpansive when r 6 2α. The class of
inverse-strongly monotone mappings has recently extensively investigated by many authors in different
framework of spaces; see [3, 8, 17] and the references therein.

To obtain the main results of this paper, we also need the following lemmas:

Lemma 2.1 ([4, 10]). Let C be a nonempty closed convex subset of H. Let Θ be a bifunction from C× C → R

satisfies (A1)-(A4), and let ϕ : C→ R be a proper lower semicontinuous and convex function. Let B : C→ H be a
continuous monotone mapping. Then for r > 0 and x ∈ H, there exists u ∈ C such that

Θ(u,y) + 〈Bu,y− u〉+ϕ(y) −ϕ(u) + 1
r
〈y− u,u− x〉 > 0, ∀y ∈ C.
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Define a mapping Kr : H→ C as follows:

Krx := {u ∈ C : Θ(u,y) + 〈Bu,y− u〉+ϕ(y) −ϕ(u) + 1
r
〈y− u,u− x〉 > 0, ∀y ∈ C}

for all x ∈ H and r > 0. Then, the following hold:

(i) For each x ∈ H, Kr(x) 6= ∅;
(ii) Kr is single-valued;

(iii) Kr is firmly nonexpansive, that is, for any x,y ∈ H,

‖Krx−Kry‖2 6 〈Krx−Kry, x− y〉;

(iv) F(Kr) = GMEP(Θ,ϕ,B);
(v) GMEP(Θ,ϕ,B) is closed and convex.

And notice that Ω(x,y) = Θ(x,y) + 〈Bx,y− x〉+ϕ(y) −ϕ(x) satisfies conditions (A1)–(A4) (see [10]).
Additionally, if B ≡ 0 and ϕ ≡ 0, GMEP(Θ,ϕ,B) reduces to EP(Θ), that is,

Θ(u,y) +
1
r
〈y− u,u− x〉 > 0, ∀y ∈ C.

Then, define a mapping Tr : H→ C and

Trx := {u ∈ C : Θ(u,y) +
1
r
〈y− u,u− x〉 > 0, ∀y ∈ C}

for all x ∈ H and r > 0. It is obvious that the above conclusions of Lemma 2.1 are also suitable for EP(Θ).

Lemma 2.2 ([20]). Let {an}, {bn} and {cn} are sequences of nonnegative real numbers satisfying the inequality

an+1 6 (1 + bn)an + cn, ∀n > 0,

if
∑∞
n=0 bn <∞ and

∑∞
n=0 cn <∞, then limn→∞ an exists.

Lemma 2.3 ([16]). Let C be a closed convex subset of a real Hilbert space H and T be an asymptotically k-strictly
pseudocontractive.

(i) T is uniformly L-Lipschitzian.
(ii) If F(T) is nonempty, then (I− T) is demiclosed at zero, that is,

xn ⇀ u and (I− T)xn → 0⇒ (I− T)u = 0.

(iii) F(T) is closed and convex so that the projection PF(T) is well-defined.

Lemma 2.4 ([11]). Let C be a closed convex subset of a real Hilbert space H and x,y, z ∈ H. The set

{v ∈ C : ‖y− v‖2 6 ‖x− v‖2 + 〈z, v〉+ a}

is convex (and closed), where a is a real number.

Lemma 2.5 ([1]). Let C be a closed convex subset of a real Hilbert space H and sequence {xn} be bounded in H. If

(i) ωw(xn) ⊂ C;
(ii) limn→∞ ‖xn − p‖ exists, ∀p ∈ C.

Then sequence {xn} converges weakly to a point in C.
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Lemma 2.6 ([14]). Let C be a closed convex subset of a real Hilbert space H and sequence {xn} be bounded in H.
Let q = PCx, x ∈ H. Assume

(i) ωw(xn) ⊂ C;
(ii) ‖xn − x‖ 6 ‖x− q‖, ∀n ∈ N.

Then sequence {xn} converges strongly to q.

Remark 2.7. We now give an example of a k-strictly asymptotically pseudocontractive mapping with
nonempty set of fixed points.

Suppose that H := R and C := [−1, 1] ⊂ R. Let T : C→ C be defined by

Tx :=


x, x ∈ [−1, 0);
1
2
x, x ∈ [0, 1].

Then we observe that F(T) = [−1, 0], and hence the set of the fixed points is nonempty.
Now, we show that T is a k-strictly asymptotically pseudocontractive mapping. Suppose that C1 =

[−1, 0) and C2 = [0, 1].
Case 1. If x,y ∈ C1, then, Tnx = x, Tny = y, we have that

|Tnx− Tny| = |x− y|. (2.4)

Case 2. If x,y ∈ C2, then, Tnx = 1
2nx, Tny = 1

2ny, we have that

|Tnx− Tny| =
1

2n
|x− y|. (2.5)

Case 3. If x ∈ C1,y ∈ C2, then, Tnx = x, Tny = 1
2ny, we have that

|Tnx− Tny| = |x−
1

2n
y| 6 |x− y|. (2.6)

Case 4. If x ∈ C2,y ∈ C1, then, Tnx = 1
2nx, Tny = y, we have that

|Tnx− Tny| = |
1

2n
x− y| 6 |x− y|. (2.7)

Therefore, from (2.4), (2.5), (2.6), and (2.7), it is obvious that T is an asymptotically nonexpansive mapping
with kn ≡ 1, then T is a k-strictly asymptotically pseudocontractive mapping for any k ∈ [0, 1).

3. Main results

In this section, we first prove two weak convergence theorems via two kinds of iteration schemes for
finding a common element of the set of solutions of equilibrium problems (GMEP and GEP) and the set of
common fixed points of a finite family of k-strictly asymptotically pseudo-contractions in Hilbert spaces.
Two strong convergence theorems are also established based on the hybrid algorithm.

3.1. Weak convergence theorems
Theorem 3.1. Let C be a nonempty closed convex subset of an infinite dimensional real Hilbert space H and
let {Ti}16i6N be a finite family of {si}16i6N-strictly asymptotically pseudo-contractive mappings with sequence
{si} ⊆ [0, 1) and {kn,i} ⊆ [1,∞) such that limn→∞ kn,i = 1 and

∑∞
n=0(kn,i − 1) < ∞. Let ϕ : C → R be a

proper lower semi-continuous and convex functional and let B : C → H be a continuous and monotone mapping.
Assume that Θ : C×C → R satisfies (A1)–(A4), s = max{si : 1 6 i 6 N}, {kn} = max{kn,i : 1 6 i 6 N} and
Γ =

⋂N
i=1 F(Ti)

⋂
GMEP(Θ,B,ϕ) 6= ∅. Let {xn} be a sequence generated by the following algorithm:
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x0 ∈ C chosen arbitrarily,
yn−1 = βn−1xn−1 + (1 −βn−1)T

h(n)
i(n) xn−1,

zn−1 = αn−1xn−1 + (1 −αn−1)T
h(n)
i(n) yn−1,

xn ∈ C such that
Θ(xn,y) + 〈Bxn,y− xn〉+ϕ(y) −ϕ(xn) + 1

rn−1
〈y− xn, xn − zn−1〉 > 0, ∀y ∈ C, n > 1,

(3.1)

where {αn}, {βn} ⊂ (0, 1) and {rn} satisfying the following conditions:
(i) αn

βn
> s, ∀n > 0;

(ii) lim infn→∞ rn > 0, ∀n > 0;
(iii) lim infn→∞ gn−1 > 0, ∀n > 1,

where gn−1 = (1 −αn−1)(1 −βn−1)[k
2
h(n)(βn−1 − s) − (1 −βn−1)

2L2s+βn−1s].

