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1. Introduction

Throughout this paper, let R = (−∞,∞) and R0 = [0,∞).
The following inequality holds for any convex function f defined on R and a,b ∈ R with a < b

f

(
a+ b

2

)
6

1
b− a

∫b
a

f(x)dx 6
f(a) + f(b)

2
. (1.1)

Both inequalities hold in the reversed direction, if f is concave on [a,b]. The inequality (1.1) is well-known
in the literature as Hermite-Hadamard’s inequality. We note that the Hermite-Hadamard’s inequality may
be regarded as a refinement of the concept of convexity and it follows easily from Jensen’s inequality. The
classical Hermite-Hadamard’s inequality provides estimates of the mean value of a continuous convex
function f : [a,b]→ R.

In [2], Dragomir considered convex functions on the co-ordinates defined in a rectangle from the
plane.

Definition 1.1 ([2]). Let 4 := [a,b]× [c,d] be the bidimensional interval in R2 with a < b and c < d. The
function f : 4→ R is said to be convex, if the following inequality

f(λx+ (1 − λ)z, λy+ (1 − λ)w) 6 λf(x,y) + (1 − λ)f(z,w),

holds for all (x,y), (z,w) ∈ 4 and λ ∈ [0, 1].
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Definition 1.2 ([2]). A function f : 4 := [a,b]× [c,d] ⊆ R2 → R will be called convex on the co-ordinates
with a < b and c < d, if the partial mappings fy : [a,b]→ R, fy(u) := f(u,y) and fx : [c,d]→ R, fx(v) :=
f(x, v) are convex where defined for all y ∈ [c,d] and x ∈ [a,b].

A formal definition for co-ordinated convex functions may be stated as follows.

Definition 1.3. Let 4 := [a,b]× [c,d] be the bidimensional interval in R2 with a < b and c < d. A
function f : 4→ R will be said to be convex on the co-ordinates on 4, if the inequality

f(tx+ (1 − t)z,λy+ (1 − λ)w)

6tλf(x,y) + t(1 − λ)f(x,w) + λ(1 − t)f(z,y) + (1 − t)(1 − λ)f(z,w),

holds for all (x,y), (x,w), (z,y), (z,w) ∈ 4 and t, λ ∈ [0, 1].

In [2], Dragomir also obtained the following inequalities of Hadamard type.

Theorem 1.4. Suppose that f : 4 = [a,b]× [c,d] ⊆ R2 → R is convex on the co-ordinates on 4 with a < b and
c < d. Then one has the inequalities

f

(
a+ b

2
,
c+ d

2

)
6

1
2

[
1

b− a

∫b
a

f

(
x,
c+ d

2

)
dx+

1
d− c

∫d
c

f

(
a+ b

2
,y

)
dy

]
6

1
(b− a)(d− c)

∫b
a

∫d
c

f(x,y)dxdy

6
1
4

[
1

b− a

∫b
a

f(x, c)dx+
1

b− a

∫b
a

f(x,d)dx

+
1

d− c

∫d
c

f(a,y)dy+
1

d− c

∫d
c

f(b,y)dy
]

6
f(a, c) + f(a,d) + f(b, c) + f(b,d)

4
.

The above inequalities are sharp.

Recently, several extensions and generalizations have been considered for classical convexity. A sig-
nificant generalization of convex functions is that of operator convex functions introduced by Dragomir
in [5].

We review the operator order in B(H) and the continuous functional calculus for a bounded self-
adjoint operator. For self-adjoint operators A,B ∈ B(H), we write A 6 B, if 〈Ax, x〉 6 〈Bx, x〉 for every
vector x ∈ H, we call it the operator order.

Let A be a bounded self-adjoint linear operator on a complex Hilbert space (H; 〈., .〉). The Gelfand map
establishes a ∗-isometrically isomorphism Φ between the set C(Sp(A)) of all continuous complex-valued
functions defined on the spectrum of A, denoted Sp(A) and the C∗-algebra C∗(A) generated by A and the
identity operator 1H on H as follows (see for instance [20, p.3]). For any f,g ∈ C(Sp(A)) and any α,β ∈ C,
we have

(i) Φ(αf+βg) = αΦ(f) +βΦ(g);

(ii) Φ(fg) = Φ(f)Φ(g), and Φ(f∗) = Φ(f)∗;

(iii) ‖Φ(f) ‖=‖ f‖ := supt∈Sp(A) | f |;

(iv) Φ(f0) = 1H, and Φ(f1) = A, where f0(t) = 1 and f1(t) = t for t ∈ Sp(A).

