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Abstract

Let
M1f(x,y) :=

3
4
f(x+ y) −

1
4
f(−x− y) +

1
4
f(x− y) +

1
4
f(y− x) − f(x) − f(y),

M2f(x,y) := 2f
(
x+ y

2

)
+ f

(
x− y

2

)
+ f

(
y− x

2

)
− f(x) − f(y).

We solve the additive-quadratic ρ-functional equations

M1f(x,y) = ρM2f(x,y), (1)

and
M2f(x,y) = ρM1f(x,y), (2)

where ρ is a fixed nonzero number with ρ 6= 1.
Using the fixed point method, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional equations (1) and

(2) in Banach spaces. c©2017 All rights reserved.
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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [10] concerning the
stability of group homomorphisms.

The functional equation f(x+ y) = f(x) + f(y) is called the Cauchy equation. In particular, every so-
lution of the Cauchy equation is said to be an additive mapping. Hyers [6] gave a first affirmative partial
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answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for addi-
tive mappings and by Rassias [8] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Rassias’ approach.

The functional equation f(x+ y) + f(x− y) = 2f(x) + 2f(y) is called the quadratic functional equation.
In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The
stability of quadratic functional equation was proved by Skof [9] for mappings f : E1 → E2, where E1 is a
normed space and E2 is a Banach space. Cholewa [3] noticed that the theorem of Skof is still true if the
relevant domain E1 is replaced by an Abelian group.

We recall a fundamental result in fixed point theory.

Theorem 1.1 ([2, 4]). Let (X,d) be a complete generalized metric space and let J : X→ X be a strictly contractive
mapping with Lipschitz constant α < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞,

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n > n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x,y) <∞};

(4) d(y,y∗) 6 1
1−αd(y, Jy), for all y ∈ Y.

In Section 2, we solve the additive-quadratic functional equation (1) and prove the Hyers-Ulam stabil-
ity of the additive-quadratic functional equation (1) in Banach spaces.

In Section 3, we solve the additive-quadratic ρ-functional equation (2) and prove the Hyers-Ulam
stability of the additive-quadratic ρ-functional equation (2) in Banach spaces.

Throughout this paper, assume that X is a normed space and that Y is a Banach space. Let ρ be a
nonzero number with ρ 6= 1.

2. Additive-quadratic ρ-functional equation (1) in Banach spaces

We solve and investigate the additive-quadratic ρ-functional equation (1) in normed spaces.

Lemma 2.1.

(i) If a mapping f : X→ Y satisfies M1f(x,y) = 0, then f = fo + fe, where fo(x) :=
f(x)−f(−x)

2 is the Cauchy
additive mapping and fe(x) :=

f(x)+f(−x)
2 is the quadratic mapping.

(ii) If a mapping f : X→ Y satisfies M2f(x,y) = 0, then f = fo + fe, where fo(x) :=
f(x)−f(−x)

2 is the Cauchy
additive mapping and fe(x) :=

f(x)+f(−x)
2 is the quadratic mapping.

Proof.

(i)
M1fo(x,y) = fo(x+ y) − fo(x) − fo(y) = 0,

for all x,y ∈ X. So fo is the Cauchy additive mapping.

M1fe(x,y) =
1
2
fe(x+ y) +

1
2
fe(x− y) − fe(x) − fe(y) = 0,

for all x,y ∈ X. So fo is the quadratic mapping.
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(ii)

M2fo(x,y) = 2fo

(
x+ y

2

)
− fo(x) − fo(y) = 0,

for all x,y ∈ X. Since M2f(0, 0) = 0, f(0) = 0 and fo is the Cauchy additive mapping.

M2fe(x,y) = 2fe

(
x+ y

2

)
+ 2fe

(
x− y

2

)
− fe(x) − fe(y) = 0,

for all x,y ∈ X. Since M2f(0, 0) = 0, f(0) = 0 and fe is the quadratic mapping.
Therefore, the mapping f : X → Y is the sum of the Cauchy additive mapping and the quadratic

mapping.