Then sequence {xn} converges weakly to a point in Γ .

Proof. Our proof is divided into the following three steps.
Step 1. We prove that limn→∞ ‖xn − p‖ exists, for all p ∈ Γ .
From (3.1) and (2.1), we have that

‖zn−1 − p‖2 = ‖αn−1xn−1 + (1 −αn−1)T
h(n)
i(n) yn−1 − p‖2

= αn−1‖xn−1 − p‖2 + (1 −αn−1)‖T
h(n)
i(n) yn−1 − p‖2

−αn−1(1 −αn−1)‖xn−1 − T
h(n)
i(n) yn−1‖2,

(3.2)

and
‖yn−1 − p‖2 = ‖βn−1xn−1 + (1 −βn−1)T

h(n)
i(n) xn−1 − p‖2

= βn−1‖xn−1 − p‖2 + (1 −βn−1)‖T
h(n)
i(n) xn−1 − p‖2

−βn−1(1 −βn−1)‖xn−1 − T
h(n)
i(n) xn−1‖2.

(3.3)

Since that Ti is a si-strictly asymptotically pseudo-contractive mapping, where i ∈ {1, 2, ...,N}, one has

‖Th(n)
i(n) yn−1 − p‖2 6 k2

h(n)‖yn−1 − p‖2 + s‖yn−1 − T
h(n)
i(n) yn−1‖2, (3.4)

and
‖Th(n)
i(n) xn−1 − p‖2 6 k2

h(n)‖xn−1 − p‖2 + s‖xn−1 − T
h(n)
i(n) xn−1‖2. (3.5)

Substituting (3.5) into (3.3), we obtain that

‖yn−1 − p‖2 6 βn−1‖xn−1 − p‖2 + (1 −βn−1)(k
2
h(n)‖xn−1 − p‖2

+ s‖xn−1 − T
h(n)
i(n) xn−1‖2) −βn−1(1 −βn−1)‖xn−1 − T

h(n)
i(n) xn−1‖2

6 k2
h(n)‖xn−1 − p‖2 − (βn−1 − s)(1 −βn−1)‖xn−1 − T

h(n)
i(n) xn−1‖2.

(3.6)

Observe that

‖yn−1 − T
h(n)
i(n) yn−1‖2 = ‖βn−1xn−1 + (1 −βn−1)T

h(n)
i(n) xn−1 − T

h(n)
i(n) yn−1‖2

= βn−1‖xn−1 − T
h(n)
i(n) yn−1‖2 + (1 −βn−1)‖T

h(n)
i(n) xn−1

− T
h(n)
i(n) yn−1‖2 −βn−1(1 −βn−1)‖xn−1 − T

h(n)
i(n) xn−1‖2

6 βn−1‖xn−1 − T
h(n)
i(n) yn−1‖2 + (1 −βn)L

2‖xn−1 − yn−1‖2

−βn−1(1 −βn−1)|xn−1 − T
h(n)
i(n) xn−1‖2

6 βn−1‖xn−1 − T
h(n)
i(n) yn−1‖2 + (1 −βn)

3L2‖xn−1

− T
h(n)
i(n) xn−1‖2 −βn−1(1 −βn−1)‖xn−1 − T

h(n)
i(n) xn−1‖2.

(3.7)
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Substituting (3.6), (3.7) into (3.4), we get that

‖Th(n)
i(n) yn−1 − p‖2 6 k2

h(n)[k
2
h(n)‖xn−1 − p‖2 − (βn−1 − s)(1 −βn−1)‖xn−1

− T
h(n)
i(n) xn−1‖2] + s[βn−1‖xn−1 − T

h(n)
i(n) yn−1‖2

+ (1 −βn)
3L2‖xn−1 − T

h(n)
i(n) xn−1‖2

−βn−1(1 −βn−1)‖xn−1 − T
h(n)
i(n) xn−1‖2]

= k4
h(n)‖xn−1 − p‖2 + sβn−1‖xn−1 − T

h(n)
i(n) yn−1‖2

− (1 −βn−1)[k
2
h(n)(βn−1 − s) − (1 −βn−1)

2L2s

+ sβn−1]‖xn−1 − T
h(n)
i(n) xn−1‖2.

(3.8)

Substituting (3.8) into (3.2), and combining with condition (i), we obtain that

‖zn−1 − p‖2 = αn−1‖xn−1 − p‖2 + (1 −αn−1)[k
4
h(n)‖xn−1 − p‖2

+ sβn−1‖xn−1 − T
h(n)
i(n) yn−1‖2 − (1 −βn−1)[k

2
h(n)(βn−1 − s)

− (1 −βn−1)
2L2s+ sβn−1]‖xn−1 − T

h(n)
i(n) xn−1‖2]

−αn−1(1 −αn−1)‖xn−1 − T
h(n)
i(n) yn−1‖2

6 k4
h(n)‖xn−1 − p‖2 − (1 −αn−1)(αn−1 −βn−1s)

× ‖xn−1 − T
h(n)
i(n) yn−1‖2 − gn−1‖xn−1 − T

h(n)
i(n) xn−1‖2

6 k4
h(n)‖xn−1 − p‖2 − gn−1‖xn−1 − T

h(n)
i(n) xn−1‖2.

(3.9)

Since xn = Krn−1zn−1, it follows from Lemma 2.1 and condition (iii) that

‖xn − p‖2 = ‖Krn−1zn−1 − p‖2

6 ‖zn−1 − p‖2

6 k4
h(n)‖xn−1 − p‖2

= (1 + k4
h(n) − 1)‖xn−1 − p‖2.

(3.10)

From condition
∑∞
n=0(kn,i − 1) < ∞, we have

∑∞
n=0(kn − 1) < ∞. Hence

∑∞
n=0(k

4
h(n) − 1) < ∞. Again

by Lemma 2.2, we have that limn→∞ ‖xn − p‖ exists. So, {‖xn − p‖} is bounded, this implies that {xn} is
bounded.

Step 2. We prove that ωw(xn) ⊆ Γ .
First, we prove that ωw(xn) ⊆

⋂N
l=1 F(Tl). In fact, we only prove that

lim
n→∞ ‖xn − Tlxn‖ → 0, ∀l ∈ {1, 2, ...,N}.

It follows from (3.9) that

gn−1‖xn−1 − T
h(n)
i(n) xn−1‖2 6 k4

h(n)‖xn−1 − p‖2 − ‖xn − p‖2.

From the fact that lim infn→∞ gn−1 > 0, kh(n) → 1 and limn→∞ ‖xn − p‖ exists, we obtain that

‖xn−1 − T
h(n)
i(n) xn−1‖ → 0, (n→∞). (3.11)
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From (3.1) and Lemma 2.3, we have that

‖zn−1 − xn−1‖ = ‖αn−1xn−1 + (1 −αn−1)T
h(n)
i(n) yn−1 − xn−1‖

= (1 −αn−1)‖T
h(n)
i(n) yn−1 − xn−1‖

6 (1 −αn−1)[‖T
h(n)
i(n) yn−1 − T

h(n)
i(n) xn−1‖+ ‖T

h(n)
i(n) xn−1 − xn−1‖]

6 (1 −αn−1)[L‖yn−1 − xn−1‖+ ‖T
h(n)
i(n) xn−1 − xn−1‖]

= (1 −αn−1)[(1 −βn−1)L+ 1]‖Th(n)
i(n) xn−1 − xn−1‖ → 0.