With this notation, we define
f(A) := Φ(f), ∀f ∈ C(Sp(A)),

and we call it the continuous functional calculus for a bounded self-adjoint operator A.
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If A is a bounded self-adjoint operator and f is a real-valued continuous function on Sp(A), then
f(t) > 0 for any t ∈ Sp(A) implies that f(A) > 0, i.e., f(A) is a positive operator on H. Moreover, if both f
and g are real-valued functions on Sp(A) such that f(t) 6 g(t) for any t ∈ Sp(A), then f(A) 6 f(B) in the
operator order in B(H).

A real-valued continuous function f on an interval I ⊆ R is said to be operator convex (operator
concave), if the operator inequality

f((1 − λ)A+ λB) 6 (>)(1 − λ)f(A) + λf(B),

holds in the operator order in B(H), for all λ ∈ [0, 1] and for every bounded self-adjoint operators A and
B in B(H) whose spectra are contained in I.

In [5], Dragomir gave the operator version of the Hermite-Hadamard inequality for operator convex
functions.

Theorem 1.5. Let f : I ⊆ R → R be an operator convex function on the interval I. Then for any self-adjoint
operators A and B with spectra in I, we have the inequality

f

(
A+B

2

)
6

1
2

[
f

(
3A+B

4

)
+ f

(
A+ 3B

4

)]
6
∫ 1

0
f(tA+ (1 − t)B)dt 6

1
2

[
f

(
A+B

2

)
+
f(A) + f(B)

2

]
6
f(A) + f(B)

2
. (1.2)

Some inequalities of Hermite-Hadamard type were also obtained in [1, 3, 4, 6–8, 11–14, 16–19, 21] and
plenty of references therein.

Motivated by the above results we investigate in this paper operator convex functions on the co-
ordinates and the associated Hermite-Hadamard type inequalities.

2. Operator convex function on the co-ordinates

Let I1, I2 be real intervals and let f : I1 × I2 → R be a Borel measurable and essentially bounded
function. Let X = (X1,X2) be a 2-tuple of bounded self-adjoint operators on Hilbert spaces H1,H2 such
that the spectrum of Xi is contained in Ii for i = 1, 2. We say that such a 2-tuple is in the domain of f. If

Xi =

∫
Ii

λiEi(dλi), i = 1, 2,

is the spectral decomposition of Xi where Ei is a bounded positive measure on Ii, we define

f(X) =

∫
I1×I2

f(λ1, λ2)E1(dλ1)⊗ E2(dλ2),

as a bounded self-adjoint operator on the tensor product H1 ⊗ H2. If the Hilbert spaces are of finite
dimension, then the above integrals become finite sums and we may consider the functional calculus for
arbitrary real functions. This construction have the property that

f(X1,X2) = f1(X1)⊗ f2(X2),

whenever f can be separated as a product f(t1, t2) = f1(t1)f2(t2) of two functions each depending on only
one variable.

With above functional calculus, we say that a function f : I1 × I2 → R is said to be operator convex, if
f is continuous and the operator inequality

f(tX+ (1 − t)Y) 6 tf(X) + (1 − t)f(Y),
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holds for all 2-tuples of self-adjoint operators X = (X1,X2) and Y = (Y1, Y2) in the domain of f acting on
any Hilbert spaces H1,H2 and for all t ∈ [0, 1].

For some fundamental results on operator convex and operator monotone functions of several vari-
ables, see [9, 10, 15] and the references therein

Now we define the operator convexity on the co-ordinates.

Definition 2.1. A continuous function f : I1 × I2 ⊆ R2 → R is called operator convex on the co-ordinates,
if the partial mapping fX2 : I1 → R, fX2(u) := f(u,X2) and fX1 : I2 → R, fX1(v) := f(X1, v) are operator
convex where defined for all operators X2 ∈ B(H2) and X1 ∈ B(H1) whose spectra are contained in I2 and
I1, respectively.

The following is a formal definition of the co-ordinated operator convex function.

