Majorization by starlike functions

Öznur Özkan Kılıça, ${ }^{\text {a,* }}$, Osman Alııntaş ${ }^{\text {b }}$
${ }^{a}$ Başkent University, Department of Statistics and Computer Sciences, Bağlıca, 06810, Ankara, Turkey.
${ }^{b}$ Başkent University, Department of Mathematics Education, Bağlıca, 06810, Ankara, Turkey.

Communicated by E. Savaş

Abstract

The main object of this paper is to investigate some majorization problems involving the subclass $S(\alpha, A, B)$ of starlike functions in the open unit disk U. Relevant connections of the results presented here with those given by earlier workers on the subject are also indicated. ©(2017 All rights reserved.

Keywords: Analytic function, starlike function, convex function, subordination, majorization, Quasi-subordination. 2010 MSC: 30C45.

1. Introduction

Let A denote the class of functions of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n},
$$

which are analytic in the open unit disk

$$
\mathrm{U}=\{z: z \in \mathbb{C} \text { and }|z|<1\} .
$$

Definition 1.1. For two functions f and g, which are analytic in U, the function f is said to be subordinate to g, written as

$$
\mathrm{f} \prec \mathrm{~g} \quad \text { or } \quad \mathrm{f}(z) \prec \mathrm{g}(z)
$$

if there exists a Schwarz function w analytic in U , with

$$
\omega(0)=0 \text { and }|\omega(z)|<1 \quad(z \in U)
$$

and such that

$$
f(z)=g(\omega(z)) \quad(z \in U) .
$$

In particular, if the function g is univalent in U, the above subordination is equivalent to

$$
\begin{equation*}
f(0)=g(0) \quad \text { and } \quad f(U) \subset g(U) . \tag{1.1}
\end{equation*}
$$

[^0]Definition 1.2. For two functions f and g, which are analytic in U, the function f is said to be majorized to g, written as

$$
\mathrm{f} \ll \mathrm{~g} \quad \text { or } \quad \mathrm{f}(z) \ll \mathrm{g}(z)
$$

if there exists a function φ analytic in U , with

$$
|\varphi(z)|<1 \quad(z \in \mathrm{U})
$$

and such that

$$
\mathrm{f}(z)=\varphi(z) \mathrm{g}(z) \quad(z \in \mathrm{U}),
$$

(see MacGregor [6]).
The majorization is closely related to the concept of quasi-subordination between analytic functions, which was considered recently by (for example) Altıntaş and Owa [3]. Some majorization problems were studied by Altıntaş et al. in [4, 5]. Therefore, various subclasses of univalent functions in U were studied by Akgul in [1, 2].

We purpose to investigate the majorization problems associated with the class $S(\alpha, A, B)$ of starlike functions.
Definition 1.3. We denote by $S(\alpha, A, B)$ the class of functions satisfying the condition

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}+\alpha z\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\prime} \prec \frac{1+A z}{1+B z^{\prime}} \tag{1.2}
\end{equation*}
$$

$(z \in U, f \in A, 0 \leqslant \alpha \leqslant 1,-1 \leqslant B<A \leqslant 1)$.
Clearly, we have the following relationships:

- $S(0,1,-1)=S^{*}$ is the class of starlike functions;
- $S(0,0,-1)=C$ is the class of convex functions;
- $S(0,1-2 \alpha,-1)=S^{*}(\alpha)$ is the class of starlike functions of order $\alpha,(0 \leqslant \alpha<1)$;
- $S(0,1-\alpha,-1)=C(\alpha)$ is the class of convex functions of order $\alpha,(0 \leqslant \alpha<1)$.

2. Majorization problems for the class $S(\alpha, A, B)$

We first state and prove the following Lemma 2.1.
Lemma 2.1 ([9]). If the function $h(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ is analytic in U and satisfies the condition

$$
\begin{equation*}
h(z) \prec \frac{1+A z}{1+B z} \quad(z \in U,-1 \leqslant B<A \leqslant 1), \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re} h(z)>\frac{1-A}{1-B}=\beta \tag{2.2}
\end{equation*}
$$

Proof. Using (1.1) and (2.1) we have

$$
h(z)=\frac{1+A \omega(z)}{1+B \omega(z)} \quad(\omega(0)=0,|\omega(z)|<1)
$$

and

$$
|\omega(z)|=\left|\frac{h(z)-1}{A-\operatorname{Bh}(z)}\right|,
$$

for $h(z)=u+\mathfrak{i} v$.