From Lemma 2.1, we get that

‖xn − p‖2 = ‖Krn−1zn−1 − p‖2

6 〈xn − p, zn−1 − p〉

=
1
2
(‖zn−1 − p‖2 + ‖xn − p‖2 − ‖zn−1 − xn‖2).

It follows that
‖zn−1 − xn‖2 6 ‖zn−1 − p‖2 − ‖xn − p‖2

6 k4
h(n)‖xn−1 − p‖2 − ‖xn − p‖2 → 0.

Hence, we have
‖xn − xn−1‖ 6 ‖xn − zn−1‖+ ‖zn−1 − xn−1‖ → 0, (n→∞).

It is obvious that
lim
n→∞ ‖xn − xn+j‖ = 0, ∀j ∈ {1, 2, ...,N}. (3.12)

Notice that

‖xn − Tn+jxn‖ 6 ‖xn − xn+j‖+ ‖xn+j − Tn+jxn+j‖+ ‖Tn+jxn+j − Tn+jxn‖
6 (1 + L)‖xn − xn+j‖+ ‖xn+j − Tn+jxn+j‖,

(3.13)

and
‖xn − Tnxn‖ 6 ‖xn − xn−1‖+ ‖xn−1 − Tnxn−1‖+ ‖Tnxn−1 − Tnxn‖

6 (1 + L)‖xn − xn−1‖+ ‖xn−1 − Tnxn−1‖.
(3.14)

For all n > N, we can write n = (h(n) − 1)N+ i(n), where i(n) ∈ {1, 2, ...N}. Then,

n−N = (h(n) − 1 − 1)N+ i(n) = (h(n−N) − 1)N+ i(n−N),

that is, h(n−N) = h(n) − 1, i(n−N) = i(n). We can obtain that

‖xn−1 − Tnxn−1‖ 6 ‖xn−1 − T
h(n)
i(n) xn−1‖+ ‖T

h(n)
i(n) xn−1 − Tnxn−1‖

6 ‖xn−1 − T
h(n)
i(n) xn−1‖+ ‖T

h(n)
i(n) xn−1 − Ti(n)xn−1‖

6 ‖xn−1 − T
h(n)
i(n) xn−1‖+ L‖T

h(n)−1
i(n) xn−1 − xn−1‖

6 ‖xn−1 − T
h(n)
i(n) xn−1‖+ L(‖T

h(n)−1
i(n) xn−1 − T

h(n)−1
i(n−N)xn−N‖

+ ‖Th(n)−1
i(n−N)xn−N − x(n−N)−1‖+ ‖x(n−N)−1 − xn−1‖),

(3.15)

‖Th(n)−1
i(n) xn−1 − T

h(n)−1
i(n−N)xn−N‖ = ‖T

h(n)−1
i(n) xn−1 − T

h(n)−1
i(n) xn−N‖

6 L‖xn−1 − xn−N‖,
(3.16)
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and
‖Th(n)−1
i(n−N)xn−N − x(n−N)−1‖ 6 ‖T

h(n)−1
i(n−N)xn−N − T

h(n−N)
i(n−N) x(n−N)−1‖

+ ‖Th(n−N)
i(n−N) x(n−N)−1 − x(n−N)−1‖

6 ‖Th(n−N)
i(n−N) x(n−N)−1 − x(n−N)−1‖

+ L‖xn−N − x(n−N)−1‖.

(3.17)

Substituting (3.16) and (3.17) into (3.15), we have that

‖xn−1 − Tnxn−1‖ 6 ‖xn−1 − T
h(n)
i(n) xn−1‖+ L(L‖xn−1 − xn−N‖

+ L‖xn−N − x(n−N)−1‖+ ‖T
h(n−N)
i(n−N) x(n−N)−1

− x(n−N)−1‖+ ‖x(n−N)−1 − xn−1‖).

From (3.11) and (3.12), we have that

lim
n→∞ ‖xn−1 − Tnxn−1‖ = 0. (3.18)

Substituting (3.18) into (3.14), we can obtain

lim
n→∞ ‖xn − Tnxn‖ = 0. (3.19)

It follows from (3.12), (3.13) and (3.19) that

lim
n→∞ ‖xn − Tlxn‖ = 0, ∀l ∈ {1, 2, ...,N}.

Since {xn} is bounded, there exists a subsequence {xnj} of {xn} such that {xnj} ⇀ z. Since ‖xnj − Tlxnj‖ →
0, (n→∞), from Lemma 2.3, we have z ∈ F(Tl), for all l ∈ {1, 2, ...,N}. That is, ωw(xn) ⊆

⋂N
l=1 F(Tl).

Next, we show ωw(xn) ⊆ GMEP(Θ,B,ϕ). From limn→∞ ‖zn−1 − xn‖ = 0 and condition (ii), we have
that

lim
n→∞ ‖zn−1 − xn‖

rn−1
= 0.

Since xn = Krn−1zn−1, we also have

Ω(xn,y) +
1

rn−1
〈y− xn, xn − zn−1〉 > 0, ∀y ∈ C,

where
Ω(xn,y) = Θ(xn,y) + 〈Bxn,y− xn〉+ϕ(y) −ϕ(xn).

It follows from (A2) that

1
rn−1

〈y− xn, xn − zn−1〉 > −Ω(xn,y) > Ω(y, xn), ∀y ∈ C.

Again from (A4) and limn→∞ ‖zn−1−xn‖
rn−1

= 0, we can obtain that

Ω(y, z) 6 0, ∀y ∈ C, ∀z ∈ ωw(xn).

Put yt = ty+ (1 − t)z, for all t ∈ (0, 1), y ∈ C and z ∈ ωw(xn), then, yt ∈ C. Therefore, Ω(yt, z) 6 0.
From (A1), we can obtain that 0 = Ω(yt,yt) 6 tΩ(yt,y) + (1 − t)Ω(yt, z) 6 tΩ(yt,y). So, Ω(yt,y) > 0,
for all y ∈ C. Taking t → 0, we have Ω(z,y) > 0, for all y ∈ C, then, z ∈ GMEP(Θ,B,ϕ). That is,
ωw(xn) ⊆ GMEP(Θ,B,ϕ), and ωw(xn) ⊆ Γ .