Definition 2.2. A continuous function f : I1 × I2 ⊆ R2 → R is said to be operator convex on the co-
ordinates, if the operator inequality

f(tA+ (1 − t)C, λB+ (1 − λ)D)

6tλf(A,B) + t(1 − λ)f(A,D) + (1 − t)λf(C,B) + (1 − t)(1 − λ)f(C,D),

holds for all t, λ ∈ [0, 1] and 2-tuples of self-adjoint operators (A,B), (C,B), (A,D), and (C,D) in the
domain of f acting on any Hilbert spaces H1,H2.

The following lemmas hold:

Lemma 2.3. Every operator convex mapping f : I1 × I2 ⊆ R2 → R is operator convex on the co-ordinates, but the
converse is not generally true.

Proof. Suppose that f is operator convex mapping on I1 × I2. Consider fX2 : I1 → R, fX2(u) := f(u,X2).
Then for all t ∈ [0, 1] and operators A,C ∈ B(H1) with spectra in I1, one has

fX2(tA+ (1 − t)C) = f(tA+ (1 − t)C, tX2 + (1 − t)X2)

6 tf(A,X2) + (1 − t)f(C,X2)

= tfX2(A) + (1 − t)fX2(C),

where X2 ∈ B(H2) with spectra in I2. It shows the operator convexity of fX2 .
The fact that fX1 : I2 → R, fX1(v) := f(X1, v) is also operator convex on I2 for all operators X1 ∈ B(H1)

with spectra in I1 goes likewise and we shall omit the details.
Now we consider the function of two variables f : [0, 1]2 → R0 given by f(r1, r2) = r1× r2. It is obvious

that f is operator convex on the co-ordinates but is not operator convex on [0, 1]2.
Indeed, choosing A = D = 1H,B = C = 0H and t ∈ [0, 1], we write

f(tA+ (1 − t)C, tB+ (1 − t)D) =(tA+ (1 − t)C)⊗ (tB+ (1 − t)D)

=t(1 − t)A⊗D = t(1 − t)1H,

and

tf(A,B) + (1 − t)f(C,D) = tA⊗B+ (1 − t)C⊗D = 0H.

Thus, for all t ∈ (0, 1), we know

f(tA+ (1 − t)C, tB+ (1 − t)D) > tf(A,B) + (1 − t)f(C,D),

which shows that f is not operator convex on [0, 1]2. Lemma 2.3 is thus proved.
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Lemma 2.4. Let f : I1 × I2 ⊆ R2 → R be a continuous function on I1 × I2. Then for operators (A,B), (C,D) ∈
B(H1) × B(H2) with spectra in I1 × I2, the function f is operator convex on the co-ordinates for operators in
[A,C] := {tA+ (1 − t)C}× [B,D] := {λB+ (1 − λ)D} if and only if the function defined by

ϕx,A,B,C,D(t, λ) := 〈f(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉,

is convex on the co-ordinates on [0, 1]× [0, 1] for every x ∈ H with ‖x‖ = 1.

Proof. Suppose that f is operator convex on the co-ordinates for operators in [A,C]× [B,D], then for any
t1, t2, λ1, λ2 ∈ [0, 1] and αi,βi > 0 with αi +βi = 1 for i = 1, 2, we drive

ϕx,A,B,C,D(α1t1 +β1t2,α2λ1 +β2λ2) =〈f
(
α1(t1A+ (1 − t1)C) +β1(t2A+ (1 − t2)C),

α2(λ1B+ (1 − λ1)D) +β2(λ2B+ (1 − λ2)D)
)
x, x〉

6α1α2
〈
f
(
t1A+ (1 − t1)C, λ1B+ (1 − λ1)D

)
x, x

〉
+α1β2

〈
f
(
t1A+ (1 − t1)C, λ2B+ (1 − λ2)D

)
x, x

〉
+β1α2

〈
f
(
t2A+ (1 − t2)C, λ1B+ (1 − λ1)D

)
x, x

〉
+β1β2

〈
f
(
t2A+ (1 − t2)C, λ2B+ (1 − λ2)D

)
x, x

〉
=α1α2ϕx,A,B,C,D(t1, λ1) +α1β2ϕx,A,B,C,D(t1, λ2)

+β1α2ϕx,A,B,C,D(t2, λ1) +β1β2ϕx,A,B,C,D(t2, λ2).