Since $|h(z)|^{2} \geqslant[\operatorname{Re} h(z)]^{2}$, we have

$$
\left(1-B^{2}\right) u^{2}-2(1-A B) u+1-A^{2}<0,
$$

which implies that

$$
\frac{1-A}{1-B}<u=\operatorname{Reh}(z)<\frac{1+A}{1+B} .
$$

Lemma 2.2 ([8]). If the function $p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}$ is analytic in U and satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left(p(z)+\alpha z p^{\prime}(z)\right)>\beta, \tag{2.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re} p(z)>\frac{\alpha+2 \beta}{\alpha+2} \quad(0 \leqslant \alpha \leqslant 1,0 \leqslant \beta<1) . \tag{2.4}
\end{equation*}
$$

Theorem 2.3. Let the function $f(z)$ be in the class A and suppose that $g \in S(\alpha, A, B)$. If $f(z)$ is majorized by $g(z)$ in U , then

$$
\left|f^{\prime}(z)\right| \leqslant\left|g^{\prime}(z)\right| \quad\left(|z| \leqslant r_{1}\right),
$$

where

$$
\begin{equation*}
r_{1}=r_{1}(\alpha, A, B)=\frac{3+|1-2 \gamma|-\sqrt{|1-2 \gamma|^{2}+2|1-2 \gamma|+9}}{2|1-2 \gamma|} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma=\frac{\alpha(1-B)+2(1-A)}{(\alpha+2)(1-B)} \quad(0 \leqslant \alpha \leqslant 1,-1 \leqslant B<A<1) . \tag{2.6}
\end{equation*}
$$

Proof. Since $\mathrm{g} \in \mathrm{S}(\alpha, A, B)$, if we let

$$
\frac{z g^{\prime}(z)}{g(z)}=p(z) \text { and }\left(p(z)+\alpha z p^{\prime}(z)\right)=h(z)
$$

and $\beta=\frac{1-A}{1-B}$, then using (1.2), (2.2), (2.3), and (2.4) we find

$$
\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)}>\frac{\alpha+2 \beta}{\alpha+2} .
$$

Letting $\gamma=\frac{\alpha+2 \beta}{\alpha+2}$, we obtain

$$
\frac{z g^{\prime}(z)}{g(z)}=\frac{1-(1-2 \gamma) \omega(z)}{1+\omega(z)}
$$

where $\omega(0)=0$ and $|\omega(z)|<1$.
Hence we find the inequality

$$
\begin{equation*}
|g(z)| \leqslant\left(\frac{(1+|z|)|z|}{1-|1-2 \gamma||z|}\right)\left|g^{\prime}(z)\right| \quad(z \in \mathrm{U}) . \tag{2.7}
\end{equation*}
$$

Since $f(z)$ is majorized by $g(z)$ in U, from (1.1) we have

$$
\begin{equation*}
f^{\prime}(z)=\varphi(z) g^{\prime}(z)+\varphi^{\prime}(z) g(z) . \tag{2.8}
\end{equation*}
$$

We know that $\varphi(z)$ satisfies the inequality (Nehari, [7, p.168])

$$
\begin{equation*}
\left|\varphi^{\prime}(z)\right| \leqslant \frac{1-|\varphi(z)|^{2}}{1-|z|^{2}} \quad(z \in \mathrm{U}), \tag{2.9}
\end{equation*}
$$

and using (2.7) and (2.9) in (2.8), we get

$$
\left|f^{\prime}(z)\right| \leqslant\left(|\varphi(z)|+\frac{1-|\varphi(z)|^{2}}{1-|z|^{2}} \frac{(1+|z|)|z|}{1-|1-2 \gamma||z|}\right)\left|g^{\prime}(z)\right|
$$

which upon setting

$$
|z|=r \quad \text { and } \quad|\varphi(z)|=\mu \quad(0 \leqslant \mu \leqslant 1)
$$

we have the inequality

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leqslant \frac{\Theta(\mu)}{(1-r)(1-|1-2 \gamma| r)}\left|g^{\prime}(z)\right| \quad(z \in U) \tag{2.10}
\end{equation*}
$$

where the function $\Theta(\mu)$ defined by

$$
\Theta(\mu)=-r \mu^{2}+(1-r)(1-|1-2 \gamma| r) \mu+r \quad(0 \leqslant \mu \leqslant 1)
$$

takes the maximum value at $\mu=1$ with $r=r_{1}(\gamma)$ given by (2.5).
Furthermore, if $0 \leqslant \mathrm{q} \leqslant \mathrm{r}_{1}(\gamma)$ is given by (2.5), then we have

$$
\Lambda(\mu) \leqslant \Lambda(1)=(1-r)(1-|1-2 \gamma| r) \quad\left(0 \leqslant \mu \leqslant 1,0 \leqslant q \leqslant r_{1}(\gamma)\right)
$$