Step 3. We prove that sequence {xn} converges weakly to a point in Γ .
Since ωw(xn) ⊆ Γ and limn→∞ ‖xn − p‖ exists, it follows from Lemma 2.5 that sequence {xn} con-

verges weakly to a point in Γ .
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Theorem 3.2. Let C be a nonempty closed convex subset of an infinite dimensional real Hilbert space H and
let {Ti}16i6N be a finite family of {si}16i6N-strictly asymptotically pseudo-contractive mappings with sequence
{si} ⊆ [0, 1) and {kn,i} ⊆ [1,∞) such that limn→∞ kn,i = 1 and

∑∞
n=0(kn,i − 1) <∞. Let B : C→ H be an α-

inverse-strongly monotone mapping. Assume that Θ : C×C → R satisfies (A1)–(A4), s = max{si : 1 6 i 6 N},
{kn} = max{kn,i : 1 6 i 6 N} and Γ =

⋂N
i=1 F(Ti)

⋂
GEP(Θ,B) 6= ∅. Let {xn} be a sequence generated by the

following algorithm:

x0 ∈ C chosen arbitrarily,
yn−1 = βn−1xn−1 + (1 −βn−1)T

h(n)
i(n) xn−1,

zn−1 = αn−1xn−1 + (1 −αn−1)T
h(n)
i(n) yn−1,

xn ∈ C such that
Θ(xn,y) + 〈Bzn−1,y− xn〉+ 1

rn−1
〈y− xn, xn − zn−1〉 > 0, ∀y ∈ C, n > 1,

(3.20)

where {αn}, {βn} ⊂ (0, 1) and {rn} satisfying the following conditions:

(i) αn
βn

> s,∀n > 0;
(ii) rn ∈ [a,b] for some 0 < a < b < 2α,∀n > 0;

(iii) lim infn→∞ gn−1 > 0,
where gn−1 = (1 −αn−1)(1 −βn−1)[k

2
h(n)(βn−1 − s) − (1 −βn−1)

2L2s+βn−1s], for all n > 1.

Then sequence {xn} converges weakly to a point in Γ .

Proof. Our proof is divided into the following steps.
Step 1. We prove that limn→∞ ‖xn − p‖ exists, for all p ∈ Γ .
From algorithm (3.20), we can obtain that xn = Trn−1(zn−1 − rn−1Bzn−1). Again from Lemma 2.1 and

(2.3), we have that

‖xn − p‖2 = ‖Trn−1(zn−1 − rn−1Bzn−1) − Trn−1(p− rn−1Bp)‖2

6 ‖zn−1 − rn−1Bzn−1 − (p− rn−1Bp)‖2

6 ‖zn−1 − p‖2 + rn−1(rn−1 − 2α)‖Bzn−1 −Bp‖2.

Similar to the first step of Theorem 3.1, we find from conditions (ii) and (iii) that

‖xn − p‖2 6 ‖zn−1 − p‖2 + rn−1(rn−1 − 2α)‖Bzn−1 −Bp‖2

6 k4
h(n)‖xn−1 − p‖2 − gn−1‖xn−1 − T

h(n)
i(n) xn−1‖2

+ rn−1(rn−1 − 2α)‖Bzn−1 −Bp‖2

6 (1 + k4
h(n) − 1)‖xn−1 − p‖2.

(3.21)

Since
∑∞
n=0(kn,i − 1) < ∞, we have

∑∞
n=0(kn − 1) < ∞. Hence

∑∞
n=0(k

4
hn

− 1) < ∞. Again by Lemma
2.2, we have that limn→∞ ‖xn − p‖ exists. So, {‖xn − p‖} is bounded, this implies that {xn} is bounded.

Step 2. We prove that ωw(xn) ⊆ Γ . The difference between Theorem 3.1 and Theorem 3.2 is the proof
of limn→∞ ‖xn − Tlxn‖ → 0, for all l ∈ {1, 2, ...,N} and ωw(xn) ⊆ GEP(Θ,B). From (3.21), we have that

gn−1‖xn−1 − T
h(n)
i(n) xn−1‖2 6 k4

h(n)‖xn−1 − p‖2 − ‖xn − p‖2,

and
rn−1(2α− rn−1)‖Bzn−1 −Bp‖2 6 k4

h(n)‖xn−1 − p‖2 − ‖xn − p‖2.

Again from conditions (ii) and (iii), we have that

lim
n→∞ ‖xn−1 − T

h(n)
i(n) xn−1‖ = 0,
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and
lim
n→∞ ‖Bzn−1 −Bp‖ = 0.

Observe that
‖zn−1 − xn−1‖ = ‖αn−1xn−1 + (1 −αn−1)T

h(n)
i(n) yn−1 − xn−1‖

= (1 −αn−1)‖T
h(n)
i(n) yn−1 − xn−1‖

6 (1 −αn−1)‖T
h(n)
i(n) yn−1 − T

h(n)
i(n) xn−1‖

+ ‖Th(n)
i(n) xn−1 − xn−1‖

6 (1 −αn−1)[L‖yn−1 − xn−1‖

+ ‖Th(n)
i(n) xn−1 − xn−1‖]

= (1 −αn−1)[(1 −βn−1)L+ 1]‖Th(n)
i(n) xn−1 − xn−1‖

→ 0.

(3.22)

From (3.20) and Lemma 2.1, we have that

‖xn − p‖2 = ‖Trn−1(zn−1 − rn−1Bzn−1) − Trn−1(p− rn−1Bp)‖2

6 〈zn−1 − rn−1Bzn−1 − (p− rn−1Bp), xn − p〉

=
1
2
(‖(zn−1 − rn−1Bzn−1) − (p− rn−1Bp)‖2) + ‖xn − p‖2

− ‖(zn−1 − rn−1Bzn−1) − (p− rn−1Bp) − (xn − p)‖2

6
1
2
(‖zn−1 − p‖2 + ‖xn − p‖2 − ‖(zn−1 − xn) − rn−1(Bzn−1 −Bp)‖2)

=
1
2
(‖zn−1 − p‖2 + ‖xn − p‖2 − ‖zn−1 − xn‖2 − r2

n−1‖Bzn−1 −Bp‖2

+ 2rn−1〈zn−1 − xn,Bzn−1 −Bp〉).

It follows that

‖xn − p‖2 6 ‖zn−1 − p‖2 − ‖zn−1 − xn‖2 − r2
n−1‖Bzn−1 −Bp‖2

+ 2rn−1〈zn−1 − xn,Bzn−1 −Bp〉
6 k4

h(n)‖xn−1 − p‖2 − ‖zn−1 − xn‖2 − r2
n−1‖Bzn−1 −Bp‖2

+ 2rn−1〈zn−1 − xn,Bzn−1 −Bp〉.

So, we have
‖zn−1 − xn‖2 6 ‖xn−1 − p‖2 − ‖xn − p‖2 + (k4

h(n) − 1)‖xn−1 − p‖2

− r2
n−1‖Bzn−1 −Bp‖2 + 2rn−1〈zn−1 − xn,Bzn−1 −Bp〉.

Since limn→∞ kn = 1, limn→∞ ‖Bzn−1 −Bp‖ = 0 and limn→∞ ‖xn − p‖ exists, we obtain that

lim
n→∞ ‖zn−1 − xn‖ = 0.

Therefore,
‖xn − xn−1‖ 6 ‖xn − zn−1‖+ ‖zn−1 − xn−1‖ → 0.

The remaining is the same to the proof of limn→∞ ‖xn − Tlxn‖ → 0, for all l ∈ {1, 2, ...,N}.
Next, we prove that ωw(xn) ⊆ GEP(Θ,B). Since xn = Trn−1(zn−1 − rn−1Azn−1), we have

Θ(xn,y) + 〈Bzn−1,y− xn〉+
1

rn−1
〈y− xn, xn − zn−1〉 > 0, ∀y ∈ C.
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It follows from (A2) that

〈Bzn−1,y− xn〉+
1

rn−1
〈y− xn, xn − zn−1〉 > Θ(y, xn). (3.23)

Let yt = ty+ (1 − t)z, where y ∈ C, z ∈ ωw(xn) and t ∈ (0, 1), it is easy to see that yt ∈ C. Combining
with (3.23), we can obtain that

〈Byt,yt − xn〉 > 〈Byt,yt − xn〉− 〈Bzn−1,yt − xn〉

−
1

rn−1
〈yt − xn, xn − zn−1〉+Θ(yt, xn)

> 〈Byt −Bxn,yt − xn〉+ 〈Bxn −Bzn−1,yt − xn〉

− 〈yt − xn,
xn − zn−1

rn−1
〉+Θ(yt, xn).

