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Abstract
Let
M f(x )’*gf(x—i- )—lf(—x— )—b—lf(x— )—b—lf( —x) —f(x) —f(y)
11X,y =12 Yy 1 Yy 1 Yy 1 Yy y),
Mof(x,y) := 2f (%) +f (X;y> +f <y ;X) —f(x) — f(y).

We solve the additive-quadratic p-functional equations

Mif(x,y) = pMaf(x,y), 1)

and
Maf(x,y) = pMaf(x,y), )
where p is a fixed nonzero number with p # 1.
Using the fixed point method, we prove the Hyers-Ulam stability of the additive-quadratic p-functional equations (1) and
(2) in Banach spaces. (©2017 All rights reserved.
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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [10] concerning the
stability of group homomorphisms.

The functional equation f(x +y) = f(x) + f(y) is called the Cauchy equation. In particular, every so-
lution of the Cauchy equation is said to be an additive mapping. Hyers [6] gave a first affirmative partial
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answer to the question of Ulam for Banach spaces. Hyers” Theorem was generalized by Aoki [1] for addi-
tive mappings and by Rassias [8] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Gavruta [5] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Rassias” approach.

The functional equation f(x +y) + f(x —y) = 2f(x) + 2f(y) is called the quadratic functional equation.
In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The
stability of quadratic functional equation was proved by Skof [9] for mappings f : E; — E;, where E; is a
normed space and E; is a Banach space. Cholewa [3] noticed that the theorem of Skof is still true if the
relevant domain E; is replaced by an Abelian group.

We recall a fundamental result in fixed point theory.

Theorem 1.1 ([2, 4]). Let (X, d) be a complete generalized metric space and let | : X — X be a strictly contractive
mapping with Lipschitz constant o« < 1. Then for each given element x € X, either

d(J™x, ] 1x) = oo,
for all nonnegative integers n or there exists a positive integer ng such that
(1) dJ™x, J™ %) < oo, ¥n =g
(2) the sequence {J™x} converges to a fixed point y* of J;
(3) y* is the unique fixed point of | in the set Y ={y € X | d(J"0x,y) < oo};
(4) d(y,y*) < 25d(y, Jy), forally €Y.

In Section 2, we solve the additive-quadratic functional equation (1) and prove the Hyers-Ulam stabil-
ity of the additive-quadratic functional equation (1) in Banach spaces.

In Section 3, we solve the additive-quadratic p-functional equation (2) and prove the Hyers-Ulam
stability of the additive-quadratic p-functional equation (2) in Banach spaces.

Throughout this paper, assume that X is a normed space and that Y is a Banach space. Let p be a
nonzero number with p # 1.

2. Additive-quadratic p-functional equation (1) in Banach spaces

We solve and investigate the additive-quadratic p-functional equation (1) in normed spaces.

Lemma 2.1.
(i) If a mapping f : X — Y satisfies Myf(x,y) = 0, then f = f, + fo, where fo(x) = w is the Cauchy
additive mapping and fe(x) = W is the quadratic mapping.
(ii) If a mapping f : X — Y satisfies Myf(x,y) = 0, then f = f, + fo, where fo(x) == w is the Cauchy
additive mapping and fe(x) = W is the quadratic mapping.
Proof.
(i)

Mifo(x,y) = folx +y) — fo(x) — foly) =0,
for all x,y € X. So f, is the Cauchy additive mapping.

Mife(x,y) = %fe(ery) + %fe(x—y) —fe(x) —fe(y) =0,

for all x,y € X. So f,, is the quadratic mapping.
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(if)
X+y

MZfO(X/y) = 2f, < ) _fo(X) _fo(y) =0,

for all x,y € X. Since M>f(0,0) =0, f(0) = 0 and f, is the Cauchy additive mapping.

