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Abstract
Let (X,d,K) be a cone b-metric space over a ordered Banach space (E,�) with respect to cone P. In this paper, we study

two problems:

(1) We introduce a b-metric ρc and we prove that the b-metric space induced by b-metric ρc has the same topological
structures with the cone b-metric space.

(2) We prove the existence of the coincidence point of two mappings T , f : X → X satisfying a new quasi-contraction of the
type d(Tx, Ty) � Λ{d(fx, fy),d(fx, Ty),d(fx, Tx),d(fy, Ty),d(fy, Tx)}, where Λ : E → E is a linear positive operator and
the spectral radius of KΛ is less than 1.

Our results are new and extend the recent results of [N. Hussain, M. H. Shah, Comput. Math. Appl., 62 (2011), 1677–1684], [M.
Cvetković, V. Rakočević, Appl. Math. Comput., 237 (2014), 712–722], [Z. Kadelburg, S. Radenović, J. Nonlinear Sci. Appl., 3
(2010), 193–202]. c©2017 All rights reserved.
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1. Introduction

Cone metric spaces were introduced in [6]. In [3], they introduced a special metric ρξ and they proved
that the metric space induced by the metric ρξ have the same topological spaces with the cone metric
space. In [7], Hussain and Shah introduced the concept of cone b-metric spaces and they investigated
topological properties of the cone b-metric spaces. In fact, the class of cone b-metric spaces is effectively
larger than that of the ordinary cone metric spaces. That is, every cone metric space is a cone b-metric
space. In [5], Czerwik first introduced the concept of b-metric spaces. Similarly, b-metric spaces are
extensions of metric spaces. In the first part of this work, we introduce a special b-metric ρc and proves
that the b-metric space induced by ρc has the same topological structures with the cone b-metric space.

The second part of this work involves coincidence points and common fixed points. In 1976, Jungck
[9] extended the celebrated Banach contraction mapping principle to the common fixed theorem of two
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commuting mappings. In this process, he introduced a new iteration process which was a generalization
of the Picard iteration. The new iteration scheme can be defined as follows:

Definition 1.1 ([8]). Let T and f be self-mappings of a set X, and let (xn)∞n=0 be a sequence in X such that
fxn+1 = Txn,n = 0, 1, 2 · · · .

Then the sequence (fxn)
∞
n=0 is said to be a T -f-sequence or Jungck iteration.

Let f and T be self-mappings of nonempty set X, x ∈ X is called a coincidence point of f and T if
fx = Tx. A point y ∈ X is called a point of coincidence of f and T if there exists a point x ∈ X such that
y = fx = Tx. A point z ∈ X is called a common fixed point of f and T if z = fz = Tz.

Definition 1.2 ([12]). Let f and g be self-mappings of a nonempty set X. Then f and g are called weakly
compatible, if they commute at their coincidence points.

Let (Y,�) be an ordered vector space, x ∈ X and A ⊂ X. We say that x � A, if there exists at least one
vector y ∈ A such that x � y. In 2010, Kadelburg and Radenović obtained the following result by using
jungck iteration.

Theorem 1.3 ([10]). Let (X,d) be a cone metric space over a Banach space (Y,�). And let T , f : X → X be
mappings such that T(X) ⊂ f(X) and f(X) be a complete subspace of X. Supposing there exists λ ∈ [0, 1) such that
for all x,y ∈ X,

d(Tx, Ty) � λ{d(fx, fy),d(fx, Ty),d(fx, Tx),d(fy, Ty),d(fy, Tx)}.

Then T and f have a unique point of coincidence. Moreover, if T and f are weakly compatible, then every
T -f-sequence (fxn) in X converges to the unique common fixed point of T and f.

In 2014, Cvetkovic̀ and Rakočevic̀ [4] introduced notion of quasi-contraction of Perov type and partly
extended Kadelburg’s theorems to positive linear functional.

Definition 1.4 ([4]). Let (X,d) be a cone metric space over a Banach space (E,�). A map T : X → X such
that for some bounded linear operator Λ : E→ Ewhose spectral radius is less than 1 and for each x,y ∈ X,

d(Tx, Ty) � Λ{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)},

is called a quasi-contraction of Perov type.

Theorem 1.5 ([4]). Let (X,d) be a complete cone metric space with respect to cone P. If a mapping T : X→ X is a
quasi-contraction of Perov type and Λ(P) ⊂ P, then f has a unique point x∗ ∈ X and, for any x ∈ X, the iterative
sequence (Tnx)n∈N converges to the fixed point of T.

