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Abstract

In this paper, we first introduce the notions of (α,β)-generalized hybrid set-valued mappings, strongly attractive points,
attractive points and condition I ′. Then we construct an iterative method for finding attractive points of (α,β)-generalized
hybrid set-valued mappings and obtain some convergence theorems of the proposed iterative scheme for (α,β)-generalized
hybrid set-valued mappings defined on a uniformly convex Banach space by using of condition I ′ and demi-compact property,
respectively. c©2017 All rights reserved.
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1. Introduction and preliminaries

Let X be a Banach space and C be a nonempty subset of X, and let N and R be the sets of positive
integers and real numbers, respectively. We denote CB(X) and F(T) by the families of nonempty closed
and bounded subsets and fixed points set of T , respectively. H is Hausdorff metric defined by

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)},

where d(x,B) = inf{‖x− z‖ : z ∈ B} and d(y,A) = inf{‖y− z‖ : z ∈ A}.
In 2010, Kocourek et al. [16] firstly introduced the notions of generalized hybrid mappings, which con-

tains the classes of nonexpansive mappings, nonspreading mappings, and hybrid mappings. A mapping
T : C→ C is called (α,β)-generalized hybrid if there exist α,β ∈ R such that

α‖Tx− Ty‖2 + (1 −α)‖x− Ty‖2 6 β‖Tx− y‖2 + (1 −β)‖x− y‖2
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for all x,y ∈ C. T is called nonexpansive if T is (1, 0)-generalized hybrid; T is said to be hybrid if T is
( 3

2 , 1
2)-generalized hybrid [22], that is,

3‖Tx− Ty‖2 6 ‖x− Ty‖2 + ‖Tx− y‖2 + ‖x− y‖2, for each x,y ∈ C.

T is called nonspreading if T is (2, 1)-generalized hybrid [17], that is,

2‖Tx− Ty‖2 6 ‖x− Ty‖2 + ‖Tx− y‖2, for each x,y ∈ C.

In 2005, Sastry and Babu [19] introduced the Ishikawa iterative scheme for set-valued mappings in the
following: let T : C→ CB(C) be a set-valued mapping and fix p ∈ F(T),{

x1 ∈ C,
yn = (1 −βn)xn +βnzn

for all n ∈ N and {βn} ⊂ (0, 1), zn ∈ Txn with ‖zn − p‖ = d(p, Txn) and{
x1 ∈ C,
xn+1 = (1 −βn)xn +βnz

′
n

for all n ∈ N and {αn} ⊂ (0, 1), z ′n ∈ Tyn with ‖z ′n − p‖ = d(p, Tyn).
In 2007, Agarwal et al. [2] introduced an iteration scheme for single-valued mappings. This iteration

scheme is as the following: 
x1 ∈ C,
xn+1 = (1 −αn)Txn +αnTyn,
yn = (1 −βn)xn +βnTxn

for all n ∈ N and {αn}, {βn} ⊂ (0, 1).
In 2011, Takahashi and Yao [24] got fixed point theorems and ergodic theorems for nonlinear mappings

in Hilbert spaces. Kocourek et al. [16] also obtained fixed point theorems and weak convergence theorems
of the Mann’s iteration for generalized hybrid mappings in Hilbert spaces. This iteration scheme is as the
following: {

x1 ∈ C,
xn+1 = αnxn + (1 −αn)Txn

(1.1)

for all n ∈ N and {αn} ⊂ (0, 1).
In 2012, Khan and Yildirim [15] introduced a multi-valued mapping version of the iteration scheme

(1.1). This iteration scheme is as the following:
x1 ∈ C,
xn+1 = (1 −αn)vn +αnun,
yn = (1 −βn)xn +βnvn

for all n ∈ N and vn ∈ PT (xn), un ∈ PT (yn) and {αn}, {βn} ⊂ (0, 1).
In 2015, Zheng [26] obtained convergence theorems of the Ishikawa iteration for (α,β)-generalized

hybrid mappings. This iteration scheme is as the following:
x1 ∈ C,
xn+1 = (1 −αn)xn +αnTyn,
yn = (1 −βn)xn +βnTxn

for all n ∈ N and {αn}, {βn} ⊂ (0, 1).
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A great deal of results involving (α,β)-generalized hybrid mappings, nonexpansive mappings and
fixed points were obtained by several authors [1, 3, 4, 6–10, 12–14, 18, 21, 23].

T : C→ CB(C) is said to be demi-compact [11] if for each sequence {xn} in C such that

lim
n→∞d(xn, Txn) = 0,

then there exists a subsequence {xnk
} of {xn} such that

lim
k→∞ xnk

= x ∈ C.