From now on, for a given mapping f : X → Y, define fo(x) :=
f(x)−f(−x)

2 and fe(x) :=
f(x)+f(−x)

2 for
all x ∈ X. Then fo is an odd mapping and fe is an even mapping.

Lemma 2.2. If a mapping f : X→ Y satisfies f(0) = 0 and

M1f(x,y) = ρM2f(x,y), (2.1)

for all x,y ∈ X, then f : X→ Y is the sum of the Cauchy additive mapping fo and the quadratic mapping fe.

Proof. Letting y = x in (2.1) for fo, we get fo(2x) − 2fo(x) = 0 and so fo(2x) = 2fo(x) for all x ∈ X. Thus

fo

(x
2

)
=

1
2
fo(x), (2.2)

for all x ∈ X.
It follows from (2.1) and (2.2) that

fo(x+ y) − fo(x) − fo(y) = ρ

(
2fo

(
x+ y

2

)
− fo(x) − fo(y)

)
= ρ(fo(x+ y) − fo(x) − fo(y)),

and so
fo(x+ y) = fo(x) + fo(y),

for all x,y ∈ X.
Letting y = x in (2.1) for fe, we get 1

2fe(2x) − 2fe(x) = 0 and so fe(2x) = 4fe(x) for all x ∈ X. Thus

fe

(x
2

)
=

1
4
fe(x), (2.3)

for all x ∈ X.
It follows from (2.1) and (2.3) that

1
2
fe(x+ y) +

1
2
fe(x− y) − fe(x) − fe(y) = ρ

(
2fe

(
x+ y

2

)
+ 2fe

(
x− y

2

)
− fe(x) − fe(y)

)
= ρ

(
1
2
fe(x+ y) +

1
2
fe(x− y) − fe(x) − fe(y)

)
,

and so
fe(x+ y) + fe(x− y) = 2fe(x) + 2fe(y),

for all x,y ∈ X.
Therefore, the mapping f : X → Y is the sum of the Cauchy additive mapping fo and the quadratic

mapping fe.
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Using the fixed point method, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional
equation (2.1) in Banach spaces.

Theorem 2.3. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(x

2
,
y

2

)
6
L

4
ϕ (x,y) , (2.4)

for all x,y ∈ X. Let f : X→ Y be a mapping satisfying f(0) = 0 and

‖M1f(x,y) − ρM2f(x,y)‖ 6 ϕ(x,y), (2.5)

for all x,y ∈ X. Then there exist a unique additive mapping A : X→ Y and a unique quadratic mapping Q : X→ Y

such that
‖fo(x) −A(x)‖ 6

L

4(1 − L)
(ϕ (x, x) +ϕ (−x,−x)),

‖fe(x) −Q(x)‖ 6
L

4(1 − L)
(ϕ (x, x) +ϕ (−x,−x)),

for all x ∈ X.

Proof. Letting y = x in (2.5) for fo, we get

‖fo(2x) − 2fo(x)‖ 6
1
2
ϕ(x, x) +

1
2
ϕ(−x,−x), (2.6)

for all x ∈ X.
Consider the set

S := {h : X→ Y, h(0) = 0},

and introduce the generalized metric on S:

d(g,h) = inf {µ ∈ R+ : ‖g(x) − h(x)‖ 6 µ(ϕ (x, x) +ϕ (−x,−x)), ∀x ∈ X} ,

where, as usual, infφ = +∞. It is easy to show that (S,d) is complete (see [7]).
Now we consider the linear mapping J : S→ S such that

