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Abstract
In this paper, we investigate the existence and nonexistence of positive solutions for nonlinear fractional differential equation
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1. Introduction

Fractional calculus is a 300-year-old mathematical topic, starting from 30 September 1695, when the
derivative of order α = 1

2 was described by Leibniz [1]. During the last few decades, fractional-order
differential equations have been of great interest. The main advantage of fractional-order differential
equations in comparison with classical integer-order ones is that fractional derivatives provide an excellent
tool for the description of memory and hereditary properties of various processes. For an extensive
collection of such results, we refer the readers to the monographs by Miller and Ross [8], Oldham and
Spanier [9], and Poldubny [10].

Recently, there are some papers dealing with the existence and multiplicity of solutions of nonlinear
initial value fractional differential equation by the use of techniques of nonlinear analysis [2, 3, 5, 6]. In
[3] and [6], the authors considered the Dirichlet-type boundary value problem for fractional differential
equations

Dα0+u(t) + f(t,u(t)) = 0, 0 < t < 1,
u(0) = u(1) = 0,

(1.1)

where 1 < α 6 2 is a real number and Dα0+ is the standard Riemann-Liouville derivative, and f : [0, 1]×
[0,∞) → [0,∞) is continuous. By the use of techniques of fixed-point theorems on cone, the authors
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discussed the existence and multiplicity of positive solutions for (1.1). Though some results have been
obtained for system (1.1), such systems are not well studied yet. In this paper, motivated by the work of
[4, 11, 12], we proceed to develop more results for the existence and multiplicity of positive solutions of
system (1.1). Moreover, we will discuss the nonexistence of positive solutions which is rarely discussed in
previous work.

The tree of this paper is organized as follows. In Sections 2, we list some useful definitions and
properties, and present the properties of Green Function of fractional differential equations with the
boundary value problem. In Section 3, we establish some sufficient conditions for the existence of positive
solutions for (1.1). Finally, in Section 4, we discuss the nonexistence of positive solutions of (1.1).

2. Preliminaries

In this section, we will present several foundational definitions of fractional calculus and preliminary
results. For more details, one can see [3, 6].

Definition 2.1. The fractional integral of order α > 0 of a function y : (0,∞)→ R is given by

Iα0+y(t) =
1
Γ(α)

∫t
0
(t− s)α−1y(s)ds,

provided that the right side is pointwise defined on (0,∞).

Definition 2.2. The fractional derivative of order α > 0 of a continuous function y : (0,∞) → R is given
by

Dα0+y(t) =
1

Γ(n−α)

(
d
dt

)n ∫t
0

y(s)

(t− s)α−n+1 ds,

where n = [α] + 1, provided that the right side is pointwise defined on (0,∞).

Lemma 2.3. Let α > 0 and u ∈ C(0, 1)∩ L(0, 1), then the fractional differential equation

Dα0+u(t) = 0

has solutions
u(t) = c1t

α−1 + c2t
α−2 + · · ·+ cntα−n,

for some ci ∈ R, i = 1, 2, · · · ,n, and n is the smallest integer greater than or equal to α.

Lemma 2.4. Assume that u ∈ C(0, 1)∩ L(0, 1) with a fractional derivative of order α > 0. Then

Iα0+Dα0+u(t) = u(t) +C1t
α−1 +C2t

α−2 + · · ·+Cntα−n,

for some ci ∈ R, i = 1, 2, · · · ,n, n is the smallest integer greater than or equal to α.

Lemma 2.5. Given y ∈ C[0, 1] and 1 < α 6 2, the unique solution of

Dα0+u(t) + y(t) = 0, 0 < t < 1,
u(0) = u(1) = 0

is

u(t) =

∫ 1

0
G(t, s)y(s)ds,

where

G(t, s) =


[t(1 − s)]α−1 − (t− s)α−1

Γ(α)
, 0 6 s 6 t 6 1,

[t(1 − s)]α−1

Γ(α)
, 0 6 t 6 s 6 1.

(2.1)
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Lemma 2.6. u(t) is a solution of (1.1), if and only if it is also a solution of the following integral equation

u(t) =

∫ 1

0
G(t, s)f(s,u(s))ds,

where G(t, s) is defined in (2.1).