It follows from limn→∞ ‖zn−1 − xn‖ = 0 that limn→∞ ‖zn−1−xn‖
rn−1

= 0. On the other hand, we have
‖Bxn − Bzn−1‖ → 0. Again by monotonicity of B, we obtain that 〈Byt − Bxn,yt − xn〉 > 0. Then,
replacing n by nk and letting k→∞, from (A4), we can easily observe that

〈Byt,yt − z〉 > Θ(yt, z).

Again combining with (A1) and (A4), we have

0 = Θ(yt,yt)
6 tΘ(yt,y) + (1 − t)Θ(yt, z)
6 tΘ(yt,y) + (1 − t)t〈Byt,y− z〉.

It follows that
Θ(yt,y) + (1 − t)〈Byt,y− z〉 > 0.

Taking t→ 0, we obtain that
Θ(z,y) + 〈Bz,y− z〉 > 0, ∀y ∈ C.

Then z ∈ GEP(Θ,B), that is, ωw(xn) ⊆ GEP(Θ,B). The remaining is the same to the proof of Theorem
3.1.

Remark 3.3. Since asymptotically nonexpansive mappings are 0-strict asymptotically pseudo-contractions,
therefore, we can obtain two kinds of weak convergence theorems for a finite family of asymptotically
nonexpansive mappings by putting si = 0, for all i ∈ {1, 2, ...,N} in Theorem 3.1 with the condition
replaced of the following:

(i) lim infn→∞ rn > 0, ∀n > 0;
(ii) {αn} ⊂ [0, 1), {βn} ⊂ (0, 1);

(iii) lim supn→∞ αn < 1, 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1,

and in Theorem 3.2 with the condition replaced of the following:

(i) rn ∈ [a,b] for some 0 < a < b < 2α, ∀n > 0;
(ii) {αn} ⊂ [0, 1), {βn} ⊂ (0, 1);

(iii) lim supn→∞ αn < 1, 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1.

3.2. Strong convergence theorems
Theorem 3.4. Let C be a nonempty closed convex subset of an infinite dimensional real Hilbert space H and
let {Ti}16i6N be a finite family of {si}16i6N-strictly asymptotically pseudo-contractive mappings with sequence
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{si} ⊆ [0, 1) and {kn,i} ⊆ [1,∞) such that limn→∞ kn,i = 1 and
∑∞
n=0(kn,i − 1) < ∞. Let ϕ : C → R be a

proper lower semi-continuous and convex functional, and let B : C → H be a continuous and monotone mapping.
Assume that Θ : C×C → R satisfies (A1)–(A4), s = max{si : 1 6 i 6 N}, {kn} = max{kn,i : 1 6 i 6 N} and
Γ =

⋂N
i=1 F(Ti)

⋂
GMEP(Θ,B,ϕ) 6= ∅. Let {xn} be a sequence generated by the following algorithm:

x0 ∈ C chosen arbitrarily,
yn−1 = βn−1xn−1 + (1 −βn−1)T

h(n)
i(n) xn−1,

zn−1 = αn−1xn−1 + (1 −αn−1)T
h(n)
i(n) yn−1,

un−1 ∈ C, such that for all y ∈ C,
Θ(un−1,y) + 〈Bun−1,y− un−1〉+ϕ(y) −ϕ(un−1) +

1
rn−1
〈y− un−1,un−1 − zn−1〉 > 0,

Cn−1 = {ν ∈ C : ‖un−1 − ν‖2 6 ‖xn−1 − ν‖2 + θn−1 − hn−1‖xn−1 − T
h(n)
i(n) xn−1‖2},

Qn−1 = {ν ∈ C : 〈x0 − xn−1, xn−1 − ν〉 > 0},
xn = PCn−1

⋂
Qn−1

x0, ∀n > 1,

where θn = (k4
h(n) − 1)ρn, ρn = sup{‖xn − p‖ : p ∈ Γ } <∞. When {αn}, {βn} ⊂ (0, 1) and {rn} satisfying the

following conditions:

(i) αn
βn

> s, ∀n > 0;
(ii) lim infn→∞ rn > 0, ∀n > 0;

(iii) lim infn→∞ gn−1 > 0, ∀n > 1,
where gn−1 = (1 −αn−1)(1 −βn−1)[k

2
h(n)(βn−1 − s) − (1 −βn−1)

2L2s+βn−1s].

Then sequence {xn} converges strongly to PΓx0.

Proof. Our proof is divided into the following five steps.
Step 1. We show that Cn−1 and Qn−1 are closed and convex for all n > 1.
From the definition of Cn−1 and Qn−1, it is obvious that Cn−1 is closed and Qn−1 is closed and

convex. From Lemma 2.4, we know that Cn−1 is also convex.
Step 2. We show that Γ ⊆ Cn−1

⋂
Qn−1, for all n > 1.

The proof of Γ ⊆ Cn−1 is similar to the first step of Theorem 3.1, we only replace xn with un−1 in (3.9)
and (3.10). Then, we can obtain for all p ∈ Γ ,

‖un−1 − p‖2 6 ‖zn−1 − p‖2

6 k4
h(n)‖xn−1 − p‖2 − gn−1‖xn−1 − T

h(n)
i(n) xn−1‖2

6 ‖xn−1 − p‖2 + θn−1 − gn−1‖xn−1 − T
h(n)
i(n) xn−1‖2,

that is, Γ ⊆ Cn−1, for all n > 1.
We prove that Γ ⊆ Qn−1, for all n > 1 by induction. We have Γ ⊆ C = Q0. Suppose Γ ⊆ Qn−1. Since

xn = PCn−1
⋂
Qn−1

x0, we find from (2.2) that

〈x0 − xn, xn − u〉 > 0, ∀u ∈ Cn−1

⋂
Qn−1.

Since Γ ⊆ Cn−1
⋂
Qn−1, we have Γ ⊆ Qn.

Step 3. We prove that {xn} is bounded.
Since the definition of Qn−1, we know that xn−1 = PQn−1x0. Also, xn ∈ Cn−1

⋂
Qn−1 ⊆ Qn−1. Then

‖xn−1 − x0‖ 6 ‖xn − x0‖.

Therefore, the sequence {‖xn − x0‖} is nondecreasing. Again since Γ ⊆ Qn−1, for all n > 1. It follows that

‖xn−1 − x0‖ 6 ‖p− x0‖, ∀p ∈ Γ . (3.24)
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So, we have limn→∞ ‖xn − x0‖ exists, that is, {xn} is bounded.
Step 4. We prove that ωw(xn) ⊆ Γ .
The difference between Theorem 3.4 and Theorem 3.1 is the proof of

lim
n→∞ ‖xn − Tlxn‖ → 0, ∀l ∈ {1, 2, ...,N},

and ωw(xn) ⊆ GMEP(Θ,B,ϕ).
First, we show that limn→∞ ‖xn − Tlxn‖ → 0, for all l ∈ {1, 2, ...,N}. Obviously, we only need to prove

that limn→∞ ‖xn − xn−1‖ = 0 and limn→∞ ‖xn−1 − T
h(n)
i(n) xn−1‖ = 0. Since the definition of Qn−1, we

know that xn−1 = PQn−1x0. Considering xn ∈ Cn−1
⋂
Qn−1 ⊆ Qn−1, we can obtain that

〈xn − xn−1, xn−1 − x0〉 > 0.

