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Abstract
We obtain new oscillation theorems for a class of second-order linear difference equations. Our criteria complement and

improve related results reported in the literature. An illustrative example is given. c©2017 All rights reserved.
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1. Introduction

In this paper, we are concerned with the oscillation of a linear second-order difference equation

∆2xn−1 + pnxn = 0, n = 0, 1, 2, . . . , (1.1)

where ∆ is the forward difference operator satisfying ∆xn = xn+1 − xn and {pn} is a sequence of non-
negative real numbers. A solution {xn} of (1.1) is termed oscillatory if it is neither eventually positive nor
eventually negative; otherwise, it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all its
nontrivial solutions oscillate.

Oscillation and asymptotic behavior of various classes of difference equations have always attracted
interest of researchers; see, e.g., the monograph [1], the papers [2–16], and the references cited therein. In
particular, several interesting oscillation results for equation (1.1) were established in the papers by Erbe
and Zhang [4], Jiang and Li [5], Lei [6], Sun [8], and Zhang and Cheng [14], some of which we present
below for the convenience of the reader. In the following, we use the notation:

un(α) = n
1−α

∞∑
k=n+1

kαpk,
∞∑
k=1

kαpk <∞, p∗(α) = lim inf
n→∞ un(α), and p∗(α) = lim sup

n→∞ un(α).
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Theorem 1.1 ([4]). If

lim inf
n→∞ n2pn >

1
4

,

then equation (1.1) is oscillatory.

Theorem 1.2 ([14]). If

p∗(0) >
1
4

,

then equation (1.1) is oscillatory.

Theorem 1.3 ([5, 6]). Let p∗(0) 6 1/4. If there exists a constant α > 1 such that

p∗(α) >
α2

4(α− 1)
−

1
2

(
1 −

√
1 − 4p∗(0)

)
,

then equation (1.1) is oscillatory.

This study was strongly motivated by the research of Erbe and Zhang [4], Jiang and Li [5], Lei [6], and
Zhang and Cheng [14]. Its purpose is to obtain new oscillation criteria for equation (1.1) that improve
Theorems 1.1 and 1.2 and complement Theorem 1.3. It is not difficult to see that if there exists a constant
α < 1 such that ∞∑

k=1

kαpk = ∞,

then equation (1.1) is oscillatory. In the sequel, we assume that

∞∑
k=1

kαpk <∞, α < 1.

As usual, all functional inequalities considered in this paper are supposed to hold eventually. Without
loss of generality, we deal only with positive solutions of (1.1) since {−xn} is also a solution of this equation
provided that {xn} is a solution.

2. Lemmas

To prove the main results, we need the following lemmas. For a compact presentation of our results,
we adopt the notation:

q = lim inf
n→∞ 1

n

n∑
k=1

k2pk, wn =
∆xn−1

xn−1
, r = lim inf

n→∞ nwn+1, and R = lim sup
n→∞ nwn+1.

Lemma 2.1. If α ∈ [0, 1), then ∞∑
k=n+1

(∆kα)2

kα
6

α2

1 −α
nα−1 (2.1)

and ∞∑
k=n+1

kα−2 <
nα−1

1 −α
. (2.2)

Proof. By virtue of the mean value theorem, there exist two numbers ξk ∈ (k,k+ 1) and ηk ∈ (k− 1,k)
such that

(∆kα)2

kα
=
α2ξ2α−2

k

kα
6
α2k2α−2

kα
and

∆(k− 1)1−α

1 −α
= η−αk >

1
kα

.
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Hence, we deduce that ∞∑
k=n+1

(∆kα)2

kα
6

α2

1 −α

∞∑
k=n+1

∆(k− 1)1−α

k2−2α . (2.3)

Define r(t) = (k− 1)1−α + (t− k+ 1)∆(k− 1)1−α, k− 1 6 t 6 k. Then r ′(t) = ∆(k− 1)1−α, (k− 1)1−α 6
r(t) 6 k1−α, k− 1 6 t 6 k, and so

∆(k− 1)1−α

k2−2α =

∫k
k−1

∆(k− 1)1−α

k2−2α dt 6
∫k
k−1

r ′(t)

r2(t)
dt =

1
(k− 1)1−α −

1
k1−α .

It follows from the latter inequality and (2.3) that (2.1) holds. Using the inequality

∞∑
k=n+1

1
k2−α <

∫∞
n

1
t2−αdt,

we have (2.2). The proof is complete.

Lemma 2.2 ([5]). Let {xn} be a nonoscillatory solution of equation (1.1) such that xn−1 > 0 for n > n0. Then

∆wn +wnwn+1 + pn 6 0, n > n0, (2.4)

wn > wn+1, 0 6 (n−n0)wn < 1, n > n0, (2.5)

and
p∗(0) 6 r− r2, q 6 R− R2. (2.6)

3. Main results

Let
M1 =

1
2

(
1 +

√
1 − 4q

)
and M2 =

1
2

(
1 −

√
1 − 4p∗(0)

)
.

We give the following oscillation results for equation (1.1).