In the second part of work, we study a new quasi-contraction, that is,

d(Tx, Ty) � Λ{d(fx, Tx),d(fx, Ty),d(fx, fy),d(fy, Ty),d(fy, Tx)},

where Λ : E→ E is a linear positive operator and the spectral radius of KΛ is less than 1. Our results can
be considered as a further development of [10, Theorem 1.3] and [4, Theorem 1.5].

2. Preliminary and auxiliary results

In this section, we recall and provide some concepts and auxiliary results.

2.1. b-metric space
Definition 2.1 ([5]). Let X be a nonempty set, K > 1 and D : X× X → [0,+∞) is a function such that for
all x,y, z ∈ X

(1) D(x,y) = 0 if and only if x = y;
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(2) D(x,y) = D(y, x);

(3) D(x, z) 6 K[D(x,y) +D(y, z)].

Then D is called a b-metric, and (X,D,K) is called a b-metric space.

In b-metric spaces (X,D,K), the sequence {xn} converges to x ∈ X, if and only if lim
n→∞D(xn, x) = 0 and

the sequence {xn} is Cauchy, if and only if lim
n,m→∞D(xn, xm) = 0. (X,D,K) is complete if and only if any

Cauchy sequence in X is convergent. B(a, ε) denotes the subset {x ∈ X : D(x,a) < ε} of X, a ∈ X, ε > 0.

Definition 2.2 ([11]). Let (X,D,K) be a b-metric space.

(1) A subset A ⊂ X is said to be open, if and only if for any a ∈ A, there exists ε > 0 such that
B(a, ε) ⊂ A.

(2) Let B be a subset of X. An element x ∈ X is called a limit point of B, whenever for any ε > 0,

B(x, ε)∩ (B\{x}) 6= φ.

B is called closed, whenever each limit point of B belongs to B.

(3) A subset B ⊂ X is called bounded whenever, there exists ε > 0 such that D(x,y) < ε for all x,y ∈ B.

(4) A subset B ⊂ X is called compact, whenever every open cover of B has a finite subcover.

(5) A subset B is called sequentially compact, if and only if for any sequence {xn} in B, there exists a
subsequence {xnk} of {xn} which converges, and lim

k→∞ xnk ∈ B.

(6) A subset B is called totally bounded, if and only if for any ε > 0, there exist x1, x2, x3, · · · , xn ∈ B
such that

B ⊂ B(x1, ε)∪ · · · ∪B(xn, ε).

Proposition 2.3 ([11]). Let (X,D,K) be a b-metric space,

(1) A is closed, if and only if for any sequence {xn} in X which converges to x, we have x ∈ A.

(2) If we let A denote the intersection of all closed subset of X which contains A, then for any x ∈ A and for any
ε > 0, we have B(x, ε)∩A 6= φ.

(3) A is compact, if and only if A is sequentially compact.

(4) If A is compact, then A is totally bounded.

Theorem 2.4. Let (X,D,K) be a b-metric space,

(1) A is closed, if and only if Ac is open, where Ac is the complement of A in X.

(2) A is called relatively compact, whenever A is compact. If (X,D,K) is complete, then A is relatively compact,
if and only if A is totally bounded.

Proof.

(1) Firstly assume that A is closed. We show that Ac is open. If Ac is not open, then

∃a ∈ Ac, ∀n ∈ N, ∃xn ∈ A such that D(a, xn) <
1
n

.

It contradict Proposition 2.3 (1). Conversely, assume that Ac is open, we show that A is closed. If x /∈ A,
there exists ε > 0 such that B(x, ε) ⊂ Ac. Clearly B(x, ε)∩ (A\{x}) = φ, it implies that A is closed.
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(2) We start with that A is relatively compact. So we have that A is totally bounded,

∀ε > 0, ∃x1, x2, · · · , xn ∈ A, A ⊂ B(x1, ε)∪ · · · ∪B(xn, ε).