Jg(x) := 2g
(x

2

)
,

for all x ∈ X.
Let g,h ∈ S be given such that d(g,h) = ε. Then

‖g(x) − h(x)‖ 6 ε(ϕ (x, x) +ϕ (−x,−x)),

for all x ∈ X. Since L4ϕ (x,y) 6 L
2ϕ (x,y) for all x,y ∈ X,

‖Jg(x) − Jh(x)‖ =
∥∥∥2g

(x
2

)
− 2h

(x
2

)∥∥∥ 6 2ε
(
ϕ
(x

2
,
x

2

)
+ϕ

(
−
x

2
,−
x

2

))
6 2ε

L

2
(ϕ (x, x) +ϕ (−x,−x)) = Lε(ϕ (x, x) +ϕ (−x,−x)),

for all x ∈ X. So d(g,h) = ε implies that d(Jg, Jh) 6 Lε. This means that

d(Jg, Jh) 6 Ld(g,h),

for all g,h ∈ S.
It follows from (2.6) that∥∥∥fo(x) − 2fo

(x
2

)∥∥∥ 6
1
2
ϕ
(x

2
,
x

2

)
+

1
2
ϕ
(
−
x

2
,−
x

2

)
6
L

8
(ϕ(x, x) +ϕ(−x,−x)),

for all x ∈ X. So d(fo, Jfo) 6 L
8 6 L

4 .
By Theorem 1.1, there exists a mapping A : X→ Y satisfying the following:
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(1) A is a fixed point of J, i.e.,
A (x) = 2A

(x
2

)
, (2.7)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

M = {g ∈ S : d(f,g) <∞}.

This implies that A is a unique mapping satisfying (2.7) such that there exists a µ ∈ (0,∞) satisfying

‖fo(x) −A(x)‖ 6 µ(ϕ (x, x) +ϕ (−x,−x)),

for all x ∈ X;

(2) d(Jlfo,A) → 0 as l→ ∞. This implies the equality

lim
l→∞ 2nfo

( x
2n

)
= A(x),

for all x ∈ X;

(3) d(fo,A) 6 1
1−Ld(fo, Jfo), which implies

‖fo(x) −A(x)‖ 6
L

4(1 − L)
(ϕ (x, x) +ϕ (−x,−x)),

for all x ∈ X.

It follows from (2.4) and (2.5) that∥∥∥∥A(x+ y) −A(x) −A(y) − ρ(2A
(
x+ y

2

)
−A(x) −A(y)

)∥∥∥∥
= lim
n→∞

∥∥∥∥2n
(
fo

(
x+ y

2n

)
− fo

( x
2n

)
− fo

( y
2n

))
− 2nρ

(
2fo

(
x+ y

2n+1

)
− fo

( x
2n

)
− fo

( y
2n

))∥∥∥∥
6

1
2

lim
n→∞

(
2nϕ

( x
2n

,
y

2n
)
+ 2nϕ

(
−
x

2n
,−

y

2n
))

= 0,

for all x,y ∈ X. So

A(x+ y) −A(x) −A(y) = ρ

(
2A

(
x+ y

2

)
−A(x) −A(y)

)
,

for all x,y ∈ X. By Lemma 2.2, the mapping A : X→ Y is additive.
Letting y = x in (2.5) for fe, we get∥∥∥∥1

2
fe(2x) − 2fe(x)

∥∥∥∥ 6
1
2
ϕ(x, x) +

1
2
ϕ(−x,−x), (2.8)

for all x ∈ X.
Now we consider the linear mapping J : S→ S such that

Jg(x) := 4g
(x

2

)
,

for all x ∈ X.
Let g,h ∈ S be given such that d(g,h) = ε. Then

‖g(x) − h(x)‖ 6 ε(ϕ (x, x) +ϕ (−x,−x)),



C. Park, S. O. Kim, C. Alaca, J. Nonlinear Sci. Appl., 10 (2017), 1252–1262 1257

for all x ∈ X. Hence

‖Jg(x) − Jh(x)‖ =
∥∥∥4g

(x
2

)
− 4h

(x
2

)∥∥∥ 6 4ε
(
ϕ
(x

2
,
x

2

)
+ϕ

(
−
x

2
,−
x

2

))
6 4ε

L

4
(ϕ (x, x) +ϕ (−x,−x)) = Lε(ϕ (x, x) +ϕ (−x,−x)),

for all x ∈ X. So d(g,h) = ε implies that d(Jg, Jh) 6 Lε. This means that

d(Jg, Jh) 6 Ld(g,h),

for all g,h ∈ S.
It follows from (2.8) that∥∥∥fe(x) − 4fe

(x
2

)∥∥∥ 6 ϕ
(x

2
,
x

2

)
+ϕ

(
−
x

2
,−
x

2

)
6
L

4
(ϕ(x, x) +ϕ(−x,−x)),

for all x ∈ X. So d(fe, Jfe) 6 L
4 .