It shows that ϕx,A,B,C,D(t, λ) is convex on the co-ordinates on [0, 1]× [0, 1].
Let now ϕx,A,B,C,D(t, λ) be convex on the co-ordinates on [0, 1]× [0, 1] and E = t1A+ (1 − t1)C, F =

t2A + (1 − t2)C, M = λ1B + (1 − λ1)D and N = λ2B + (1 − λ2)D for any t1, t2, λ1, λ2 ∈ [0, 1]. Fixing
γi ∈ [0, 1], i = 1, 2, we find

〈f
(
γ1E+ (1 − γ1)F,γ2M+ (1 − γ2)N

)
x, x〉

=〈f
(
(γ1t1 + (1 − γ1)t2)A+ (1 − γ1t1 − (1 − γ1)t2)C,

(γ2λ1 + (1 − γ2)λ2)B+ (1 − γ2λ1 − (1 − γ2)λ2)D
)
x, x〉

=ϕx,A,B,C,D
(
γ1t1 + (1 − γ1)t2,γ2λ1 + (1 − γ2)λ2

)
6γ1γ2ϕx,A,B,C,D(t1, λ1) + γ1(1 − γ2)ϕx,A,B,C,D(t1, λ2)

+ (1 − γ1)γ2ϕx,A,B,C,D(t2, λ1) + (1 − γ1)(1 − γ2)ϕx,A,B,C,D(t2, λ2)

=γ1γ2〈f(E,M)x, x〉+ γ1(1 − γ2)〈f(E,N)x, x〉
+ (1 − γ1)γ2〈f(F,M)x, x〉+ (1 − γ1)(1 − γ2)〈f(F,N)x, x〉.

Hence f is operator convex on the co-ordinates and the proof of Lemma 2.4 is complete.

3. Hermite-Hadamard type inequalities for operator convex functions on the co-ordinates

In this section, we obtain some new inequalities of Hermite-Hadamard type for the co-ordinated
operator convex functions.

Theorem 3.1. Suppose that a continuous function f : I1 × I2 ⊆ R2 → R is operator convex on the co-ordinates
for all 2-tuples of self-adjoint operators in the domain of f acting on any Hilbert spaces H1,H2. Then we have the
inequalities

f

(
A+C

2
,
B+D

2

)
6

1
2

[ ∫ 1

0
f

(
tA+ (1 − t)C,

B+D

2

)
dt+

∫ 1

0
f

(
A+C

2
, λB+ (1 − λ)D

)
dλ

]
6
∫ 1

0

∫ 1

0
f(tA+ (1 − t)C, λB+ (1 − λ)D)dtdλ
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6
1
4

[ ∫ 1

0
f(tA+ (1 − t)C,B)dt+

∫ 1

0
f(tA+ (1 − t)C,D)dt

+

∫ 1

0
f(A, λB+ (1 − λ)D)dλ+

∫ 1

0
f(C, λB+ (1 − λ)D)dλ

]
(3.1)

6
f(A,B) + f(A,D) + f(C,B) + f(C,D)

4
,

where (A,B), (C,D) ∈ B(H1)×B(H2) with spectra in I1 × I2.

Proof. Since the spectrum of tA + (1 − t)C and λB + (1 − λ)D are contained in the intervals I1 and I2

respectively, and f is continuous, the operator valued integrals
∫1

0 f(tA+(1− t)C)dt,
∫1

0 f(λB+(1−λ)D)dλ
and
∫1

0

∫1
0 f(tA+ (1 − t)C, λB+ (1 − λ)D)dtdλ exist.

From the co-ordinated operator convexity of f and the inequality (1.2) it is easy to see that

f

(
A+C

2
, λB+ (1 − λ)D

)
6
∫ 1

0
f(tA+ (1 − t)C, λB+ (1 − λ)D)dt

6
f(A, λB+ (1 − λ)D) + f(C, λB+ (1 − λ)D)

2
.

Integrating this inequality on [0, 1] over λ, we deduce∫ 1

0
f

(
A+C

2
, λB+ (1 − λ)D

)
dλ 6

∫ 1

0

∫ 1

0
f(tA+ (1 − t)C, λB+ (1 − λ)D)dtdλ

6
1
2

[∫ 1

0
f(A, λB+ (1 − λ)D)dλ+

∫ 1

0
f(C, λB+ (1 − λ)D)dλ

]
.