From (2.2), we know that
‖xn − xn−1‖2 = ‖(xn − x0) − (xn−1 − x0)‖2

= ‖xn − x0‖2 − ‖xn−1 − x0‖2

− 2〈xn − xn−1, xn−1 − x0〉
6 ‖xn − x0‖2 − ‖xn−1 − x0‖2,

which together with the existence of limn→∞ ‖xn − x0‖, we get that

‖xn − xn−1‖ → 0, (n→∞). (3.25)

By the definition of Cn−1, we have

‖un−1 − v‖2 6 ‖xn−1 − v‖2 + θn−1, ∀v ∈ Cn−1.

Again since xn = PCn−1
⋂
Qn−1

x0 ∈ Cn−1, we have

‖un−1 − xn‖2 6 ‖xn−1 − xn‖2 + θn.

Combining (3.25) and θn → 0(n→∞), it is obvious that limn→∞ ‖un−1 − xn‖ = 0.

‖un−1 − xn−1‖ 6 ‖un−1 − xn‖+ ‖xn − xn−1‖ → 0, (n→∞). (3.26)

From the definition of Cn−1, we have

gn−1‖xn−1 − T
h(n)
i(n) xn−1‖2 6 ‖xn−1 − p‖2 + θn − ‖un−1 − p‖2.

From (3.26), θn → 0(n→∞) and condition (iii), we can obtain

‖xn−1 − T
h(n)
i(n) xn−1‖ → 0, (n→∞).

The remaining is the same to Theorem 3.1.
Next, we show that ωw(xn) ⊆ GMEP(Θ,B,ϕ).
We only need to prove that limn→∞ ‖un−1 − zn−1‖ = 0, for all n > 1. From (3.22) and (3.26), we have

‖un−1 − zn−1‖ 6 ‖un−1 − xn−1‖+ ‖xn−1 − zn−1‖ → 0. (3.27)

The remaining is the same to Theorem 3.1. Therefore, ωw(xn) ⊆ Γ .
Step 5. We prove that xn → x∗ = PΓx0.
Combining with (3.24) and lemma 2.6, we can obtain that sequence {xn} converges strongly to x∗ =

PΓx0.
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Theorem 3.5. Let C be a nonempty closed convex subset of an infinite dimensional real Hilbert space H and
let {Ti}16i6N be a finite family of {si}16i6N-strictly asymptotically pseudo-contractive mappings with sequence
{si} ⊆ [0, 1) and {kn,i} ⊆ [1,∞) such that limn→∞ kn,i = 1 and

∑∞
n=0(kn,i − 1) < ∞. Let B : C → H be an

α-inverse-strongly monotone mapping. Assume that Θ : C×C→ R satisfies (A1)-(A4), s = max{si : 1 6 i 6 N},
{kn} = max{kn,i : 1 6 i 6 N} and Γ =

⋂N
i=1 F(Ti)

⋂
GEP(Θ,B) 6= ∅. Let {xn} be a sequence generated by the

following algorithm:

x0 ∈ C chosen arbitrarily,
yn−1 = βn−1xn−1 + (1 −βn−1)T

h(n)
i(n) xn−1,

zn−1 = αn−1xn−1 + (1 −αn−1)T
h(n)
i(n) yn−1,

un−1 ∈ C, such that for all y ∈ C,
Θ(un−1,y) + 〈Bzn−1,y− un−1〉+ 1

rn−1
〈y− un−1,un−1 − zn−1〉 > 0, ∀y ∈ C,

Cn = {ν ∈ C : ‖un−1 − ν‖2 6 ‖xn−1 − ν‖2 + θn−1 − hn−1‖xn−1 − T
h(n)
i(n) xn−1‖2},

Qn = {ν ∈ C : 〈x0 − xn−1, xn−1 − ν〉 > 0},
xn = PCn−1

⋂
Qn−1

x0, ∀n > 1,

where θn = (k4
h(n) − 1)ρn, ρn = sup{‖xn − p‖ : p ∈ Γ } <∞. When {αn}, {βn} ⊂ (0, 1) and {rn} satisfying the

following conditions:
(i) αn

βn
> s, ∀n > 0;

(ii) rn ∈ [a,b] for some 0 < a < b < 2α, ∀n > 0;
(iii) lim infn→∞ gn−1 > 0,

where gn−1 = (1 −αn−1)(1 −βn−1)[k
2
hn

(βn−1 − s) − (1 −βn−1)
2L2s+βn−1s], ∀n > 1.

Then sequence {xn} converges strongly to PΓx0.

Proof. The process of proof is similar to the proof of Theorem 3.4 except ωw(xn) ⊆ GEP(Θ,B). The proof
of ωw(xn) ⊆ GEP(Θ,B) is similar to the proof of Theorem 3.2, we only replace xn by un−1 and use (3.27).
This completes the proof.

Remark 3.6. Similarly, in Theorem 3.4 and Theorem 3.5, if si = 0, 1 6 i 6 N and the conditions which
sequences {αn} and {βn} satisfy in Theorem 3.4 and Theorem 3.5 replaced of the following:

(i) {αn} ⊂ [0, 1), {βn} ⊂ (0, 1);
(ii) lim supn→∞ αn < 1, 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1.

Then, two kinds of strong convergence theorems for a finite family of asymptotically nonexpansive map-
pings can be obtained.

4. Applications

In this section, we introduce the several applications of weak convergence theorem (Theorem 3.1). Ac-
cording to different situations, the corresponding strong convergence theorem (Theorem 3.4) has different
results.

4.1. Application to (mixed) equilibrium problem (EP and MEP)
In (1.2), if B = ϕ ≡ 0, the generalized mixed equilibrium problem reduces the equilibrium problem

(EP), that is, to find x ∈ C such that
Θ(x,y) > 0, ∀y ∈ C.

If B ≡ 0, the generalized mixed equilibrium problem reduces the mixed equilibrium problem (MEP),
that is, to find x ∈ C such that

Θ(x,y) +ϕ(y) −ϕ(x) > 0, ∀y ∈ C.
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Therefore, the result of Theorem 3.1 can be applied to (mixed) equilibrium problem (EP and MEP),
then, we have the following results.

Theorem 4.1. Let C be a nonempty closed convex subset of an infinite dimensional real Hilbert space H and let
{Ti}16i6N be a finite family of {si}16i6N-strictly asymptotically pseudo-contractive mappings with sequence {si} ⊆
[0, 1) and {kn,i} ⊆ [1,∞) such that limn→∞ kn,i = 1 and

∑∞
n=0(kn,i − 1) < ∞. Assume that Θ : C×C → R

satisfies (A1)–(A4), s = max{si : 1 6 i 6 N}, {kn} = max{kn,i : 1 6 i 6 N} and Γ =
⋂N
i=1 F(Ti)

⋂
EP(Θ) 6= ∅.