Hence, upon setting $\mu=1$ in (2.10), we conclude that the inequality in (2.5) holds true for $|z| \leqslant r_{1}(\gamma)$ and is given by (2.6). The proof of Theorem 2.4 is based on Lemma 1 in [4],

$$
f \in C(\gamma) \quad \Longrightarrow f \in S\left(\frac{1}{2} \gamma\right)
$$

Theorem 2.4. Let the function $\mathrm{f}(\mathrm{z})$ be analytic in U and suppose that $\mathrm{g} \in \mathrm{C}(\gamma)$. If $\mathrm{f}(z)$ is majorized by $\mathrm{g}(z)$ in U , then

$$
\left|f^{\prime}(z)\right| \leqslant\left|g^{\prime}(z)\right| \quad\left(|z| \leqslant r_{2}\right)
$$

where

$$
r_{2}=r_{2}(\alpha, A, B)=\frac{3+|1-\gamma|-\sqrt{|1-\gamma|^{2}+2|1-\gamma|+9}}{2|1-\gamma|}
$$

and

$$
\gamma=\frac{\alpha(1-B)+2(1-A)}{(\alpha+2)(1-B)} \quad(0 \leqslant \alpha \leqslant 1,-1 \leqslant B<A \leqslant 1)
$$

Proof. Upon replacing γ in Theorem 2.3 by $\frac{1}{2} \gamma$, the conclusion follows.
Letting special values for α, A, B we have the following corollaries.
Corollary 2.5. If $\mathrm{g} \in \mathrm{S}(\alpha, 1,-1)$ and $\mathrm{f}(z)$ is majorized by $\mathrm{g}(z)$ in U , then

$$
\left|f^{\prime}(z)\right| \leqslant\left|g^{\prime}(z)\right| \quad(|z| \leqslant r)
$$

where

$$
|z| \leqslant r=\frac{8+2 \alpha-\sqrt{8 \alpha^{2}+32 \alpha+48}}{2(2-\alpha)} \quad(0 \leqslant \alpha \leqslant 1)
$$

Proof. We let $A=1, B=-1$ in (2.6) and $\gamma=\frac{\alpha}{\alpha+2}$ in Theorem 2.3.
Corollary 2.6. If $\mathrm{g} \in \mathrm{S}(0,1,-1)$ and $\mathrm{f}(z)$ is majorized by $\mathrm{g}(\mathrm{z})$ in U , then

$$
\left|f^{\prime}(z)\right| \leqslant\left|g^{\prime}(z)\right| \quad(|z| \leqslant r)
$$

where

$$
|z| \leqslant r=2-\sqrt{3} .
$$

Proof. We let $\alpha=0, \mathrm{~A}=1, \mathrm{~B}=-1$ in (2.6) and $\gamma=0$ in Theorem 2.3.
Corollary 2.7. If $\mathrm{g} \in \mathrm{S}(\alpha, 0,-1)$ and $f(z)$ is majorized by $\mathrm{g}(\mathrm{z})$ in U , then

$$
\left|f^{\prime}(z)\right| \leqslant\left|g^{\prime}(z)\right| \quad(|z| \leqslant r),
$$

where

$$
|z| \leqslant r=\frac{2 \alpha+3-\sqrt{3 \alpha^{2}+10 \alpha+9}}{\alpha} \quad(0 \leqslant \alpha \leqslant 1) .
$$

Proof. We let $\mathrm{A}=0, \mathrm{~B}=-1$ in (2.6) and $\gamma=\frac{\alpha+1}{\alpha+2}$ in Theorem 2.3.
Corollary 2.8. If $\mathrm{g} \in \mathrm{S}(1,1,-1)$ and $\mathrm{f}(\mathrm{z})$ is majorized by $\mathrm{g}(\mathrm{z})$ in U , then

$$
\left|f^{\prime}(z)\right| \leqslant\left|g^{\prime}(z)\right| \quad(|z| \leqslant r),
$$

where

$$
|z| \leqslant r=5-\sqrt{22} .
$$

Proof. We let $\alpha=1, \mathcal{A}=1, \mathrm{~B}=-1$ in (2.6) and $\gamma=\frac{1}{3}$ in Theorem 2.3.
Corollary 2.9. If $\mathrm{g} \in \mathrm{C}(\alpha, 1,-1)$ and $\mathrm{f}(\mathrm{z})$ is majorized by $\mathrm{g}(\mathrm{z})$ in U , then

$$
\left|f^{\prime}(z)\right| \leqslant\left|g^{\prime}(z)\right| \quad(|z| \leqslant r),
$$

where

$$
|z| \leqslant r=\frac{8+3 \alpha-\sqrt{9 \alpha^{2}+40 \alpha+48}}{4} \quad(0 \leqslant \alpha \leqslant 1) .
$$