We now recall some basis definitions and useful lemmas.

Definition 1.1 ([20]). Let X be a Banach space and C be a nonempty subset of X. A mapping T : C → C

is said to satisfy condition I if there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and
f(a) > 0 for each a ∈ (0,+∞) such that

‖x− Tx‖ > f(d(x,A(T))) for each x ∈ C,

where d(x,A(T)) = inf{‖x− p‖ : p ∈ A(T)}.

Definition 1.2 ([5]). A Banach space X is said to be uniformly convex if for each ε ∈ [0, 2], there exists
δε > 0 such that

‖x‖ = ‖y‖ = 1⇒ ‖x+ y
2
‖ < 1 − δε,

whenever ‖x− y‖ > ε.

Lemma 1.3 ([25]). Let q > 1 and r > 0 be two fixed real numbers. Then a Banach space X is uniformly convex if
and only if there exists a continuous strictly increasing convex function g : [0,∞) → [0,∞) with g(0) = 0 such
that

‖λx+ (1 − λ)y‖q 6 λ‖x‖q + (1 − λ)‖y‖q −ωq(λ)g(‖x− y‖)

for each x,y ∈ Br(0) = {x ∈ X : ‖x‖ 6 r} and λ ∈ [0, 1], where ωq(λ) = λ
q(1 − λ) + λ(1 − λ)q.

In this paper, we first introduce the notions of (α,β)-generalized hybrid set-valued mappings, strongly
attractive points, attractive points and condition I ′. Moreover, we propose a new iteration for finding
attractive points of an (α,β)-generalized hybrid set-valued mapping and obtain convergence theorems of
an (α,β)-generalized hybrid set-valued mapping. This iterative scheme is denoted by the following:

x1 ∈ C,
xn+1 = (1 −αn)xn +αnun,
zn = (1 − γn)yn + γnwn

(1.2)

for all n ∈ N and un ∈ Tzn, yn ∈ T((1 −βn)xn +βnwn), wn ∈ Txn, {αn}, {βn}, {γn} ⊂ (0, 1).

2. Main results

We begin with this section by introducing the notions of (α,β)-generalized hybrid set-valued map-
pings, strongly attractive points, and attractive points.

Definition 2.1. A mapping T : C→ C is called (α,β)-generalized hybrid set-valued if there exist α,β ∈ R
such that

αH2(Tx, Ty) + (1 −α)d2(x, Ty) 6 βd2(y, Tx) + (1 −β)‖x− y‖2

for all x,y ∈ C.
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Definition 2.2. Let X be a Banach space and C be a nonempty subset of X, and let T : C→ 2X\{∅}. A point
p ∈ X is called a strongly attractive point of T if for all x ∈ C, we have

H(p, Tx) 6 ‖p− x‖.

We denote by SA(T) the set of all strongly attractive points of T , that is,

SA(T) = {p ∈ X : H(p, Tx) 6 ‖p− x‖ for all x ∈ C}.

Definition 2.3. Let X be a Banach space and C be a nonempty subset of X, and let T : C→ 2X\{∅}. A point
p ∈ X is called an attractive point of T if for all x ∈ C, we have

d(p, Tx) 6 ‖p− x‖.

We denote by A(T) the set of all attractive points of T , that is,

A(T) = {p ∈ X : d(p, Tx) 6 ‖p− x‖ for all x ∈ C}.

It is obvious that SA(T) ⊆ A(T). Now, using condition I and the set SA(T) we can introduce the notion of
condition I ′.

Definition 2.4. Let X be a Banach space and C be a nonempty subset of X. A mapping T : C → C is said
to satisfy condition I ′, if there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(a) > 0
for each a ∈ (0,+∞) such that

‖x− Tx‖ > f(d(x,SA(T))) for each x ∈ C,

where d(x,SA(T)) = inf{‖x− p‖ : p ∈ SA(T)}.

It is not difficult to see that if a mapping T satisfies condition I ′, then T satisfies condition I. Next, we
discuss convergence theorems of an (α,β)-generalized hybrid set-valued mapping in a uniformly convex
Banach space.

Theorem 2.5. Let C be a nonempty closed convex subset of a uniformly convex Banach space X and let T : C →
CB(C) be an (α,β)-generalized hybrid set-valued mapping with SA(T) 6= ∅. Suppose that the sequence {xn} is
generated by the iterative scheme (1.2), where un ∈ Tzn , yn ∈ T((1 − βn)xn + βnwn), wn ∈ Txn, {αn}, and
{βn} and {γn} belong to (0, 1) such that

lim inf
n→∞ αnβn(1 −βn)(1 − γn) > 0. (2.1)

Then the following conclusions hold:

(1) the sequence {xn} is bounded;
(2) limn→∞ ‖xn − p‖ exists for each p ∈ SA(T);
(3) limn→∞ d(xn, Txn) = 0.