Let {xn} be a sequence generated by the following algorithm:
x0 ∈ C chosen arbitrarily,
yn−1 = βn−1xn−1 + (1 −βn−1)T

h(n)
i(n) xn−1,

zn−1 = αn−1xn−1 + (1 −αn−1)T
h(n)
i(n) yn−1,

xn ∈ C, such that Θ(xn,y) + 1
rn−1
〈y− xn, xn − zn−1〉 > 0, ∀y ∈ C, n > 1,

where {αn}, {βn} ⊂ (0, 1) and {rn} satisfying the following conditions:

(i) αn
βn

> s, ∀n > 0;
(ii) lim infn→∞ rn > 0, ∀n > 0;

(iii) lim infn→∞ gn−1 > 0, ∀n > 1,
where gn−1 = (1 −αn−1)(1 −βn−1)[k

2
h(n)(βn−1 − s) − (1 −βn−1)

2L2s+βn−1s].

Then sequence {xn} converges weakly to a point in Γ .

Theorem 4.2. Let C be a nonempty closed convex subset of an infinite dimensional real Hilbert space H and
let {Ti}16i6N be a finite family of {si}16i6N-strictly asymptotically pseudo-contractive mappings with sequence
{si} ⊆ [0, 1) and {kn,i} ⊆ [1,∞) such that limn→∞ kn,i = 1 and

∑∞
n=0(kn,i − 1) < ∞. Let ϕ : C → R

be a proper lower semi-continuous and convex functional. Assume that Θ : C × C → R satisfies (A1)-(A4),
s = max{si : 1 6 i 6 N}, {kn} = max{kn,i : 1 6 i 6 N} and Γ =

⋂N
i=1 F(Ti)

⋂
MEP(Θ,ϕ) 6= ∅. Let {xn} be a

sequence generated by the following algorithm:
x0 ∈ C chosen arbitrarily,
yn−1 = βn−1xn−1 + (1 −βn−1)T

h(n)
i(n) xn−1,

zn−1 = αn−1xn−1 + (1 −αn−1)T
h(n)
i(n) yn−1,

xn ∈ C, such that Θ(xn,y) +ϕ(y) −ϕ(xn) + 1
rn−1
〈y− xn, xn − zn−1〉 > 0, ∀y ∈ C, n > 1,

where {αn}, {βn} ⊂ (0, 1) and {rn} satisfying the following conditions:

(i) αn
βn

> s, ∀n > 0;
(ii) lim infn→∞ rn > 0, ∀n > 0;

(iii) lim infn→∞ gn−1 > 0, ∀n > 1,
where gn−1 = (1 −αn−1)(1 −βn−1)[k

2
h(n)(βn−1 − s) − (1 −βn−1)

2L2s+βn−1s].

Then sequence {xn} converges weakly to a point in Γ .

4.2. Application to (mixed) variational inequality
A variational inequality problem (VIP) is to find x ∈ C such that

〈Bx,y− x〉 > 0, ∀y ∈ C.

The solution set of VIP is denoted by VI(B,C).
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The mixed variational inequality is to find x ∈ C such that

〈Bx,y− x〉+ϕ(y) −ϕ(x) > 0, ∀y ∈ C. (4.1)

We denote the solution set of (4.1) with VI(B,C,ϕ).
If Θ = ϕ ≡ 0, the generalized mixed equilibrium problem reduces a variational inequality problem.
If Θ ≡ 0, the generalized mixed equilibrium problem reduces the mixed variational inequality.
Putting F(x,y) = 〈Bx,y− x〉, if B is an α-inverse-strongly monotone mapping, we can easily show that

F satisfies conditions (A1)-(A4). Then, the following theorems can be obtained from Theorem 3.1.

Theorem 4.3. Let C be a nonempty closed convex subset of an infinite dimensional real Hilbert space H and
let {Ti}16i6N be a finite family of {si}16i6N-strictly asymptotically pseudo-contractive mappings with sequence
{si} ⊆ [0, 1) and {kn,i} ⊆ [1,∞) such that limn→∞ kn,i = 1 and

∑∞
n=0(kn,i − 1) < ∞. Let B : C → H be an

α-inverse-strongly monotone mapping. Assume that s = max{si : 1 6 i 6 N}, {kn} = max{kn,i : 1 6 i 6 N} and
Γ =

⋂N
i=1 F(Ti)

⋂
VI(B,C) 6= ∅. Let {xn} be a sequence generated by the following algorithm:

x0 ∈ C chosen arbitrarily,
yn−1 = βn−1xn−1 + (1 −βn−1)T

h(n)
i(n) xn−1,

zn−1 = αn−1xn−1 + (1 −αn−1)T
h(n)
i(n) yn−1,

xn ∈ C, such that 〈Bxn,y− xn〉+ 1
rn−1
〈y− xn, xn − zn−1〉 > 0, ∀y ∈ C, n > 1,

where {αn}, {βn} ⊂ (0, 1) and {rn} satisfying the following conditions:

(i) αn
βn

> s, ∀n > 0;

(ii) lim infn→∞ rn > 0, ∀n > 0;

(iii) lim infn→∞ gn−1 > 0, ∀n > 1,
where gn−1 = (1 −αn−1)(1 −βn−1)[k

2
h(n)(βn−1 − s) − (1 −βn−1)

2L2s+βn−1s].

Then sequence {xn} converges weakly to a point in Γ .

Theorem 4.4. Let C be a nonempty closed convex subset of an infinite dimensional real Hilbert space H and
let {Ti}16i6N be a finite family of {si}16i6N-strictly asymptotically pseudo-contractive mappings with sequence
{si} ⊆ [0, 1) and {kn,i} ⊆ [1,∞) such that limn→∞ kn,i = 1 and

∑∞
n=0(kn,i − 1) < ∞. Let ϕ : C → R be a

proper lower semi-continuous and convex functional and B : C → H be an α-inverse-strongly monotone mapping.
Assume that s = max{si : 1 6 i 6 N}, {kn} = max{kn,i : 1 6 i 6 N} and Γ =

⋂N
i=1 F(Ti)

⋂
VI(B,C,ϕ) 6= ∅.

Let {xn} be a sequence generated by the following algorithm:
x0 ∈ C chosen arbitrarily,
yn−1 = βn−1xn−1 + (1 −βn−1)T

h(n)
i(n) xn−1,

zn−1 = αn−1xn−1 + (1 −αn−1)T
h(n)
i(n) yn−1,

xn ∈ C, such that 〈Bxn,y− xn〉+ϕ(y) −ϕ(xn) + 1
rn−1
〈y− xn, xn − zn−1〉 > 0, ∀y ∈ C, n > 1,

where {αn}, {βn} ⊂ (0, 1) and {rn} satisfying the following conditions:

(i) αn
βn

> s, ∀n > 0;
(ii) lim infn→∞ rn > 0, ∀n > 0;

(iii) lim infn→∞ gn−1 > 0, ∀n > 1,
where gn−1 = (1 −αn−1)(1 −βn−1)[k

2
h(n)(βn−1 − s) − (1 −βn−1)

2L2s+βn−1s].

Then sequence {xn} converges weakly to a point in Γ .
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4.3. Application to convex minimization problem
In (1.2), if Θ = B ≡ 0, the generalized mixed equilibrium problem reduces a convex minimization

problem, that is, to find x ∈ C such that

ϕ(y) > ϕ(x), ∀y ∈ C. (4.2)

We denote the solution set of (4.2) with CMP(ϕ).
Therefore, Theorem 3.1 can reduce the following theorem about convex minimization problem.