So there exist yi ⊂ B(xi, ε) ∩A, i = 1, 2, · · · ,n. Then A ⊂ A ⊂ B(y1, 2Kε) ∪ · · · ∪ B(yn, 2Kε). It implies
that A is totally bounded. Conversely, assume that A is totally bounded, then we show that A is relatively
compact. If {xn} ⊂ A , then there exists yn such that yn ⊂ A ∩ B(xn, 1

n) for all n ∈ N, from Proposition
2.3 (2). Clearly,

∃a1 ∈ A, {y
(1)
nk } ⊂ {yn} ⊂ A, {y

(1)
nk } ⊂ B(a1,

1
1
),

where {y
(1)
nk } is the subsequence of {yn}, from that A is totally bounded. Similarly,

∃an ∈ A, {y
(n)
nk } ⊂ {y

(n−1)
nk } ⊂ A, {y

(n)
nk } ⊂ B(an,

1
n
), n ∈ N, n > 2,

where {y
(n)
nk } is the subsequence of {y(n−1)

nk }. So we can select ynm such that ynm ∈
{
y
(m)
nk

}
and {ynm} is

the subsequence of {yn} . Since ynm ⊂ B(al, 1
l ),m > l, then

D(ynm ,ynl) 6 K[D(al,ynm) +D(al,ynl)] 6
2K
l

, m > l.

It implies that ynm is Cauchy. Since (X,D,K) is complete, there exists x ∈ A and lim
m→∞ynm = x from

Proposition 2.3 (1) (2). It is easy to check that lim
m→∞ xnm = x. It implies that A is sequentially compact and

we have that A is compact from Proposition 2.3 (3).

2.2. Cone b-metric space
Let E be a real Banach space. A subset P of E is called a cone whenever the following condition is

satisfied:

(1) P is closed, nonempty and P 6= {θ}, where θ is the zero vector in E.

(2) a,b ∈ R, a,b > 0 and x,y ∈ P imply ax+ by ∈ P.

(3) P ∩ (−P) = {θ}.

Given a cone P ⊂ E, we define a partial ordering � on E with respect to P by x � y, if and only if
y− x ∈ P. We shall write ≺ to indicate that x � y but x 6= y, while x� y stands for y− x ∈ intP (interior
of P).

Definition 2.5 ([7]). Let X be a nonempty set and (E,�) an ordered Banach space with respect to cone
P. A vector-valued function d : X× X → E is said to be a cone b-metric function on X with the constant
K > 1, if the following conditions are satisfied:

(1) θ � d(x,y), for all x,y ∈ X, and d(x,y) = θ, if and only if x = y;

(2) d(x,y) = d(y, x), for all x,y ∈ X;

(3) d(x,y) � K[d(x, z) + d(y, z)], for all x,y, z ∈ X.

The pair (X,d,K) is called the cone b-metric space over an ordered Banach space (E,�) with respect to
cone P.

Definition 2.6 ([7]). Let (X,d,K) be a cone b-metric space over the ordered Banach space (E,�) with
respect to cone P. We say that {xn} ⊂ X is:
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(1) a cone-Cauchy, if for every θ� c, there is a k ∈ N such that for all n,m > k, d(xn, xm)� c;

(2) cone-convergent sequence, if for every θ� c, there is anm ∈ N such that for all n > m, d(xn, x)� c,
while we write cone ∗ lim

n→∞ xn = x.

We say that the cone b-metric space (X,d,K) is complete, if any cone-Cauchy is cone-convergent. Let
A ⊂ X, we claim that A is a complete subspace, if for every cone-Cauchy {xn} ⊂ A, cone ∗ lim

n→∞ xn ∈ A.

We claim that {yn} ⊂ E norm-converges to y, if for any ε > 0, there exists an m ∈ N such that
‖yn − y‖ < ε, for all n > m. Noting that if {xn} ⊂ X, {yn} ⊂ E, yn norm-converges to θ and d(xn, xm) �

yn, for all n,m ∈ N, m > n, then {xn} is cone-Cauchy. We denote by
∧

B(x, c) the cone-ball, given by
∧

B(x, c) = {y ∈ X : d(x,y)� c}, c ∈ intP, x ∈ X.

Definition 2.7 ([7]). Let (X,d,K) be a cone b-metric space over the ordered Banach space (E,�) with
respect to cone P,

(1) A subset A ⊂ X is said to be cone-open, if and only if for any a ∈ A, there exists c� θ such that the

cone-ball
∧

B(a, c) ⊂ A.

(2) An element x ∈ X is called a cone-limit point of B whenever for any c � θ,
∧

B(x, c)\(B\{x}) 6= φ. A
subset B ⊂ X is called cone-closed, whenever each cone-limit point of B belongs to B.

(3) A subset B ⊂ X is called cone-bounded, whenever there exists c � θ such that d(x,y) � c for all
x,y ∈ B.

(4) A subset B ⊂ X is called cone-compact, whenever every cone-open cover of B has a finite subcover.