By Theorem 1.1, there exists a mapping Q : X→ Y satisfying the following:

(1) Q is a fixed point of J, i.e.,
Q (x) = 4Q

(x
2

)
, (2.9)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f,g) <∞}.

This implies that Q is a unique mapping satisfying (2.9) such that there exists a µ ∈ (0,∞) satisfying

‖fe(x) −Q(x)‖ 6 µ(ϕ (x, x) +ϕ (−x,−x)),

for all x ∈ X;

(2) d(Jlfe,Q) → 0 as l→ ∞. This implies the equality

lim
n→∞ 4nfe

( x
2n

)
= Q(x),

for all x ∈ X;

(3) d(fe,Q) 6 1
1−Ld(fe, Jfe), which implies

‖fe(x) −Q(x)‖ 6
L

4(1 − L)
(ϕ (x, x) +ϕ (−x,−x)),

for all x ∈ X.

It follows from (2.4) and (2.5) that∥∥∥∥1
2
Q

(
x+ y

2

)
+

1
2
Q

(
x− y

2

)
−Q(x) −Q(y) − ρ

(
2Q

(
x+ y

2

)
+ 2Q

(
x− y

2

)
−Q(x) −Q(y)

)∥∥∥∥
= lim
n→∞

∥∥∥∥4n
(

1
2
fe

(
x+ y

2n

)
+

1
2
fe

(
x− y

2n

)
− fe

( x
2n

)
− fe

( y
2n

))
− 4nρ

(
2fe

(
x+ y

2n+1

)
+ 2fe

(
x− y

2n+1

)
− fe

( x
2n

)
− fe

( y
2n

))∥∥∥∥
6

1
2

lim
n→∞

(
4nϕ

( x
2n

,
y

2n
)
+ 4nϕ

(
−
x

2n
,−

y

2n
))

= 0,



C. Park, S. O. Kim, C. Alaca, J. Nonlinear Sci. Appl., 10 (2017), 1252–1262 1258

for all x,y ∈ X. So

1
2
Q

(
x+ y

2

)
+

1
2
Q

(
x− y

2

)
−Q(x) −Q(y) = ρ

(
2Q

(
x+ y

2

)
+ 2Q

(
x− y

2

)
−Q(x) −Q(y)

)
,

for all x,y ∈ X. By Lemma 2.2, the mapping Q : X→ Y is quadratic.

Corollary 2.4. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping satisfying f(0) = 0
and

‖M1f(x,y) − ρM2f(x,y)‖ 6 θ(‖x‖r + ‖y‖r), (2.10)

for all x,y ∈ X. Then there exist a unique additive mapping A : X→ Y and a unique quadratic mapping Q : X→ Y

such that

‖fo(x) −A(x)‖ 6
2θ

2r − 2
‖x‖r,

‖fe(x) −Q(x)‖ 6
4θ

2r − 4
‖x‖r,

for all x ∈ X.

Proof. The proof follows from Theorem 2.3 by taking ϕ(x,y) = θ(‖x‖r + ‖y‖r) for all x,y ∈ X. Then we
can choose L = 21−r for fo (respectively, L = 22−r for fe) and we get the desired result.

Theorem 2.5. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x,y) 6 2Lϕ
(x

2
,
y

2

)
,

for all x,y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (2.5). Then there exist a unique additive
mapping A : X→ Y and a unique quadratic mapping Q : X→ Y such that

‖fo(x) −A(x)‖ 6
1

4(1 − L)
(ϕ (x, x) +ϕ (−x,−x)),

‖fe(x) −Q(x)‖ 6
1

4(1 − L)
(ϕ (x, x) +ϕ (−x,−x)),

for all x ∈ X.