Theorem 3.1. Let q 6 1/4. If there exists a constant α ∈ [0, 1) such that

p∗(α) >
α2

4(1 −α)
+M1, (3.1)

then equation (1.1) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of equation (1.1) such that xn−1 > 0 for n > n0. From (2.4)
and (2.5), we conclude that

pk 6 −∆wk −w
2
k+1. (3.2)

Multiplying (3.2) by kα and summing the resulting inequality from n+ 1 to ∞, we get

∞∑
k=n+1

kαpk 6 −

∞∑
k=n+1

kα∆wk −

∞∑
k=n+1

kαw2
k+1

= (n+ 1)αwn+1 +

∞∑
k=n+1

wk+1∆k
α −

∞∑
k=n+1

kαw2
k+1.

(3.3)

Using (3.3), we have

∞∑
k=n+1

kαpk 6 (n+ 1)αwn+1 +
1
4

∞∑
k=n+1

(∆kα)2

kα
−

∞∑
k=n+1

(
k
α
2 wk+1 −

1
2
k−

α
2 ∆kα

)2
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6 (n+ 1)αwn+1 +
1
4

∞∑
k=n+1

(∆kα)2

kα
,

which yields

lim sup
n→∞ n1−α

∞∑
k=n+1

kαpk 6 lim sup
n→∞

(
n+ 1
n

)α
nwn+1 + lim sup

n→∞
1
4
n1−α

∞∑
k=n+1

(∆kα)2

kα
.

Hence, by (2.1) and (2.5), we deduce that

p∗(α) 6 lim sup
n→∞ nwn+1 + lim sup

n→∞
1
4
n1−αnα−1 α2

1 −α
= R+

α2

4(1 −α)
.

On the other hand, we have
R 6M1 (3.4)

due to (2.6). Therefore, we arrive at

p∗(α) 6
α2

4(1 −α)
+

1
2

(
1 +

√
1 − 4q

)
,

which contradicts (3.1). The proof is complete.

Theorem 3.2. Let p∗(0) 6 1/4 and q 6 1/4. If there exists a constant α ∈ [M2, 1) such that

p∗(α) >
M1(1 −M2)

1 −α
, (3.5)

then equation (1.1) is oscillatory.

Proof. Assume that {xn} is a positive solution of equation (1.1) such that xn−1 > 0 for n > n0. By virtue
of (2.6),

r >M2.

From the latter inequality and (3.4), we conclude that, for any ε > 0, there exists an n1 > n0 such that

M2 − ε < nwn+1 6

(
n+ 1
n

)α
nwn+1 < M1 + ε

for n > n1. On the other hand, as in the proof of Theorem 3.1, we have (3.3). Using the fact that
∆kα = (k+ 1)α − kα < αkα−1 and multiplying (3.3) by n1−α, we obtain

n1−α
∞∑

k=n+1

kαpk 6

(
n+ 1
n

)α
nwn+1 +n

1−α
∞∑

k=n+1

kα−2 [kwk+1(α− kwk+1)]

6M1 + ε+ (M1 + ε)(α+ ε−M2)n
1−α

∞∑
k=n+1

kα−2.

Substituting (2.2) into the latter inequality, we deduce that

n1−α
∞∑

k=n+1

kαpk 6 (M1 + ε)

[
1 +n1−αn

α−1

1 −α
(α+ ε−M2)

]
= (M1 + ε)

1 −M2 + ε

1 −α
.

Since ε > 0 is arbitrary, we get

p∗(α) 6
M1(1 −M2)

1 −α
,

which contradicts (3.5). This completes the proof.
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Remark 3.3. Observe that M2 ∈ [0, 1/2] in the case when p∗(0) ∈ [0, 1/4]. Let all hypotheses of Theorem
3.2 be satisfied with condition α ∈ [M2, 1) replaced by α ∈ [1/2, 1). Then equation (1.1) is oscillatory.

Remark 3.4. Note that α > 1 is required in Theorem 1.3. Hence, Theorems 3.1 and 3.2 complement the
results obtained in [5, 6].

4. Example

Example 4.1. Consider the difference equation

∆2xn−1 + pnxn = 0, n = 0, 1, 2, . . . , (4.1)

where

pn =


1

6m
, n = 6m,

0, n 6= 6m,
m = 0, 1, 2, . . . .

It is not difficult to verify that

p∗(0) = lim inf
n→∞ un(0) =

1
5
<

1
4

and q = lim sup
n→∞

1
n

n∑
k=1

k2pk =
1
5
<

1
4

.

Thus, we conclude that

M1 =
1
2

(
1 +

√
1 − 4q

)
=

1
2

(
1 +

√
5

5

)
and M2 =

1
2

(
1 −

√
1 − 4p∗(0)

)
=

1
2

(
1 −

√
5

5

)
.

Let α = 1/2. Then

M1(1 −M2)

1 −α
=

1
2

(
6
5
+

2
√

5
5

)
and p∗(α) = lim sup

n→∞ un

(
1
2

)
= lim sup

n→∞ n
1
2

∞∑
k=n+1

k
1
2pk =

6 +
√

6
5

,

and so

p∗(α) >
M1(1 −M2)

1 −α
.

Therefore, by Theorem 3.2, equation (4.1) is oscillatory. Observe that Theorems 1.1 and 1.2 cannot be
applied to equation (4.1). Hence, Theorem 3.2 improves Theorems 1.1 and 1.2.
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