Lemma 2.7. Let G∗(t, s) := t2−αG(t, s), then

α− 1
Γ(α)

t(1 − t)s(1 − s)α−1 6 G∗(t, s) 6
1
Γ(α)

s(1 − s)α−1,

for t, s ∈ (0, 1).

Next, we give the definition for cone and the famous fixed point theorem that will be needed in our
arguments [7].

Definition 2.8. Let X be a Banach space and E be a closed nonempty subset of X. E is said to be a cone if

(i) αu+βυ ∈ E for all u,υ ∈ E and all α,β > 0;

(ii) u,−u ∈ E imply u = 0.

Theorem 2.9. Let X be a Banach space, and let E ⊂ X be a cone in X. Assume Ω1,Ω2 are open subsets of X with
0 ∈ Ω1, Ω1 ⊂ Ω2 and let T : E∩ (Ω2 \Ω1) −→ E be a completely continuous operator such that either

(1) ‖Ty‖ > ‖y‖ for any y ∈ E∩ ∂Ω1, and ‖Ty‖ 6 ‖y‖ for any y ∈ E∩ ∂Ω2, or

(2) ‖Ty‖ 6 ‖y‖ for any y ∈ E∩ ∂Ω1, and ‖Ty‖ > ‖y‖ for any y ∈ E∩ ∂Ω2.

Then T has a fixed point in E∩ (Ω2 \Ω1).

3. Existence of positive solutions of (1.1)

In this section, we establish the positive solutions of (1.1) by applying the fixed point theorems on a
cone. In order to explore the existence of positive solutions of (1.1), we suppose the following hypotheses
are always satisfied in the sequel.

(A) f(t,u) is continuous on [0, 1]× [0,∞), and there exist g ∈ C([0,+∞), [0,+∞)), q1,q2 ∈ C((0,+∞), (0,
+∞)) such that

q1(t)g(y) 6 f(t, tα−2y) 6 q2(t)g(y), t ∈ (0, 1), y ∈ [0,∞), (3.1)

where ∫ 1

0
qi(s)ds < +∞, i = 1, 2.

Let E = C[0, 1] be endowed with the ordering u 6 υ if u(t) 6 υ(t) for all t ∈ [0, 1], and the maximum
norm ‖u‖ = max06t61 |u(t)|.

Define the cone P ⊂ E by P = {u ∈ E | u(t) > 0}. Then we have the following lemma.

Lemma 3.1. Let T : P → E be the operator defined by

(Tu)(t) =

∫ 1

0
G(t, s)f(s,u(s))ds,

then T : P → P is completely continuous.
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It is clear that u(t) is a positive solution of (1.1), whenever u(t) is a fixed point of T , namely, u(t) =
(Tu)(t).

Define the cone K ⊂ E by
K = {y ∈ E | y(t) > (α− 1)t(1 − t)‖y‖},

and an operator T∗ : K→ E as follows

(T∗y)(t) =

∫ 1

0
G∗(t, s)f(s, sα−2y(s))ds.

Then one has the following lemma.

Lemma 3.2. T∗(K) ⊂ K and T∗ : K→ K is completely continuous.

For the sake of convenience and simplicity, we introduce the following notations

g0 = lim
y→0

max
g(y)

y
, g∞ = lim

y→∞max
g(y)

y
,

g0 = lim
y→0

min
g(y)

y
, g∞ = lim

y→∞min
g(y)

y
.

Moreover, define, for r a positive number, Ωr by

Ωr = {y ∈ C[0, 1] | ‖y‖ < r}.

Note that ∂Ωr = {y ∈ C[0, 1] | ‖y‖ = r}.
Our first result is as follows:

Theorem 3.3. Assume that
(P1) g0 =∞ and (P2) g∞ = 0

hold. Then system (1.1) has at least one positive solution.