Proof. Let p ∈ SA(T), we have

‖yn − p‖ 6 H(T((1 −βn)xn +βnwn),p)
6 ‖(1 −βn)xn +βnwn − p‖
6 (1 −βn)‖xn − p‖+βn‖wn − p‖
6 (1 −βn)‖xn − p‖+βnH(Txn,p)
6 (1 −βn)‖xn − p‖+βn‖xn − p‖
= ‖xn − p‖,
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‖zn − p‖ = ‖(1 − γn)yn + γnwn − p‖
6 (1 − γn)‖yn − p‖+ γn‖wn − p‖
6 (1 − γn)‖yn − p‖+ γnH(Txn,p)
6 (1 − γn)‖yn − p‖+ γn‖xn − p‖
6 (1 − γn)‖xn − p‖+ γn‖xn − p‖
= ‖xn − p‖,

and
‖xn+1 − p‖ = ‖(1 −αn)xn +αnun − p‖

6 (1 −αn)‖xn − p‖+αn‖un − p‖
6 (1 −αn)‖xn − p‖+αnH(Tzn,p)
6 (1 −αn)‖xn − p‖+αn‖zn − p‖
6 (1 −αn)‖xn − p‖+αn‖xn − p‖
= ‖xn − p‖,

which implies the sequence {‖xn − p‖} is nonincreasing. Therefore, the limit limn→∞ ‖xn − p‖ exists for
each p ∈ SA(T). Hence the sequence {xn} is bounded.

Now we show the last conclusion holds. Let r > ‖x1 − p‖, then we get

‖un − p‖ 6 H(Tzn,p) 6 ‖zn − p‖ 6 ‖xn − p‖ 6 r,
‖yn − p‖ 6 ‖xn − p‖ 6 r,

and
‖wn − p‖ 6 H(Txn,p) 6 ‖xn − p‖ 6 r.

It follows from Lemma 1.3 that

‖xn+1 − p‖2 =‖(1 −αn)xn +αnun − p‖2

6(1 −αn)‖xn − p‖2 +αn‖un − p‖2

6(1 −αn)‖xn − p‖2 +αnH
2(Tzn,p)

6(1 −αn)‖xn − p‖2 +αn‖zn − p‖2

=(1 −αn)‖xn − p‖2 +αn‖(1 − γn)yn + γnwn − p‖2

6(1 −αn)‖xn − p‖2 +αn(1 − γn)‖yn − p‖2 +αnγn‖wn − p‖2

6(1 −αn)‖xn − p‖2 +αn(1 − γn)‖yn − p‖2 +αnγnH
2(Txn,p)

6(1 −αn)‖xn − p‖2 +αn(1 − γn)‖yn − p‖2 +αnγn‖xn − p‖2

6(1 −αn)‖xn − p‖2 +αn(1 − γn)H
2(T((1 −βn)xn +βnwn),p) +αnγn‖xn − p‖2

6(1 −αn)‖xn − p‖2 +αn(1 − γn)‖(1 −βn)(xn − p) +βn(wn − p)‖2 +αnγn‖xn − p‖2

6(1 −αn +αnγn)‖xn − p‖2 +αn(1 − γn)[(1 −βn)‖xn − p‖2

+βn‖wn − p‖2 −βn(1 −βn)g(‖wn − xn‖)]
6(1 −αn +αnγn)‖xn − p‖2 +αn(1 − γn)[(1 −βn)‖xn − p‖2

+βnH
2(Txn,p) −βn(1 −βn)g(‖wn − xn‖)]

6(1 −αn +αnγn)‖xn − p‖2 +αn(1 − γn)[(1 −βn)‖xn − p‖2

+βn‖xn − p‖2 −βn(1 −βn)g(‖wn − xn‖)]
=‖xn − p‖2 −αnβn(1 −βn)(1 − γn)g(‖wn − xn‖)
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6‖xn − p‖2 −αnβn(1 −βn)(1 − γn)g(d(xn, Txn)).

Then
αnβn(1 −βn)(1 − γn)g(d(xn, Txn)) 6 ‖xn − p‖2 − ‖xn+1 − p‖2.

Hence
Σ∞n=1αnβn(1 −βn)(1 − γn)g(d(xn, Txn)) 6 ‖x1 − p‖2 < +∞.

In view of
lim inf
n→∞ αnβn(1 −βn)(1 − γn) > 0,

which implies
lim
n→∞g(d(xn, Txn)) = 0.