(3.2)

By a similar argument we get∫ 1

0
f

(
tA+ (1 − t)C,

B+D

2

)
dt 6

∫ 1

0

∫ 1

0
f(tA+ (1 − t)C, λB+ (1 − λ)D)dtdλ

6
1
2

[∫ 1

0
f(tA+ (1 − t)C,B)dt+

∫ 1

0
f(tA+ (1 − t)C,D)dt

]
.

(3.3)

Summing the inequalities (3.2) and (3.3) and dividing by 2, we get the second and the third inequalities
in (3.1).

Also, by Hermite-Hadamard type inequality (1.2), we observe∫ 1

0
f

(
tA+ (1 − t)C,

B+D

2

)
dt > f

(
A+C

2
,
B+D

2

)
,

and ∫ 1

0
f

(
A+C

2
, λB+ (1 − λ)D

)
dλ > f

(
A+C

2
,
B+D

2

)
,

which give, by addition, the first inequality in (3.1).
Finally, by the same inequality we can also state∫ 1

0
f(tA+ (1 − t)C,B)dt 6

f(A,B) + f(C,B)
2

,

∫ 1

0
f(tA+ (1 − t)C,D)dt 6

f(A,D) + f(C,D)

2
,
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∫ 1

0
f(A, λB+ (1 − λ)D)dλ 6

f(A,B) + f(A,D)

2
,

and ∫ 1

0
f(C, λB+ (1 − λ)D)dλ 6

f(C,B) + f(C,D)

2
,

which give, by addition, the last inequality in (3.1). The proof thus is complete.

Theorem 3.2. Suppose that continuous functions f,g : I1 × I2 ⊆ R2 → R are operator convex on the co-ordinates
for all 2-tuples of self-adjoint operators in the domain of f,g acting on any Hilbert spaces H1,H2. Then for any
self-adjoint operators (A,B), (C,D) ∈ B(H1)×B(H2) with spectra in I1 × I2, we have the inequalities∫ 1

0

∫ 1

0
〈f(tA+ (1 − t)C,λB+ (1 − λ)D)x, x〉〈g(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉dtdλ

6
4U(A,C,B,D) + V(A,C,B,D) + 2P(A,C,B,D)

36
,

(3.4)

holds for any x ∈ H with ‖x‖ = 1, where

U(A,C,B,D) =〈f(A,B)x, x〉〈g(A,B)x, x〉+ 〈f(A,D)x, x〉〈g(A,D)x, x〉
+ 〈f(C,B)x, x〉〈g(C,B)x, x〉+ 〈f(C,D)x, x〉〈g(C,D)x, x〉,

(3.5)

V(A,C,B,D) =〈f(A,B)x, x〉〈g(C,D)x, x〉+ 〈f(A,D)x, x〉〈g(C,B)x, x〉
+ 〈f(C,B)x, x〉〈g(A,D)x, x〉+ 〈f(C,D)x, x〉〈g(A,B)x, x〉,

(3.6)

P(A,C,B,D) =〈f(A,B)x, x〉〈g(A,D)x, x〉+ 〈f(A,B)x, x〉〈g(C,B)x, x〉
+ 〈f(A,D)x, x〉〈g(A,B)x, x〉+ 〈f(A,D)x, x〉〈g(C,D)x, x〉
+ 〈f(C,B)x, x〉〈g(A,B)x, x〉+ 〈f(C,B)x, x〉〈g(C,D)x, x〉
+ 〈f(C,D)x, x〉〈g(A,D)x, x〉+ 〈f(C,D)x, x〉〈g(C,B)x, x〉.

(3.7)

Proof. Since f, g are operator convex on the co-ordinates, for every t, λ ∈ [0, 1] we drive