Mafe(x,y) = 2f, (xery> +2f, (X;y> —fe(x) —fe(y) =0,

for all x,y € X. Since M,f(0,0) =0, f(0) =0 and f. is the quadratic mapping.
Therefore, the mapping f : X — Y is the sum of the Cauchy additive mapping and the quadratic
mapping. O

From now on, for a given mapping f : X — Y, define f,(x) := w and fe(x) := W for

all x € X. Then f, is an odd mapping and f. is an even mapping.

Lemma 2.2. If a mapping f : X — Y satisfies f(0) = 0 and
Mif(x,y) = pMaf(x,y), (2.1)
forall x,y € X, then f : X — Y is the sum of the Cauchy additive mapping f, and the quadratic mapping fe.

Proof. Letting y = x in (2.1) for f,, we get f,(2x) —2f,(x) = 0 and so f,(2x) = 2f, (x) for all x € X. Thus

f, (5) _ L, (2.2)

for all x € X.
It follows from (2.1) and (2.2) that

X+y
2

folx+y) —fo(x) —foly) =p <2fo ( > —fo(x) —fo(y)> =p(fo(x+y) —folx) —fo(y)),
and so
fo(x+y) :fo(x)+f0(y)r

for all x,y € X.
Letting y = x in (2.1) for f., we get %fe(Zx) —2fe(x) =0 and so fe(2x) = 4f.(x) for all x € X. Thus

X

fo (5) = Sfe(x), (2.3)

for all x € X.
It follows from (2.1) and (2.3) that

1 1 B X+ x=y\ . o
Selerul+ gfelx—y) = fel) — fely) = o (26 (52 ) +28e (5 el ~fely))

1 1
= (Gt )+ 5l —y) ~ ¥ - felw))
and so

fe(x +y) +fe(x —y) = 2fe(x) +2fe(y),

for all x,y € X.
Therefore, the mapping f : X — Y is the sum of the Cauchy additive mapping f, and the quadratic
mapping fe. O
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Using the fixed point method, we prove the Hyers-Ulam stability of the additive-quadratic p-functional
equation (2.1) in Banach spaces.

Theorem 2.3. Let @ : X> — [0, 00) be a function such that there exists an L < 1 with

X L
forall x,y € X. Let f : X — Y be a mapping satisfying f(0) = 0 and
Hle(X/y) - psz(X/y)H < (P(Xzy)/ (25)

forall x,y € X. Then there exist a unique additive mapping A : X — Y and a unique quadratic mapping Q : X =Y
such that

Ifalo) = AL < g3 (0 (1) + @ (=%, =),
Ifelx) = QUAI| < g3 (0 (o) + @ (=, ),
forall x € X.
Proof. Letting y = x in (2.5) for f,, we get
[£0(25) = 266 (x)]| < 5006 %) + 3 0%, x), 26)

for all x € X.
Consider the set
S:={h:X—=Y, h(0) =0},

and introduce the generalized metric on S:
d(g,h) = inf{u € Ry : [lg(x) —h(x)]| < nle (xx) + @ (—x,—x)), Vx € X},

where, as usual, inf ¢ = 4-o0. It is easy to show that (S, d) is complete (see [7]).
Now we consider the linear mapping J : S — S such that

J9(x) =29 (),

for all x € X.
Let g, h € S be given such that d(g,h) = . Then

[g(x) —h(x)| < ele (x,x) + @ (—x,—x)),
for all x € X. Since %(p (x,y) < %(p (x,y) for all x,y € X,

9 =Tl = g (3) 20 (3) | < 2¢ (@ (3:) + o (-3 -3))

<265 (x) + 0 (%)) = Le(o (5,2 + @ (%, ),

for all x € X. So d(g, h) = ¢ implies that d(Jg, Jh) < Le. This means that
d(Jg,Jh) < Ld(g, h),

forall g,h €8S.
It follows from (2.6) that

X 1 /x x 1 X X L
_ = < = -z - T M)« = —x
fo(x) —2f, (2>H <@ (2,2> +2<p< X 2) < gl x) +o(=x,—x)),
for all x € X. So d(f,, Jfo) < % < %.