(5) A subset B is called cone-sequentially compact, if and only if for any sequence {xn} in B, there exists
a subsequence {xnk} of {xn} which cone-converges, and cone ∗ lim

k→∞ xnk ∈ B.

(6) A subset B is called cone-totally bounded, if and only if for any c� θ, there exist x1, x2, x3, · · · , xn ∈

B such that B ⊂
∧

B(x1, c)∪ · · ·
∧

∪B(xn, c).

Let A ⊂ X,
'
A stands for the intersection of all cone-closed subsets of X including A. We claim that A

is cone-relatively compact, if
'
A is cone-compact.

Proposition 2.8. Let (E,�) be an ordered Banach space with respect to cone P. Then the following properties are
often used:

(1) x,y, z ∈ E, x � y� z imply x� z.

(2) αintP ⊂ intP, for all α ∈ R , α > 0.

(3) For any c ∈ intP, x ∈ E, there exists an n ∈ N such that xn � c.

(4) If a ∈ P, 0 6 λ < 1 and a � λa, then a = θ.

(5) c ∈ intP, α,β ∈ R, α > β imply βc� αc.

Lemma 2.9. Let (E,�) be an ordered Banach space with respect to cone P. If x � y, then exists n ∈ N such that
x� (1 − 1

n)y.

Proof. Let
∨

B(x, ε) = {y ∈ E : ‖y− x‖ < ε}, x ∈ E, ε > 0. Since x � y, then exists ε > 0 such that

y − x +
∨

B(θ, ε) ⊂ P. Clearly
∨

B(θ, ε2 ) +
∨

B(θ, ε2 ) ⊂
∨

B(θ, ε) from the triangle inequality of the norm. We

know that there exists n ∈ N such that −yn ∈
∨

B(θ, ε2 ) . So (1 − 1
n)y− x+

∨

B(θ, ε2 ) ⊂ P. It implies that
x� (1 − 1

n)y.
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2.3. The b-metric ρc
Let (X,d,K) be a cone b-metric space over an ordered Banach space (E,�) with respect to cone P.

Since P is closed, we have that the cone P is Archimedean (see [2, page 63, lemma 2.3]). Given a,b ∈ E
with a � b, we denote by [a,b] the order interval, i.e.,

[a,b] = {x ∈ X : a � x � b}.

Let c ∈ intP, then E = ∪
n∈N

[−c, c]. We can define the Minkowski functional on E by setting

‖x‖c = inf{λ > 0 : x ∈ [−λc, λc]},

for all x ∈ E. And furthermore, we have that −‖x‖cc � x � ‖x‖cc (see [2, page 104]).

Proposition 2.10 ([8]). Let (E,�) be an ordered Banach space with respect to cone P.

(1) x,y ∈ E, θ � x � y imply ‖x‖c 6 ‖y‖c.

(2) x,y ∈ E, ‖x+ y‖c 6 ‖x‖c + ‖y‖c.

(3) x ∈ E, λ ∈ R, λ > 0, ‖λx‖c = λ‖x‖c.

Now, we define b-metric ρc by setting ρc = ‖d(x,y)‖c.

Proposition 2.11. (X, ρc,K) is a b-metric space.

Proof. It is easy to check that ρc is a b-metric from Proposition 2.10.

We define B(x, ε) = {y ∈ X : ρc(x,y) < ε}, x ∈ X, ε > 0 and we claim that ρc ∗ lim
n→∞ xn = x, {xn} ⊂ X, if

lim
n→∞ ρc(xn, x) = 0 . Now we prove some basic results.

Theorem 2.12. Let (X,d,K) be a cone b-metric space over the ordered Banach space (E,�) with respect to cone P.
∧

B(x, rc) = B(x, r), for all x ∈ X, r ∈ R, r > 0, c� θ.

Proof. Let y ∈
∧

B(x, rc), then d(x,y) � rc. There exists an n ∈ N such that d(x,y) � (1 − 1
n)rc, from

Lemma 2.9. It implies that

−(1 −
1
n
)rc � θ � d(x,y) � (1 −

1
n
)rc,

so we have that ρc(x,y) = ‖d(x,y)‖c 6 (1 − 1
n)r < r from the definition of ‖‖c. It implies that y ∈ B(x, r).

Conversely, let y ∈ B(x, r), then ρc(x,y) < r. So d(x,y) � ρc(x,y)c� rc. It implies that y ∈
∧

B(x, rc).