〈f(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉〈g(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉
6t2λ2〈f(A,B)x, x〉〈g(A,B)x, x〉+ t2λ(1 − λ)〈f(A,B)x, x〉〈g(A,D)x, x〉
+ t(1 − t)λ2〈f(A,B)x, x〉〈g(C,B)x, x〉+ tλ(1 − t)(1 − λ)〈f(A,B)x, x〉〈g(C,D)x, x〉
+ t2λ(1 − λ)〈f(A,D)x, x〉〈g(A,B)x, x〉+ t2(1 − λ)2〈f(A,D)x, x〉〈g(A,D)x, x〉
+ t(1 − t)λ(1 − λ)〈f(A,D)x, x〉〈g(C,B)x, x〉+ t(1 − t)(1 − λ)2〈f(A,D)x, x〉〈g(C,D)x, x〉
+ t(1 − t)λ2〈f(C,B)x, x〉〈g(A,B)x, x〉+ t(1 − t)λ(1 − λ)〈f(C,B)x, x〉〈g(A,D)x, x〉
+ (1 − t)2λ2〈f(C,B)x, x〉〈g(C,B)x, x〉+ (1 − t)2λ(1 − λ)〈f(C,B)x, x〉〈g(C,D)x, x〉
+ t(1 − t)λ(1 − λ)〈f(C,D)x, x〉〈g(A,B)x, x〉+ t(1 − t)(1 − λ)2〈f(C,D)x, x〉〈g(A,D)x, x〉
+ (1 − t)2λ(1 − λ)〈f(C,D)x, x〉〈g(C,B)x, x〉+ (1 − t)2(1 − λ)2〈f(C,D)x, x〉〈g(C,D)x, x〉.

(3.8)

Integrating both sides of (3.8) over t, λ ∈ [0, 1], we get the required inequality (3.4), which completes the
proof of Theorem 3.2.

Theorem 3.3. Suppose that continuous functions f,g : I1 × I2 ⊆ R2 → R are operator convex on the co-ordinates
for all 2-tuples of self-adjoint operators in the domain of f,g acting on any Hilbert spaces H1,H2. Then for any
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self-adjoint operators (A,B), (C,D) ∈ B(H1)×B(H2) with spectra in I1 × I2, we have the inequalities〈
f

(
A+C

2
,
B+D

2

)
x, x

〉〈
g

(
A+C

2
,
B+D

2

)
x, x

〉
6

1
4

∫ 1

0

∫ 1

0
〈f(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉〈g(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉dtdλ

+
5U(A,C,B,D) + 8V(A,C,B,D) + 7P(A,C,B,D)

144
,

(3.9)

holds for any x ∈ H with ‖x‖ = 1, where U(A,C,B,D), V(A,C,B,D) and P(A,C,B,D) are defined in (3.5), (3.6)
and (3.7), respectively.

Proof. Using the co-ordinated operator convexity of f, g, for every t, λ ∈ [0, 1] we can write〈
f

(
A+C

2
,
B+D

2

)
x, x

〉〈
g

(
A+C

2
,
B+D

2

)
x, x

〉
6

1
4
[
〈f(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉+ 〈f(tA+ (1 − t)C, (1 − λ)B+ λD)x, x〉

+ 〈f((1 − t)A+ tC, λB+ (1 − λ)D)x, x〉+ 〈f((1 − t)A+ tC, (1 − λ)B+ λD)x, x〉
]

× 1
4
[
〈g(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉+ 〈g(tA+ (1 − t)C, (1 − λ)B+ λD)x, x〉

+ 〈g((1 − t)A+ tC, λB+ (1 − λ)D)x, x〉+ 〈g((1 − t)A+ tC, (1 − λ)B+ λD)x, x〉
]

6
1
16

[
〈f(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉〈g(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉

+ 〈f(tA+ (1 − t)C, (1 − λ)B+ λD)x, x〉〈g(tA+ (1 − t)C, (1 − λ)B+ λD)x, x〉
+ 〈f((1 − t)A+ tC, λB+ (1 − λ)D)x, x〉g((1 − t)A+ tC, λB+ (1 − λ)D)x, x〉
+ 〈f((1 − t)A+ tC, (1 − λ)B+ λD)x, x〉〈g((1 − t)A+ tC, (1 − λ)B+ λD)x, x〉

]
+

1
4

{
t2λ2[〈f(A,B)x, x〉〈g(A,D)x, x〉+ 〈f(A,B)x, x〉〈g(C,D)x, x〉

+ 〈f(A,B)x, x〉〈g(C,B)x, x〉
]
+ t2(1 − λ)2[〈f(A,D)x, x〉〈g(A,B)x, x〉

+ 〈f(A,D)x, x〉〈g(C,D)x, x〉+ 〈f(A,D)x, x〉〈g(C,B)x, x〉
]

+ (1 − t)2λ2[〈f(C,B)x, x〉〈g(C,D)x, x〉+ 〈f(C,B)x, x〉〈g(A,B)x, x〉
+ 〈f(C,B)x, x〉〈g(A,D)x, x〉