By Theorem 1.1, there exists a mapping A : X — Y satisfying the following:
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(1) Ais a fixed point of J, i.e.,

A(x) =2A (g) , 2.7)

for all x € X. The mapping A is a unique fixed point of ] in the set
M ={g € S:d(f,g) < oo}
This implies that A is a unique mapping satisfying (2.7) such that there exists a n € (0, co) satisfying
Ifo(x) = A < 1l (x,x) + @ (—x, —x]),
for all x € X;

(2) d(J'fo,A) — 0 as | — oco. This implies the equality
. n XN
fim 2o () =AM,
for all x € X;

(3) d(fo, A) < 21 d(fo, Jfo), which implies

Ifo(x) = AR <

for all x € X.

It follows from (2.4) and (2.5) that

A=A - A= (22 (S5Y) A - Aw))|

= [ (1 (52 =5 ()= (30) -2 (o (5 -0 51) v (30|
<m0 (o) 170 (o)) <o

for all x,y € X. So

Atk +y) - A - Aly) =p (24 (5 A0 - Aw),

for all x,y € X. By Lemma 2.2, the mapping A : X — Y is additive.
Letting y = x in (2.5) for f, we get

|5 1e(20 26 < S0t + 0%, —x), 28)

1
2

for all x € X.
Now we consider the linear mapping J : S — S such that

Jo(x) =49 ()

for all x € X.
Let g, h € S be given such that d(g,h) = ¢. Then

Hg(x) - h(X)H < 8(([) (X/X) + ® (_X’I _X))/
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for all x € X. Hence
X X X X X X
gt = Thee)l = |4 (5) ~ 40 (5) | < 4e (0 (5:5) +0 (3-3))
L
< 451(@ (XIX) +o (_X/ _X)) = I—E((P (XIX) +o (_X/ _X))/
for all x € X. So d(g, h) = ¢ implies that d(Jg, Jh) < Le. This means that

d(Jg,Jh) < Ld(g, h),

for all g,h € S.
It follows from (2.8) that

e —ate (3)] <0 (5.3) +o (-5-5) < lotex) + ol—x ),

for all x € X. So d(fe, Jfe) < %.
By Theorem 1.1, there exists a mapping Q : X — Y satisfying the following:

(1) Q is a fixed point of J, i.e.,
Q) =14Q(3) 29)
for all x € X. The mapping Q is a unique fixed point of | in the set
M ={geS:d(f,g) < oo}
This implies that Q is a unique mapping satisfying (2.9) such that there exists a p € (0, co) satisfying
Ife(x) = QM) < (e (x,x) + ¢ (—x,—x]),
for all x € X;

(2) d(J'fe, Q) — 0 as 1 — oco. This implies the equality

s 1 (3) =0
for all x € X;
(3) d(fe, Q) < ﬁd(fe,]fe), which implies
L
1700 = QU € g5 (x,x) + @ (=, =)

for all x € X.

It follows from (2.4) and (2.5) that
1 x+y 1 xX—Yy
()20 (% 0

1 x+y 1 xX—Yy X y
n p— — J— —_— J— —_—
4 <2fe< 2n >+2fe< 2n > fe <2n) fe (zn)
X+y X—y X
—4np <2fe <2n+1) +2f, <2n+1> —fe (2—11)

im0 (o) o (5 30) o

= lim
n—,oo
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for all x,y € X. So

20 ()50 ((3Y) —am—aw =o (20 (*5Y) +20 (*5Y) — e -Qw)),

for all x,y € X. By Lemma 2.2, the mapping Q : X — Y is quadratic. O

Corollary 2.4. Let v > 2 and © be nonnegative real numbers, and let f : X — Y be a mapping satisfying f(0) = 0
and

IM1f(x, y) = eMaf (x, y) || < B(fIx[" +[[yll"), (2.10)

forall x,y € X. Then there exist a unique additive mapping A : X — Y and a unique quadratic mapping Q : X =Y
such that

20 ..
o) = A < g NI,
40

forall x € X.