Theorem 2.13. Let (X,d,K) be a cone b-metric space over the ordered Banach space (E,�) with respect to cone P
and c ∈ intP. cone ∗ lim

n→∞ xn = x, if and only if ρc ∗ lim
n→∞ xn = x, {xn} ⊂ X.

Proof. Assume that cone ∗ lim
n→∞ xn = x, we have that for any c1 � θ there exists an m ∈ N such that

xn ∈
∧

B(x, c1) for all n > m. Since
∧

B(x, rc) = B(x, r) for all x ∈ X, r ∈ R, r > 0, c � θ, then for any r > 0,

there exists an m ∈ N such that xn ∈
∧

B(x, rc) = B(x, r) for all n > m. It implies that ρc ∗ lim
n→∞ xn = x.

Conversely, assume that ρc ∗ lim
n→∞ xn = x, then for any r > 0, there exists an m ∈ N such that

xn ∈ B(x, r) for all n > m. We also have that for any c1 � θ there exists a k ∈ N such that ck � c1.

So there exists an m ∈ N such that xn ∈ B(x, 1
k) =

∧

B(x, ck) ⊂
∧

B(x, c1) for all n > m. It implies that
cone ∗ lim

n→∞ xn = x.
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2.4. The linear positive operator
Let (X,d,K) be a cone b-metric space over the ordered Banach space (E,�) with respect to cone P.

We say that Λ : E → E is a linear positive operator, if Λ is a linear operator and Λ(P) ⊂ P. Clearly Λ is
a linear positive operator, if and only if Λ is a linear operator and Λ(x) � Λ(y) for all x,y ∈ E, x � y.
In fact, if Λ is a linear positive operator, then Λ is continuous (see [2, page 84]). And furthermore, if
Λ : E → E is a linear continuous operator and there exists an m ∈ N such that ‖Λm‖ < 1, then Λnx
norm-converges to θ for any x ∈ E and I−Λ is invertible where I is the identity mapping of E, that is,
(I−Λ)−1 =

∑∞
n=0Λ

n. Of course there exists an m ∈ N such that ‖Λm‖ < 1, if Λ : E → E is a linear
continuous operator and it’s spectral radius is less than one. It is inspired by Huang and Zhang [6], we
say that P ∗ lim

n→∞ xn = x, {xn} ⊂ E, if for any c� θ, there exists an m ∈ N such that −c� xn − x� c for
all n > m.

Proposition 2.14. Let (X,d,K) be a cone b-metric space over the ordered Banach space (E,�) with respect to cone
P and Λ : E→ E is a linear positive operator.

(1) x,y ∈ E, {xn} ⊂ E, P ∗ lim
n→∞ xn = x, y � xn for all n, then y � x.

(2) x ∈ X, {xn} ⊂ X, then cone ∗ lim
n→∞ = x, if and only if P ∗ lim

n→∞d(xn, x) = θ.

(3) x,y ∈ E, {xn} ⊂ E, P ∗ lim
n→∞ xn = x, y � xn for all n, then Λ(y) � Λ(x).

(4) If {xn} ⊂ E, P ∗ lim
n→∞ xn = x, then P ∗ lim

n→∞Λxn = Λx.

Proof.

(1) For any n ∈ N, there exists an m ∈ N such that x− xm � − cn . So we have that

x = x− xm + xm � −
c

n
+ y, ∀n ∈ N.

Let n→∞, we obtain x � y from P is closed in E.

(2) It is obvious.

(3) For any n ∈ N and c ∈ intP, there exists an m ∈ N such that x − xm � − cn . So we have that
Λ(x) = Λ(x− xm) +Λ(xm) � −

Λ(c)
n +Λ(y) for any n ∈ N. Let n→∞, we obtain Λ(x) � Λ(y) from P is

closed in E.

(4) For any c � θ, there exists a j ∈ N such that Λcj � c. Since P ∗ lim
n→∞ xn = x, there exists an m ∈ N

such that −cj � xn − x � c
j for all n > m. It implies that −c � −Λcj � Λxn −Λx � Λc

j � c for all
n > m. So we have that P ∗ lim

n→∞Λxn = Λx.

3. Main results

Theorem 3.1. Let (X,d,K) be a cone b-metric space over the ordered Banach space (E,�) with respect to cone P
and A ⊂ X, c ∈ intP:

(1) A is cone-open, if and only if A is open in b-metric space (X, ρc,K).

(2) A is cone-closed, if and only if A is closed in b-metric space (X, ρc,K).