]
+ (1 − t)2(1 − λ)2[〈f(C,D)x, x〉〈g(C,B)x, x〉

+ 〈f(C,D)x, x〉〈g(A,D)x, x〉+ 〈f(C,D)x, x〉〈g(A,B)x, x〉
]

+ t(1 − t)λ2[〈f(A,B)x, x〉〈g(A,D)x, x〉+ 〈f(A,B)x, x〉〈g(C,D)x, x〉
+ 〈f(A,B)x, x〉〈g(A,B)x, x〉+ 〈f(C,B)x, x〉〈g(C,D)x, x〉+ 〈f(C,B)x, x〉〈g(A,D)x, x〉 (3.10)

+ 〈f(C,B)x, x〉〈g(C,B)x, x〉
]
+ t2λ(1 − λ)

[
〈f(A,B)x, x〉〈g(C,B)x, x〉

+ 〈f(A,B)x, x〉〈g(C,D)x, x〉+ 〈f(A,B)x, x〉〈g(A,B)x, x〉+ 〈f(A,D)x, x〉〈g(C,D)x, x〉
+ 〈f(A,D)x, x〉〈g(A,D)x, x〉+ 〈f(A,D)x, x〉〈g(C,B)x, x〉

]
+ t(1 − t)(1 − λ)2[〈f(A,D)x, x〉〈g(C,B)x, x〉+ 〈f(A,D)x, x〉〈g(A,D)x, x〉
+ 〈f(A,D)x, x〉〈g(A,B)x, x〉+ 〈f(C,D)x, x〉〈g(C,D)x, x〉+ 〈f(C,D)x, x〉〈g(A,B)x, x〉
+ 〈f(C,D)x, x〉〈g(C,B)x, x〉

]
+ (1 − t)2λ(1 − λ)

[
〈f(C,B)x, x〉〈g(A,D)x, x〉

+ 〈f(C,B)x, x〉〈g(C,B)x, x〉+ 〈f(C,B)x, x〉〈g(A,B)x, x〉+ 〈f(C,D)x, x〉〈g(C,D)x, x〉

+ 〈f(C,D)x, x〉〈g(A,B)x, x〉+ 〈f(C,D)x, x〉〈g(A,D)x, x〉
]
+ t(1 − t)λ(1 − λ)(P+U)

}
.

We integrate both sides of (3.10) over t, λ ∈ [0, 1] and obtain the required inequality (3.9), which completes
the proof of Theorem 3.3.
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Theorem 3.4. Suppose that continuous functions f,g : I1 × I2 ⊆ R2 → R are operator convex on the co-ordinates
for all 2-tuples of self-adjoint operators in the domain of f,g acting on any Hilbert spaces H1,H2. Then for any
self-adjoint operators (A,B), (C,D) ∈ B(H1)×B(H2) with spectra in I1 × I2, we have the inequalities〈

f

(
A+C

2
,
B+D

2

)
x, x

〉 ∫ 1

0

∫ 1

0
〈g(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉dtdλ

+

〈
g

(
A+C

2
,
B+D

2

)
x, x

〉 ∫ 1

0

∫ 1

0
〈f(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉dtdλ (3.11)

6
1
2

∫ 1

0

∫ 1

0
〈f(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉〈g(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉dtdλ

+
5U(A,C,B,D) + 8V(A,C,B,D) + 7P(A,C,B,D)

72
,

holds for any x ∈ H with ‖x‖ = 1, where U(A,C,B,D), V(A,C,B,D) and P(A,C,B,D) are defined in (3.5), (3.6)
and (3.7), respectively.

Proof. By the co-ordinated operator convexity of f, g, for every t, λ ∈ [0, 1] we observe that〈
f

(
A+C

2
,
B+D

2

)
x, x

〉
6

1
4
[
〈f(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉+ 〈f(tA+ (1 − t)C, (1 − λ)B+ λD)x, x〉

+ 〈f((1 − t)A+ tC, λB+ (1 − λ)D)x, x〉+ 〈f((1 − t)A+ tC, (1 − λ)B+ λD)x, x〉
]
,

and 〈
g

(
A+C

2
,
B+D

2

)
x, x

〉
6

1
4
[
〈g(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉+ 〈g(tA+ (1 − t)C, (1 − λ)B+ λD)x, x〉

+ 〈g((1 − t)A+ tC, λB+ (1 − λ)D)x, x〉+ 〈g((1 − t)A+ tC, (1 − λ)B+ λD)x, x〉
]
.