Proof. The proof follows from Theorem 2.3 by taking ¢ (x,y) = 0(||x||" + |[y||") for all x,y € X. Then we
can choose L = 217 for f, (respectively, L = 22T for fe) and we get the desired result. O

Theorem 2.5. Let ¢ : X2 — [0, 00) be a function such that there exists an L < 1 with

Xy
< -2
¢ (x,y) <2le (2, 2) ,
forall x,y € X. Let f : X — Y be a mapping satisfying f(0) = 0 and (2.5). Then there exist a unique additive
mapping A : X — Y and a unique quadratic mapping Q : X — Y such that

[fo(x) —A(x)]| < (@ (x,x)+ ¢ (—x,—x)),

41-1)
1
41-0)

”fe(X)—Q(X)H < ((P (X/X)+(P(_X/_X))/

forall x € X.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.3.
It follows from (2.6) that

for all x € X.
For f,, we consider the linear mapping J : S — S such that

J9(x) = 59 (2x),

for all x € X.
It follows from (2.8) that

Fel(x) = 4e(20)]| < J000x) + yolx )

1
4

for all x € X.
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For f., we consider the linear mapping J : S — S such that

Jolx) = 19 (20),
for all x € X.
The rest of the proof is similar to the proof of Theorem 2.3. O

Corollary 2.6. Let v < 1 and 0 be nonnegative real numbers, and let f : X — Y be a mapping satisfying f(0) =0

and (2.10). Then there exist a unique additive mapping A : X — Y and a unique quadratic mapping Q : X =Y
such that

20
Ifo(x) = ADI < 5= lIxI",
40
Ife() = QU < 75 Il

forall x € X.

Proof. The proof follows from Theorem 2.5 by taking ¢(x,y) = 0(|x||" + |[y||") for all x,y € X. Then we
can choose L = 2""! for f, (respectively, L =272 for f.) and we get the desired result. O

3. Additive-quadratic p-functional equation (2) in Banach spaces
We solve and investigate the additive-quadratic p-functional equation (2) in normed spaces.
Lemma 3.1. If a mapping f : X — Y satisfies f(0) = 0 and
Maf(x,y) = pM1f(x,y), 3.1)
forall x,y € X, then f : X — Y is the sum of the Cauchy additive mapping f, and the quadratic mapping fe.
Proof. Lettingy = 01in (3.1) for f,, we get

fo (3) _ L, (3.2)

for all x € X.
It follows from (3.1) and (3.2) that

xX+y

Folxy) — o () — foly) = 2fg (

and so

forall x,y € X.
Letting y = 0 in (3.1) for f, we get
X 1
fe (5) = zfex), (3.3)

for all x € X.
It follows from (3.1) and (3.3) that

felerul+ ghele—y) = el) —fely) =26 (572 ) w2t (2572 el ~fely)

=0 (Gelvtul 4 ghelxy) = fel) —fely) )
and so
fe(x +y) +fe(x —y) = 2fe(x) + 2fe(y),

forall x,y € X. O
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Using the fixed point method, we prove the Hyers-Ulam stability of the additive-quadratic p-functional
equation (3.1) in Banach spaces.