(3) A is cone-compact, if and only if A is compact in b-metric space (X, ρc,K).

(4) A is cone-totally bounded, if and only if A is totally bounded in b-metric space (X, ρc,K).

(5) A is cone-sequentially compact, if and only if A is sequentially compact in b-metric space (X, ρc,K).
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(6) A is cone-relatively compact, if and only if A is relatively compact in b-metric space (X, ρc,K).

Proof.

(1) Assume that A is cone-open. Then for any a ∈ A, there exists a c1 � θ such that
∧

B(a, c1) ⊂ A. There

also exists an n ∈ N such that cn � c1. So we have that B(a, 1
n) =

∧

B(a, cn) ⊂
∧

B(a, c1) from Theorem 2.12.
It implies that A is open in b-metric space (X, ρc,K).

Conversely, assume that A is open in b-metric space (X, ρc,K). Then for any a ∈ A, there exists an

r > 0 such that B(a, r) =
∧

B(a, rc) ⊂ A. It implies that A is cone-open.

(2) To prove the result, it is sufficient to show that a ∈ X is the cone-limit point of A, if and only if a ∈ X

is the limit point of A in the b-metric space (X, ρc,K). In fact, for any c1 � θ,
∧

B(a, c1) ∩ (A\{x}) 6= φ, if
and only if for any r > 0, B(a, r)∩ (A\{x}) 6= φ . So we complete the proof.

(3) It is obvious from (1).

(4) Assume first that A is cone-totally bounded, then for any c1 � θ, there exist x1, · · · , xn ∈ A such that

A ⊂
∧

B(x1, c1)∪ · · · ∪
∧

B(xn, c1). So for any r > 0 there exist x1, · · · , xn ∈ A such that

A ⊂
∧

B(x1, rc)∪ · · ·
∧

B(xn, rc) = B(x1, r)∪ · · ·B(xn, r).

It implies that A is totally bounded in b-metric space (X, ρc,K).
Conversely, assume that A is totally bounded in b-metric space (X, ρc,K), then for any r > 0, there

exist x1, · · · , xn ∈ A such that A ⊂ B(x1, r) ∪ · · ·B(xn, r). We also know that for any c1 � θ, there exists
an m ∈ N such that c

m � c1. So we have that there exist x1, · · · , xn ∈ A such that

A ⊂ B(x1,
1
m

)∪ · · ·B(xn,
1
m

) ⊂
∧

B(x1, c1)∪ · · · ∪
∧

B(xn, c1).

It implies that A is cone-totally bounded.

(5) It is obvious from Theorem 2.13.

(6) It is obvious from (2), (3).

Corollary 3.2. Let (X,d,K) be a cone b-metric space over the ordered Banach space (E,�) with respect to cone P
and A ⊂ X, c ∈ intP:

(1) A is cone-closed, if and only if for any sequence {xn} in X which cone-converges to x, we have x ∈ A.

(2) A is cone-closed, if and only if Ac is cone-open where Ac is the complement of A in X.

(3) If x ∈
'
A, then for any c1 � θ,

∧

B(x, c1)∩A 6= φ.

(4) A is cone-compact, if and only if A is cone-sequentially compact.

(5) (X,d,K) is complete, if and only if (X, ρc,K) is complete.

(6) If (X,d,K) is complete, then A is cone-relatively compact, if and only if A is cone-totally bounded.

Proof. (1), (2), (3), (4), (6) are obvious from Theorem 3.1, Theorem 2.13, Theorem 2.12, Theorem 2.4,
Proposition 2.3. To get (5), it is sufficient to show that {xn} ⊂ X, xn is cone-Cauchy if and only if xn is
Cauchy in b-metric space (X, ρc,K). Assume first {xn} is cone-Cauchy, then for any c1 � θ, there exists
a k ∈ N such that d(xn, xm) � c1 for all n,m > k. So for any r > 0, there exists a k ∈ N such that
d(xn, xm) � rc for all n,m > k. We also have that there exists a j ∈ N that d(xn, xm) � (1 − 1

j )rc. It



C. J. Zhang, S. Li, B. Liu, J. Nonlinear Sci. Appl., 10 (2017), 1334–1344 1342

implies that ρc(xn, xm) 6 (1 − 1
j )r < r for all n,m > k. So {xn} is Cauchy in b-metric space (X, ρc,K).