Since g is continuous, strictly increasing, convex, and g(0) = 0, we have

lim
n→∞d(xn, Txn) = 0,

which completes the proof.

By Theorem 2.5, we show a strong convergence theorem of an (α,β)-generalized hybrid set-valued
mapping in a uniformly convex Banach space.

Theorem 2.6. Let C be a nonempty closed convex subset of a uniformly convex Banach space X and let T : C →
CB(C) be an (α,β)-generalized hybrid set-valued mapping with SA(T) 6= ∅ and satisfy condition I ′. Suppose that
the sequence {xn} is generated by the iterative scheme (1.2), where un ∈ Tzn , yn ∈ T((1 − βn)xn + βnwn),
wn ∈ Txn, and the sequences {αn}, {βn} and {γn} belonging to (0, 1) satisfy (2.1). Then the sequence {xn}

converges strongly to an attractive point of T.

Proof. It follows from Theorem 2.5 that the sequence {xn} is bounded, the sequence {‖xn − p‖} is nonin-
creasing, and

lim
n→∞ ‖xn − p‖ exists for each p ∈ SA(T).

We also have
lim
n→∞d(xn, Txn) = 0.

In view of Definition 2.4, we obtain
lim
n→∞ f(d(xn,SA(T))) = 0,

which implies
lim
n→∞d(xn,SA(T)) = 0. (2.2)

Next, we show that the sequence {xn} is a Cauchy sequence. Indeed, for any n,m ∈ N, without loss of
generality, we suppose m > n, then

‖xm − p‖ 6 ‖xn − p‖, for each p ∈ SA(T),

and
‖xn − xm‖ 6 ‖xn − p‖+ ‖p− xm‖ 6 2‖xn − p‖.

Thus, we obtain
‖xn − xm‖ 6 2 inf{‖xn − p‖ : p ∈ SA(T)} = 2d(xn,SA(T)).

Combining with (2.2), we get
lim

m,n→∞ ‖xn − xm‖ = 0.
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Thus {xn} is a Cauchy sequence. Since X is uniformly convex, then there exists u ∈ X such that

lim
n→∞ ‖xn − u‖ = 0.

Then
lim
n→∞d(u, Txn) 6 lim

n→∞ ‖xn − u‖+ lim
n→∞d(xn, Txn) = 0.

It follows that
lim
n→∞d(u, Txn) = 0.

Now, we prove u ∈ A(T). Since T is an (α,β)-generalized hybrid set-valued mapping, for each x ∈ C, we
have

αH2(Txn, Tx) + (1 −α)d2(xn, Tx) 6 βd2(x, Txn) + (1 −β)‖xn − x‖2.

Then
αH2(Txn, Tx) + (1 −α)d2(xn, Tx) 6 β[d(x,u) + d(u, Txn)]2 + (1 −β)‖x− u‖2. (2.3)

Since d(xn, Tx) > d(u, Tx) − d(u, xn) and d(u, xn) < d(u, Tx) for n large enough, then

d2(xn, Tx) > [d(u, Tx) − d(u, xn)]2,

which implies

αH2(Txn, Tx) + (1 −α)[d(u, Tx) − d(u, xn)]2 6 αH2(Txn, Tx) + (1 −α)d2(xn, Tx) (2.4)

for n large enough. Since d(u, Txn) → 0, then there exists yn ∈ Txn such that ‖u− yn‖ → 0 (n → ∞).
From the definition of Hausdorff metric, it follows that

H(Txn, Tx) = max{ sup
y∈Txn

d(y, Tx), sup
z∈Tx

d(z, Txn)} > sup
y∈Txn

d(y, Tx) > d(yn, Tx).

Since
d(u, Tx) = inf

y∈Tx
‖u− y‖ 6 inf

y∈Tx
{‖u− yn‖+ ‖yn − y‖}

= ‖u− yn‖+ inf
y∈Tx

‖yn − y‖

= ‖u− yn‖+ d(yn, Tx),

we deduce that
d(yn, Tx) > d(u, Tx) − ‖u− yn‖.

Therefore
H(Txn, Tx) > d(u, Tx) − ‖u− yn‖.

We notice that ‖u− yn‖ < d(u, Tx) for n large enough, thus

H2(Txn, Tx) > [d(u, Tx) − ‖u− yn‖]2. (2.5)

Combining with (2.3), (2.4), and (2.5), we have

α[d(u, Tx) − ‖u− yn‖]2 + (1 −α)[d(u, Tx) − d(u, xn)]2 6 αH2(Txn, Tx) + (1 −α)d2(xn, Tx)

6 β[d(x,u) + d(u, Txn)]2 + (1 −β)‖x− u‖2.