Theorem 3.2. Let ¢ : X> — [0,00) be a function such that there exists an L < 1 with

® (X y) < %(p(x,y),

22
forall x,y € X. Let f: X — Y be a mapping satisfying £(0) = 0 and
IM2f(x,y) — pMaf(x, y) || < @ (x,y), (34)

forall x,y € X. Then there exist a unique additive mapping A : X — Y and a unique quadratic mapping Q : X =Y
such that

Ifol0) = Ale)| < 57 (0 (%,0) + @ (=x,0),
6= QI < 51 (0 (4.0)+ @ (x,0]),
forall x € X.
Proof. Letting y = 0 in (3.4) for f,, we get
X X 1 1
folx) =260 (3] = |20 () ~ fo¥)]| < 500%,0) + 5 0(—x,0), (35)

for all x € X.
Consider the set
S:={h:X—=Y, h(0) =0},

and introduce the generalized metric on S:
d(g,h) =inf{p € Ry : [|g(x) —h(x)|| < ple (x,0) + @ (—x,0)), Vx € X},

where, as usual, inf ¢ = +oc0. It is easy to show that (S, d) is complete (see [7]).
For f,, we consider the linear mapping J : S — S such that

Jo(x) =29 (),

for all x € X.

Letting y = 0 in (3.4) for f., we get

X X 1 1
_ i — Bl < = Z(— .
felx) =4t (5)]| = |41 (5) —fe0)]| < 500x,0)+ 50(—x,0), (3.6)

for all x € X.

For f., we consider the linear mapping J : S — S such that

X
Jo(x) =49 (),

for all x € X.

The rest of the proof is similar to the proof of Theorem 2.3. O

Corollary 3.3. Let v > 2 and © be nonnegative real numbers, and let f : X — Y be a mapping satisfying f(0) = 0
and
IM2f(x, y) — pMaf(x, y) I < O™ + llyll"), (3.7)

forall x,y € X. Then there exist a unique additive mapping A : X — Y and a unique quadratic mapping Q : X =Y
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such that
270
[fo(x) = A(x)]| < 75 X",
270
Ife() = QU < o= IxII",
forall x € X.

Proof. The proof follows from Theorem 3.2 by taking ¢(x,y) = 0(||x||" + ||y||") for all x,y € X. Then we
can choose L = 217 for f, (respectively, L = 22T for fe) and we get the desired result.

O
Theorem 3.4. Let @ : X> — [0, 00) be a function such that there exists an L < 1 with

¢y <2le (5.3,

forall x,y € X. Let f : X — Y be a mapping satisfying f(0) = 0 and (3.4). Then there exist a unique additive
mapping A : X — Y and a unique quadratic mapping Q : X — Y such that

[fo(x) =AM <

2(1 — I_) ((P (XIO) + ® (_XI O))r
[fe(x) = Q)| <

-1 (¢ (x,0) + ¢ (—x,0)),
forall x € X.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 3.2.
It follows from (3.5) that

Folx) — fo(2x) :

1 1
<= Zo(— < =
< 4@(2x,0)+4¢>( 2x,0) < 5@

L
(Xl O) + E(P(_Xz 0)/
for all x € X.

For f,, we consider the linear mapping J : S — S such that

1
Jolx) = 59(2x),
for all x € X.
It follows from (3.6) that

1

1 L
< g(P(ZX/O) + g(P(—ZXIO) <

L
- —o(— <
70050+ 0(—x,0) <

felx) — el

L L
E(‘p(xl O) + E(P(_X/ 0)1

for all x € X, since %(p(x,O) + %(p(—x,O) < %(p(x,O) + %(p(—x,O) for all x € X
For f., we consider the linear mapping J : S — S such that

Jolx) = 79 (20),
for all x € X.

The rest of the proof is similar to the proof of Theorem 2.3.

[l
Corollary 3.5. Let v < 1 and 0 be positive real numbers, and let f : X — Y be a mapping satisfying (3.7). Then
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there exist a unique additive mapping A : X — Y and a unique quadratic mapping Q : X — Y such that

270 .
270
Ifelx) = QU < 7z NI,
forall x € X.
Proof. The proof follows from Theorem 3.2 by taking ¢ (x,y) = 0(||x||" + |Jy||") for all x,y € X. Then we
can choose L =2"1 for f, (respectively, L = 272 for fe) and we get the desired result. O
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