Proof. Let (S,d) be the generalized metric space defined in the proof of Theorem 2.3.
It follows from (2.6) that ∥∥∥∥fo(x) − 1

2
fo(2x)

∥∥∥∥ 6
1
4
ϕ(x, x) +

1
4
ϕ(−x,−x),

for all x ∈ X.
For fo, we consider the linear mapping J : S→ S such that

Jg(x) :=
1
2
g (2x) ,

for all x ∈ X.
It follows from (2.8) that ∥∥∥∥fe(x) − 1

4
fe(2x)

∥∥∥∥ 6
1
4
ϕ(x, x) +

1
4
ϕ(−x,−x),

for all x ∈ X.
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For fe, we consider the linear mapping J : S→ S such that

Jg(x) :=
1
4
g (2x) ,

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.3.

Corollary 2.6. Let r < 1 and θ be nonnegative real numbers, and let f : X → Y be a mapping satisfying f(0) = 0
and (2.10). Then there exist a unique additive mapping A : X → Y and a unique quadratic mapping Q : X → Y

such that

‖fo(x) −A(x)‖ 6
2θ

2 − 2r
‖x‖r,

‖fe(x) −Q(x)‖ 6
4θ

4 − 2r
‖x‖r,

for all x ∈ X.

Proof. The proof follows from Theorem 2.5 by taking ϕ(x,y) = θ(‖x‖r + ‖y‖r) for all x,y ∈ X. Then we
can choose L = 2r−1 for fo (respectively, L = 2r−2 for fe) and we get the desired result.

3. Additive-quadratic ρ-functional equation (2) in Banach spaces

We solve and investigate the additive-quadratic ρ-functional equation (2) in normed spaces.

Lemma 3.1. If a mapping f : X→ Y satisfies f(0) = 0 and

M2f(x,y) = ρM1f(x,y), (3.1)

for all x,y ∈ X, then f : X→ Y is the sum of the Cauchy additive mapping fo and the quadratic mapping fe.

Proof. Letting y = 0 in (3.1) for fo, we get

fo

(x
2

)
=

1
2
fo(x), (3.2)

for all x ∈ X.
It follows from (3.1) and (3.2) that

fo(x+ y) − fo(x) − fo(y) = 2fo

(
x+ y

2

)
− fo(x) − fo(y) = ρ(fo(x+ y) − fo(x) − fo(y)),

and so
fo(x+ y) = fo(x) + fo(y),

for all x,y ∈ X.
Letting y = 0 in (3.1) for fe, we get

fe

(x
2

)
=

1
4
fe(x), (3.3)

for all x ∈ X.
It follows from (3.1) and (3.3) that

1
2
fe(x+ y) +

1
2
fe(x− y) − fe(x) − fe(y) = 2fe

(
x+ y

2

)
+ 2fe

(
x− y

2

)
− fe(x) − fe(y)

= ρ

(
1
2
fe(x+ y) +

1
2
fe(x− y) − fe(x) − fe(y)

)
,

and so
fe(x+ y) + fe(x− y) = 2fe(x) + 2fe(y),

for all x,y ∈ X.
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Using the fixed point method, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional
equation (3.1) in Banach spaces.

Theorem 3.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(x

2
,
y

2

)
6
L

4
ϕ (x,y) ,

for all x,y ∈ X. Let f : X→ Y be a mapping satisfying f(0) = 0 and

‖M2f(x,y) − ρM1f(x,y)‖ 6 ϕ(x,y), (3.4)

for all x,y ∈ X. Then there exist a unique additive mapping A : X→ Y and a unique quadratic mapping Q : X→ Y

such that

‖fo(x) −A(x)‖ 6
1

2(1 − L)
(ϕ (x, 0) +ϕ (−x, 0)),

‖fe(x) −Q(x)‖ 6
1

2(1 − L)
(ϕ (x, 0) +ϕ (−x, 0)),

for all x ∈ X.