Proof. We let $A=1, B=-1$ in (2.6) and $\gamma=\frac{\alpha}{\alpha+2}$ in Theorem 2.4.
Corollary 2.10. If $\mathrm{g} \in \mathrm{C}(0,1,-1)$ and $\mathrm{f}(z)$ is majorized by $\mathrm{g}(z)$ in U , then

$$
\left|f^{\prime}(z)\right| \leqslant\left|g^{\prime}(z)\right| \quad(|z| \leqslant r),
$$

where

$$
|z| \leqslant r=2-\sqrt{3} \text {. }
$$

Proof. We let $\alpha=0, \mathrm{~A}=1, \mathrm{~B}=-1$ in (2.6) and $\gamma=0$ in Theorem 2.4.
Corollary 2.11. If $\mathrm{g} \in \mathrm{C}(\alpha, 0,-1)$ and $\mathrm{f}(\mathrm{z})$ is majorized by $\mathrm{g}(z)$ in U , then

$$
\left|f^{\prime}(z)\right| \leqslant\left|g^{\prime}(z)\right| \quad(|z| \leqslant r),
$$

where

$$
|z| \leqslant r=\frac{7+3 \alpha-\sqrt{9 \alpha^{2}+38 \alpha+41}}{2} \quad(0 \leqslant \alpha \leqslant 1) .
$$

Proof. We let $A=0, B=-1$ in (2.6) and $\gamma=\frac{\alpha+1}{\alpha+2}$ in Theorem 2.4.
Corollary 2.12. If $\mathrm{g} \in \mathrm{C}(1,1,-1)$ and $\mathrm{f}(z)$ is majorized by $\mathrm{g}(z)$ in U , then

$$
\left|f^{\prime}(z)\right| \leqslant\left|g^{\prime}(z)\right| \quad(|z| \leqslant r),
$$

where

$$
|z| \leqslant r=\frac{11-\sqrt{97}}{4}
$$

Proof. We let $\alpha=1, \mathrm{~A}=1, \mathrm{~B}=-1$ in (2.6) and $\gamma=\frac{1}{3}$ in Theorem 2.4.

Corollary 2.13. If $\mathrm{g} \in \mathrm{S}(0,0,-1)$ and $\mathrm{f}(\mathrm{z})$ is majorized by $\mathrm{g}(\mathrm{z})$ in U , then

$$
\left|f^{\prime}(z)\right| \leqslant\left|g^{\prime}(z)\right| \quad(|z| \leqslant r),
$$

where

$$
|z| \leqslant \mathrm{r}=\frac{1}{3}
$$

Remark 2.14. $S(0,0,-1)=S^{*}\left(\frac{1}{2}\right)$ and $C \subset S^{*}\left(\frac{1}{2}\right)$.

Acknowledgment

The authors would like to express their thanks to the referee and the editors for their helpful comments and advices.

References

[1] A. Akgül, A new subclass of meromorphic functions defined by Hilbert space operator, Honam Math. J., 38 (2016), 495-506. 1
[2] A. Akgül, A new subclass of meromorphic functions with positive and fixed second coefficients defined by the rafid-operator, Commun. Fac. Sci. Univ. Ank. Series A1, 66 (2017), 1-13. 1
[3] O. Altıntaş, S. Owa, Majorizations and quasi-subordinations for certain analytic functions, Proc. Japan Acad. Ser. A Math. Sci., 68 (1992), 181-185. 1
[4] O. Altıntaş, Ö. Özkan, H. M. Srivastava, Majorization by starlike functions of complex order, Complex Variables Theory Appl., 46 (2001), 207-218. 1, 2
[5] O. Altıntaş, H. M. Srivastava, Some majorization problems associated with p-valently starlike and convex functions of complex order, East Asian Math. J., 17 (2001), 175-183. 1
[6] T. H. MacGregor, Majorization by univalent functions, Duke Math. J., 34 (1967), 95-102. 1.2
[7] Z. Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York, Toronto, London, (1952). 2
[8] S. Owa, C. Y. Shen, Certain subclass of analytic functions, Math. Japan., 34 (1989), 409-412. 2.2
[9] H. M. Srivastava, O. Altıntaş, S. K. Serenbay, Coefficient bounds for certain subclasses of starlike functions of complex order, Appl. Math. Lett., 24 (2011), 1359-1363. 2.1

[^0]: *Corresponding author
 Email addresses: oznur@baskent.edu.tr (Öznur Özkan Kılıç), oaltintas@baskent. edu.tr (Osman Altıntaş) doi:10.22436/jnsa.010.03.29