Conversely assume that {xn} is Cauchy in b-metric space (X, ρc,K), then for any r > 0, there exists a k ∈ N
such that ρc(xn, xm) < r for all n,m > k. For any c1 � θ, there also exists a j ∈ N such that cj � c1. So
there exists a k ∈ N such that ρc(xm, xn) < 1

j for all m,n > k. It implies that d(xm, xn) � ρc(xm, xn)c�
c
j � c1 for all n,m > k. So {xn} is cone-Cauchy.

Remark 3.3. In [7], they obtained Corollary 3.2 (1), (2), (3), (4) (see [7, Proposition 3.2, Proposition 3.6,
Theorem 3.7, Theorem 3.9]). But our proof is completely different. And furthermore, we get an in-depth
result, that is we can equate the cone b-metric space with the b-metric space, if we only discuss the
topological properties.

Lemma 3.4 ([1]). Let T and f be weakly compatible self-mappings of a set X. If T and f have a unique point of
coincidence ξ ∈ X, then ξ is a unique common fixed point of T and f.

Theorem 3.5. Let (X,d,K) be a cone b-metric space over an ordered Banach space (E,�) with respect to cone P,
and let two mappings T , f be self-mappings of X such that TX ⊂ fX and TX or fX is a complete subspace of X
satisfying

d(Tx, Ty) � Λ{d(fx, fy),d(fx, Ty),d(fx, Tx),d(fy, Ty),d(fy, Tx)},

where Λ : E → E is a positive linear operator and r(KΛ) < 1. Then T , f have a unique point of coincidence ξ ∈ X
and every T -f-sequence (fxn)

∞
n=0 converges to ξ. Moreover, if T and f are weakly compatible, then ξ is a unique

common fixed point of T and f.

Proof. Since fX ⊂ TX, then for any x0 ∈ X there exists T -f-sequence (fxn)
∞
n=0. Now by induction, we show

that
d(Txn, Tx0) � (I−KΛ)−1KΛd(fx0, fx1), ∀ n ∈ N. (3.1)

If n = 1, then

d(Tx1, Tx0) � Λ{d(fx1, fx0),d(fx1, Tx0),d(fx1, Tx1),d(fx0, Tx0),d(fx0, Tx1)}.

Note that K > 1, r(KΛ) < 1, Txn = fxn+1, n = 0, 1, 2 · · · .
When

d(Tx1, Tx0) � Λ{d(fx1, fx0),d(fx1, Tx0),d(fx0, Tx0)},

clearly (3.1) holds.
When d(Tx1, Tx0) � Λd(fx1, Tx1) = Λd(Tx0, Tx1), (3.1) also holds.
When d(Tx1, Tx0) � Λd(fx0, Tx1) and using the triangle inequality,

d(Tx1, Tx0) � KΛd(fx0, fx1) +KΛd(fx1, Tx1),

(I−KΛ)d(Tx1, Tx0) � KΛd(fx0, fx1).

Bearing in mind that I−KΛ is invertible and positive, we have that

d(Tx1, Tx0) � (I−KΛ)−1KΛd(fx0, fx1).

The above discussion implies (3.1) holds for n = 1.
Suppose (3.1) holds for m < n. We show that (3.1) holds for n. In fact

d(Txn, Tx0) � Λ{d(fxn, fx0),d(fxn, Tx0)d(fxn, Txn)d(fx0, Tx0)d(fx0, Txn)}.

We have to consider five different cases:

1. d(Txn, Tx0) � d(fxn, fx0). Using the triangle inequality,

d(Txn, Tx0) � KΛd(fxn, Tx0) +KΛd(Tx0, fx0).

By assumption of the induction, we obtain that
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d(Txn, Tx0) � (I−KΛ)−1(KΛ)2d(fx1, fx0) +KΛd(fx1, fx0)

= (I−KΛ)−1KΛd(fx1, fx0).

2. d(Txn, Tx0) ≺ Λd(fxn, Tx0) = Λd(Txn−1, Tx0), then (3.1) holds.
3. d(Txn, Tx0) � Λd(fx0, Tx0) = Λd(fx0, fx1), then (3.1) also holds.
4. d(Txn, Tx0) ≺ Λd(fx0, Txn). Using the triangle inequality, then

d(Txn, Tx0) � KΛd(fx0, Tx0) +KΛd(Tx0, Txn),

d(Txn, Tx0) � (I−KΛ)−1KΛd(fx0, fx1),

5. d(Txn, Tx0) � Λd(fxn, Txn) = Λd(Txn−1, Txn). We have that

d(Txn−1, Txn) � Λ{d(fxn−1, fxn),d(fxn−1, Txn),d(fxn−1, Txn−1),d(fxn, Txn),d(fxn, Txn−1)}.