Theorem 4.5. Let C be a nonempty closed convex subset of an infinite dimensional real Hilbert space H and let
{Ti}16i6N be a finite family of {si}16i6N-strictly asymptotically pseudo-contractive mappings with sequence {si} ⊆
[0, 1) and {kn,i} ⊆ [1,∞) such that limn→∞ kn,i = 1 and

∑∞
n=0(kn,i− 1) <∞. Let ϕ : C→ R be a proper lower

semi-continuous and convex functional. Assume that s = max{si : 1 6 i 6 N}, {kn} = max{kn,i : 1 6 i 6 N}

and Γ =
⋂N
i=1 F(Ti)

⋂
CMP(ϕ) 6= ∅. Let {xn} be a sequence generated by the following algorithm:

x0 ∈ C chosen arbitrarily,
yn−1 = βn−1xn−1 + (1 −βn−1)T

h(n)
i(n) xn−1,

zn−1 = αn−1xn−1 + (1 −αn−1)T
h(n)
i(n) yn−1,

xn ∈ C, such that ϕ(y) −ϕ(xn) +
1
rn−1
〈y− xn, xn − zn−1〉 > 0, ∀y ∈ C, n > 1,

where {αn}, {βn} ⊂ (0, 1) and {rn} satisfying the following conditions:

(i) αn
βn

> s, ∀n > 0;
(ii) lim infn→∞ rn > 0, ∀n > 0;

(iii) lim infn→∞ gn−1 > 0, ∀n > 1,
where gn−1 = (1 −αn−1)(1 −βn−1)[k

2
h(n)(βn−1 − s) − (1 −βn−1)

2L2s+βn−1s].

Then sequence {xn} converges weakly to a point in Γ .

4.4. Application to convex feasibility problem
The convex feasibility problem for a family of mappings {Ti}16i6N is to find a point x such that

x ∈
⋂N
i=1 F(Ti).

Therefore, Theorem 3.1 can also reduce the following theorem about convex feasibility problem.

Theorem 4.6. Let C be a nonempty closed convex subset of an infinite dimensional real Hilbert space H and
let {Ti}16i6N be a finite family of {si}16i6N-strictly asymptotically pseudo-contractive mappings with sequence
{si} ⊆ [0, 1) and {kn,i} ⊆ [1,∞) such that limn→∞ kn,i = 1 and

∑∞
n=0(kn,i − 1) < ∞. Assume that s =

max{si : 1 6 i 6 N}, {kn} = max{kn,i : 1 6 i 6 N} and Γ =
⋂N
i=1 F(Ti) 6= ∅. Let {xn} be a sequence generated by

the following algorithm: 
x0 ∈ C chosen arbitrarily,
yn−1 = βn−1xn−1 + (1 −βn−1)T

h(n)
i(n) xn−1,

zn−1 = αn−1xn−1 + (1 −αn−1)T
h(n)
i(n) yn−1,

xn = PCzn−1,

where {αn}, {βn} ⊂ (0, 1) and {rn} satisfying the following conditions:

(i) αn
βn

> s, ∀n > 0;
(ii) lim infn→∞ rn > 0, ∀n > 0;

(iii) lim infn→∞ gn−1 > 0, ∀n > 1,
where gn−1 = (1 −αn−1)(1 −βn−1)[k

2
h(n)(βn−1 − s) − (1 −βn−1)

2L2s+βn−1s].

Then sequence {xn} converges weakly to a point in Γ .



Q. Q. Cheng, Y. F. Su, J. Nonlinear Sci. Appl., 10 (2017), 1433–1455 1452

5. Numerical experiments

In this section, respectively, we give the corresponding numerical examples of Theorem 3.1 and Theo-
rem 3.2.

Example 5.1. Let H := R and C := [−1, 1] ⊂ R. For all x,y ∈ C, Θ(x,y) = y2 + xy − 2x2, Bx = 2x,
ϕ(x) = 1

2x
2. It is obvious that Θ : C×C→ R is a real-valued bifunction satisfying the following conditions

(A1)–(A4), B : C→ H is a monotone mapping and ϕ : C→ R is a continuous and convex functional.
Then, for given r > 0 and x ∈ H, by Lemma 2.1, there exists a unique u ∈ C such that

Θ(u,y) + 〈Bu,y− u〉+ϕ(y) −ϕ(u) + 1
r
〈y− u,u− x〉 > 0, ∀y ∈ C.

m

y2 + uy− 2u2 + 2u(y− u) +
1
2
y2 −

1
2
u2 +

1
r
(y− u)(u− x) > 0, ∀y ∈ C.

m

3ry2 + (6ru+ 2u− 2x)y+ 2ux− 2u− 9ru2 > 0, ∀y ∈ C.

Let F(y) = 3ry2 + (6ru+ 2u− 2x)y+ 2ux− 2u− 9ru2. Then discriminant ∆ of F(y) is

∆ = (6ru+ 2u− 2x)2 − 4× 3ry(2ux− 2u− 9ru2) = [2x− 2u(1 + 6r)]2.

Taking ∆ 6 0, then for all y ∈ C, F(y) > 0. Again from uniqueness of u, we have that

u = Krx =
1

1 + 6r
x.

From algorithm (3.1), we can obtain that
yn−1 = βn−1xn−1 + (1 −βn−1)T

h(n)
i(n) xn−1,

zn−1 = αn−1xn−1 + (1 −αn−1)T
h(n)
i(n) yn−1,

xn = 1
1+6rn−1

zn−1.

Let N = 2, T1x = x, for all x ∈ [−1, 1],

T2x :=


x, x ∈ [−1, 0);
1
2
x, x ∈ [0, 1],

and taking x0 = 1, αn = 1
n+1 , βn = n

2(n+1) , rn = n
4(n+1) . We have the following numerical results:

Table 1: numerical examples of Theorem 3.1.

n 0 1 2 3 4 5 6 ...

xn 1 1 0.3750 0.1875 0.0308 0.0140 0.0014 ...
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Figure 1: numerical examples of Theorem 3.1.

Example 5.2. Let H := R and C := [−1, 1] ⊂ R. For all x,y ∈ C, Θ(x,y) = y2 + xy− 2x2, Bx = 2x. Then, for
given r > 0 and x ∈ H, by Lemma 2.1, there exists a unique u ∈ C such that

Θ(u,y) +
1
r
〈y− u,u− x〉 > 0, ∀y ∈ C.

Similar to the above method, we can obtain that

u = Trx =
1

1 + 3r
.

From algorithm (3.20), we can obtain that


yn−1 = βn−1xn−1 + (1 −βn−1)T

h(n)
i(n) xn−1,

zn−1 = αn−1xn−1 + (1 −αn−1)T
h(n)
i(n) yn−1,

xn = Trn−1(zn−1 − rn−1Bzn−1) =
1−2rn−1
1+3rn−1

zn−1.

Let N, T1, T2, αn, βn, rn, x0 are the same as before.

Table 2: numerical examples of Theorem 3.2.

n 0 1 2 3 4 5 6 ...

xn 1 1 0.3580 0.1591 0.0222 0.0083 6.5189× 10−4 ...
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Figure 2: numerical examples of Theorem 3.2.
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