Let n→∞, we obtain
d2(u, Tx) 6 ‖x− u‖2,

which implies
d(u, Tx) 6 ‖x− u‖, for any x ∈ C.

Hence u ∈ A(T). This completes the proof.

Using Theorem 2.5 and demi-compact property, we get the following theorem.
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Theorem 2.7. Let C be a nonempty closed convex subset of a uniformly convex Banach space X and let T : C →
CB(C) be an (α,β)-generalized hybrid and demi-compact set-valued mapping with SA(T) = A(T) 6= ∅. Suppose
that the sequence {xn} is generated by the iterative scheme (1.2), where un ∈ Tzn , yn ∈ T((1 −βn)xn +βnwn),
wn ∈ Txn, and {αn}, {βn}, and {γn} belonging to (0, 1) satisfy (2.1). Then the sequence {xn} converges strongly
to an attractive point of T.

Proof. It follows from Theorem 2.5 that the sequence {xn} is bounded and

lim
n→∞ ‖xn − p‖ exists for each p ∈ SA(T),

and
lim
n→∞d(xn, Txn) = 0.

Noticing that T is demi-compact, there is a subsequence {xni
} ⊂ {xn} and a point q ∈ X such that

lim
i→∞ ‖xni

− q‖ = 0.

Thus
lim
i→∞d(q, Txni

) 6 lim
i→∞[d(xni

, Txni
) + ‖xni

− q‖],

which implies
lim
i→∞d(q, Txni

) = 0.

From the definition of (α,β)-generalized hybrid set-valued mapping, it follows that

αH2(Txni
, Tx) + (1 −α)d2(xni

, Tx) 6 βd2(x, Txni
) + (1 −β)‖xni

− x‖2

for each x ∈ C. In a similar way to Theorem 2.6, we deduce q ∈ A(T). Since limi→∞ ‖xni
− q‖ = 0 and

limn→∞ ‖xn − q‖ exists, we get
lim
n→∞ ‖xn − q‖ = 0.

This completes the proof.

To end this section, we give an example to show that an (α,β)-generalized hybrid set-valued mapping
which fails to be nonexpansive has an attractive point.

Example 2.8. Let C = [0, 3] and T : C→ CB(C) is defined by

Tx =

{
{0}, if x 6= 3,
[0.5, 1], if x = 3.

We pick x = 8
3 , y = 3, then

H(Tx, Ty) = H({0}, [0.5, 1]) = 1 >
1
3
= ‖x− y‖.

Therefore, T is not a nonexpansive mapping. Let α = 2,β = 1
2 , we verify that T is a (2, 1

2)-generalized
hybrid set-valued mapping, that is,

2H2(Tx, Ty) 6 d2(x, Ty) +
1
2
d2(Tx,y) +

1
2
‖x− y‖2.

Next, we consider the following four cases:
Case I. Let x,y ∈ [0, 3), then

2H2(Tx, Ty) = 2H2({0}, {0}) = 0 6 d2(x, Ty) +
1
2
d2(Tx,y) +

1
2
‖x− y‖2.
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Case II. Let x = 3,y ∈ [0, 3), then

2H2(Tx, Ty) = 2H2([0.5, 1], {0}) = 2,

and
d2(x, Ty) +

1
2
d2(Tx,y) +

1
2
‖x− y‖2 = d2(3, {0}) +

1
2
d2(y, [0.5, 1]) +

1
2
‖3 − y‖2 > 9.

Hence
2H2(Tx, Ty) < d2(x, Ty) +

1
2
d2(Tx,y) +

1
2
‖x− y‖2.

Case III. Let x ∈ [0, 3),y = 3, then

2H2(Tx, Ty) = 2H2({0}, [0.5, 1]) = 2,

and
d2(x, Ty) +

1
2
d2(Tx,y) +

1
2
‖x− y‖2 = d2(x, [0.5, 1]) +

1
2
d2({0}, 3) +

1
2
‖x− 3‖2 >

9
2

.

Thus
2H2(Tx, Ty) < d2(x, Ty) +

1
2
d2(Tx,y) +

1
2
‖x− y‖2.

Case IV. Let x = y = 3, then

2H2(Tx, Ty) = 2H2([0.5, 1], [0.5, 1]) = 0 6 d2(x, Ty) +
1
2
d2(Tx,y) +

1
2
‖x− y‖2.

Therefore, T is a (2, 1
2)-generalized hybrid set-valued mapping. For each x ∈ [0, 3], we have

H(Tx, 0) 6 ‖x− 0‖,

which implies 0 is an attractive point of T .
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