If d(Txn−1, Txn) � Λ{d(fxn, Txn),d(fxn, Txn−1)}, then d(Txn−1, Txn) = θ. If

d(Txn−1, Txn) � Λ{d(fxn−1, fxn),d(fxn−1, Txn)},d(fxn−1, Txn−1)},

by continuing this process, we see that there exist p,m ∈ N, p > n, 0 6 m < n such that
d(Txn, Tx0) � Λpd(Txm, Tx0). By assumption of the induction, we obtain that

d(Txn, Tx0) � (I−KΛ)−1KΛp+1d(fx0, fx1)

� (I−KΛ)−1(KΛ)p+1d(fx0, fx1).

Notice that

(I−KΛ)−1(KΛ)p+1 = (I−KΛ)−1KΛ−

p∑
i=1

(KΛ)i.

It implies that d(Txn, Tx0) � (I−KΛ)−1KΛd(fx0, fx1).

Hence, using the method of the mathematical induction, we have proved that inequality (3.1) holds for
each n ∈ N. Now we shall prove that (fxn)

∞
n=0 is Cauchy sequence. For m,n ∈ N and m > n, there exist

0 6 i 6 n+ 1, 0 6 j 6 m+ 1 such that

d(fxn+2, fxm+2) = d(Txn+1, Txm+1) � Λn+1d(Txi, Txj)

� Λn+1[Kd(Txi, Tx0) +Kd(Tx0, Txj)]

� Λn+2[2(I−KΛ)−1K2d(fx1, fx0)].

We conclude that (fxn)
∞
n=0 is Cauchy sequence. Let lim

n→∞ fxn = ξ. Since fX ⊂ Tx and fX or TX is
complete subspace of X, then there exists x ∈ X such that fx = ξ. We shall show that ξ is a unique point
of coincidence of T and f. Firstly, we prove the uniqueness. Let ξ1, ξ2 be point of coincidence of T and f,
then there exist y1,y2 ∈ X such that Ty1 = fy1 = ξ1, Ty2 = fy2 = ξ2. Since

d(Tξ1, Tξ2) � Λ{d(fξ1, fξ2),d(fξ1, Tξ2),d(fξ1, Tξ1),d(fξ2, Tξ2),d(fξ2, Tξ1)},

then ξ1 = ξ2. Secondly, we prove that ξ is a point of coincidence of T and f. Any given c � θ, p ∈ N,
there exists m ∈ N such that

d(fxn, ξ)� c

p
, d(Txn, ξ)� c

p
, d(fxn, Txn)�

c

p
, ∀ n > m.

Since
d(Txn+1, Tx) � Λ{d(fxn+1, fx),d(fxn+1, Tx),d(fxn+1, Txn+1),d(fx, Tx),d(fx, Txn+1)},
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then
d(Txn+1, Tx) � Λd(fxn+1, fx) +Λd(fxn+1, Tx)

� Λd(fxn+1, fx) +KΛd(fxn+1, Txn+1) +KΛd(Txn+1, Tx),
or

d(Txn+1, Tx) � Λd(fxn+1, Txn+1) +Λd(fx, Tx) +Λd(fx, Txn+1)

� Λd(fxn+1, Txn+1) +KΛd(fx, Txn+1) +KΛd(Txn+1, Tx) +Λd(fx, Txn+1).

It implies that

d(Txn+1, Tx) ≺ (I−KΛ)−1Λc

p
+ (I−KΛ)−1KΛc

p
,

or
d(Txn+1, Tx) � (I−KΛ)−1Λc

p
+ (I−KΛ)−1KΛc

p
+ (I−KΛ)−1Λc

p
.

Let p→∞, Txn+1 → Tx. It implies that fx = Tx. So we conclude that ξ is a point of coincidence of T and
f. Every T -f-sequence (fxn)

∞
n=0 converges to ξ from the uniqueness of ξ. The latter part of Theorem 3.5

follows from Lemma 3.4.

Corollary 3.6. Let K = 1, Λ = λI, 0 6 λ < 1, we obtain [10, Theorem 1.3] from Theorem 3.5.

Corollary 3.7. Let K = 1, f = Ix, where Ix is the identity mapping on X, we obtain [4, Theorem 1.5] from
Theorem 3.5.
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