Proof. Letting y = 0 in (3.4) for fo, we get∥∥∥fo(x) − 2fo
(x

2

)∥∥∥ =
∥∥∥2fo

(x
2

)
− fo(x)

∥∥∥ 6
1
2
ϕ(x, 0) +

1
2
ϕ(−x, 0), (3.5)

for all x ∈ X.
Consider the set

S := {h : X→ Y, h(0) = 0},

and introduce the generalized metric on S:

d(g,h) = inf {µ ∈ R+ : ‖g(x) − h(x)‖ 6 µ(ϕ (x, 0) +ϕ (−x, 0)), ∀x ∈ X} ,

where, as usual, infφ = +∞. It is easy to show that (S,d) is complete (see [7]).
For fo, we consider the linear mapping J : S→ S such that

Jg(x) := 2g
(x

2

)
,

for all x ∈ X.
Letting y = 0 in (3.4) for fe, we get∥∥∥fe(x) − 4fe

(x
2

)∥∥∥ =
∥∥∥4fe

(x
2

)
− fe(x)

∥∥∥ 6
1
2
ϕ(x, 0) +

1
2
ϕ(−x, 0), (3.6)

for all x ∈ X.
For fe, we consider the linear mapping J : S→ S such that

Jg(x) := 4g
(x

2

)
,

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.3.

Corollary 3.3. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping satisfying f(0) = 0
and

‖M2f(x,y) − ρM1f(x,y)‖ 6 θ(‖x‖r + ‖y‖r), (3.7)

for all x,y ∈ X. Then there exist a unique additive mapping A : X→ Y and a unique quadratic mapping Q : X→ Y
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such that

‖fo(x) −A(x)‖ 6
2rθ

2r − 2
‖x‖r,

‖fe(x) −Q(x)‖ 6
2rθ

2r − 4
‖x‖r,

for all x ∈ X.

Proof. The proof follows from Theorem 3.2 by taking ϕ(x,y) = θ(‖x‖r + ‖y‖r) for all x,y ∈ X. Then we
can choose L = 21−r for fo (respectively, L = 22−r for fe) and we get the desired result.

Theorem 3.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x,y) 6 2Lϕ
(x

2
,
y

2

)
,

for all x,y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (3.4). Then there exist a unique additive
mapping A : X→ Y and a unique quadratic mapping Q : X→ Y such that

‖fo(x) −A(x)‖ 6
L

2(1 − L)
(ϕ (x, 0) +ϕ (−x, 0)),

‖fe(x) −Q(x)‖ 6
L

2(1 − L)
(ϕ (x, 0) +ϕ (−x, 0)),

for all x ∈ X.

Proof. Let (S,d) be the generalized metric space defined in the proof of Theorem 3.2.
It follows from (3.5) that∥∥∥∥fo(x) − 1

2
fo(2x)

∥∥∥∥ 6
1
4
ϕ(2x, 0) +

1
4
ϕ(−2x, 0) 6

L

2
ϕ(x, 0) +

L

2
ϕ(−x, 0),

for all x ∈ X.
For fo, we consider the linear mapping J : S→ S such that

Jg(x) :=
1
2
g (2x) ,

for all x ∈ X.
It follows from (3.6) that∥∥∥∥fe(x) − 1

4
fe(2x)

∥∥∥∥ 6
1
8
ϕ(2x, 0) +

1
8
ϕ(−2x, 0) 6

L

4
ϕ(x, 0) +

L

4
ϕ(−x, 0) 6

L

2
ϕ(x, 0) +

L

2
ϕ(−x, 0),

for all x ∈ X, since L4ϕ(x, 0) + L
4ϕ(−x, 0) 6 L

2ϕ(x, 0) + L
2ϕ(−x, 0) for all x ∈ X.

For fe, we consider the linear mapping J : S→ S such that

Jg(x) :=
1
4
g (2x) ,

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.3.

Corollary 3.5. Let r < 1 and θ be positive real numbers, and let f : X → Y be a mapping satisfying (3.7). Then
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there exist a unique additive mapping A : X→ Y and a unique quadratic mapping Q : X→ Y such that

‖fo(x) −A(x)‖ 6
2rθ

2 − 2r
‖x‖r,

‖fe(x) −Q(x)‖ 6
2rθ

4 − 2r
‖x‖r,

for all x ∈ X.

Proof. The proof follows from Theorem 3.2 by taking ϕ(x,y) = θ(‖x‖r + ‖y‖r) for all x,y ∈ X. Then we
can choose L = 2r−1 for fo (respectively, L = 2r−2 for fe) and we get the desired result.
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