We multiply by one under the other and by one across the other of the above inequality and then we add
these inequalities, so we obtain

1
4

〈
f

(
A+C

2
,
B+D

2

)
x, x

〉[
〈g(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉

+ 〈g(tA+ (1 − t)C, (1 − λ)B+ λD)x, x〉+ 〈g((1 − t)A+ tC, λB+ (1 − λ)D)x, x〉

+ 〈g((1 − t)A+ tC, (1 − λ)B+ λD)x, x〉
]
+

1
4

〈
g

(
A+C

2
,
B+D

2

)
x, x

〉
×
[
〈f(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉+ 〈f(tA+ (1 − t)C, (1 − λ)B+ λD)x, x〉

+ 〈f((1 − t)A+ tC, λB+ (1 − λ)D)x, x〉+ 〈f((1 − t)A+ tC, (1 − λ)B+ λD)x, x〉
]

6
1
8
[
〈f(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉+ 〈f(tA+ (1 − t)C, (1 − λ)B+ λD)x, x〉

+ 〈f((1 − t)A+ tC, λB+ (1 − λ)D)x, x〉+ 〈f((1 − t)A+ tC, (1 − λ)B+ λD)x, x〉
]

×
[
〈g(tA+ (1 − t)C, λB+ (1 − λ)D)x, x〉+ 〈g(tA+ (1 − t)C, (1 − λ)B+ λD)x, x〉

+ 〈g((1 − t)A+ tC, λB+ (1 − λ)D)x, x〉+ 〈g((1 − t)A+ tC, (1 − λ)B+ λD)x, x〉
]
.

From the same calculation as in (3.10), we may get (3.11). The details are omitted.



S. H. Wang, J. Nonlinear Sci. Appl., 10 (2017), 1116–1125 1125

Acknowledgment

This work was supported by the Foundation of the Research Program of Science and Technology
at Universities of Inner Mongolia Autonomous Region (No. NJZZ16175) and by the Science Research
Funding of Inner Mongolia University for Nationalities (No. NMDGP1714 and No. NMDYB1748). The
author is thankful to the referee for giving valuable comments and suggestions which helped to improve
the final version of this paper.

References

[1] M. Alomari, M. Darus, The Hadamard’s inequality for s-convex function of 2-variables on the co-ordinates, Int. J. Math.
Anal. (Ruse), 2 (2008), 629–638. 1

[2] S. S. Dragomir, On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane,
Taiwanese J. Math., 5 (2001), 775–788. 1, 1.1, 1.2, 1

[3] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear
spaces and applications for semi-inner products, JIPAM. J. Inequal. Pure Appl. Math., 3 (2002), 8 pages. 1

[4] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear
spaces and applications for semi-inner products, JIPAM. J. Inequal. Pure Appl. Math., 3 (2002), 8 pages. 1

[5] S. S. Dragomir, Hermite-Hadamard’s type inequalities for operator convex functions, Applied Mathematics and Com-
putation, 218 (2011), 766–772. 1

[6] S. S. Dragomir, S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense, Demonstratio
Math., 32 (1999), 687–696. 1

[7] A. G. Ghazanfari, Some new Hermite-Hadamard type inequalities for two operator convex functions, ArXiv, 2012 (2012),
12 pages.

[8] A. G. Ghazanfari, The Hermite-Hadamard type inequalities for operator s-convex functions, J. Adv. Res. Pure Math., 6
(2014), 52–61. 1

[9] F. Hansen, Operator convex functions of several variables, Publ. Res. Inst. Math. Sci., 33 (1997), 443–463. 2
[10] F. Hansen, Operator monotone functions of several variables, Math. Inequal. Appl., 6 (2003), 1–17. 2
[11] K.-C. Hsu, Some Hermite-Hadamard type inequalities for differentiable co-ordinated convex functions and applications,

Adv. Pure Math., 4 (2014), 326–340. 1
[12] K.-C. Hsu, Refinements of Hermite-Hadamard type inequalities for differentiable co-ordinated convex functions and appli-

cations, Taiwanese J. Math., 19 (2015), 133–157.
[13] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100–111.
[14] E. Kikianty, Hermite-Hadamard inequality in the geometry of Banach spaces, PhD thesis, Victoria University, (2010). 1
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