Proof. First, in view of g0 =∞, there exist ρ0 > 0, M > 0 satisfying

M(α− 1)2

4Γ(α)

∫ 1

0
s2(1 − s)αq1(s)ds > 1,

such that g(y) >My for 0 < y 6 ρ0. Then, for any y ∈ Ωρ0 , 0 < y < ρ0, by Lemma 2.7 and (3.1), we have

‖T∗y‖ > (T∗y)(
1
2
)

=

∫ 1

0
G∗(

1
2

, s)f(s, sα−2y(s))ds

>
α− 1
4Γ(α)

∫ 1

0
s(1 − s)α−1q1(s)g(y(s))ds

>
M(α− 1)

4Γ(α)

∫ 1

0
s(1 − s)α−1q1(s)y(s)ds

>
M(α− 1)2

4Γ(α)
‖y‖
∫ 1

0
s2(1 − s)αq1(s)ds

> ‖y‖,

which implies that ‖T∗y‖ > ‖y‖ for any y ∈ K∩ ∂Ωρ0 .
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On the other hand, by using g∞ = 0, there exist M∗ > ρ0 > 0 and ε > 0 satisfying

ε

Γ(α)

∫ 1

0
s(1 − s)α−1q2(s)ds 6

1
2

,

such that g(y) 6 εy for y > M∗.
Take

ρ1 > M
∗ +

1
ε

max
y∈[0,M∗]

{g(y)}.

Then by Lemma 2.7 and (3.1), we have

(T∗y)(t) 6
1
Γ(α)

∫ 1

0
s(1 − s)α−1f(s, sα−2y(s))ds

6
1
Γ(α)

∫ 1

0
s(1 − s)α−1q2(s)g(y(s))ds

6
1
Γ(α)

{∫
I1

s(1 − s)α−1q2(s)max{g(y(s))}ds+
∫
I2

s(1 − s)α−1q2(s)εy(s)ds
}

6
1
Γ(α)

∫ 1

0
s(1 − s)α−1q2(s)ds max

y(s)∈I1

{g(y(s))}+
ε

Γ(α)
‖y‖
∫ 1

0
s(1 − s)α−1q2(s)ds

6
ρ1

2
+
‖y‖

2
= ‖y‖,

where I1 = {s ∈ [0, 1] | 0 6 y(s) 6M∗}, I2 = {s ∈ [0, 1] | y(s) > M∗}. This implies that ‖T∗y‖ 6 ‖y‖ for any
y ∈ K∩ ∂Ωρ1 .

Thus, by Theorem 2.9, T∗ has a fixed point y in K∩(Ωρ1 \Ωρ0), that is, y(t)=
∫1

0 G
∗(t, s)f(s, sα−2y(s))ds,

t ∈ [0, 1]. It is obvious that u(t) = tα−2y(t) is a fixed point of T , and it satisfies u(t) =
∫1

0 G(t, s)f(s,u(s))ds,
t ∈ [0, 1]. Finally, we prove u(0) = u(1) = 0.

From y ∈ C[0, 1] and (A), we have

lim
t→0

u(t) = lim
t→0

∫ 1

0
G(t, s)f(s,u(s))ds

= lim
t→0

∫ 1

0
G(t, s)f(s, sα−2y(s))ds

6 lim
t→0

∫ 1

0
G(t, s)q2(s)g(y(s))ds

6 lim
t→0

∫ 1

0
G(t, s)q2(s)ds max

06‖y‖6ρ1

g(y(s))

= 0.

So, u(0) = 0. By (2.1), it is easy to see that u(1) = y(1) = 0. Hence, system (1.1) has a positive solution
u(t) = tα−2y(t). Therefore the proof is completed.

Theorem 3.4. Assume that
(P3) g0 = 0 and (P4) g∞ =∞

hold. Then system (1.1) has at least one positive solution.

Proof. Since g0 = 0, for any ε > 0 satisfying

ε

Γ(α)

∫ 1

0
s(1 − s)α−1q2(s)ds 6 1,

there exists ρ2 > 0 such that g(y) 6 εy for y 6 ρ2.
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Then by Lemma 2.7 and (3.1), we get

(T∗y)(t) 6
1
Γ(α)

∫ 1

0
s(1 − s)α−1f(s, sα−2y(s))ds

6
1
Γ(α)

∫ 1

0
s(1 − s)α−1q2(s)g(y(s))ds

6
ε

Γ(α)

∫ 1

0
s(1 − s)α−1q2(s)y(s)ds

6
ε

Γ(α)
‖y‖
∫ 1

0
s(1 − s)α−1q2(s)ds

6 ‖y‖,

which shows that ‖T∗y‖ 6 ‖y‖ for y ∈ K∩ ∂Ωρ2 .
Further, since g∞ =∞, for any M1 > 0 satisfying

3M1(α− 1)2

64Γ(α)

∫ 3
4

1
4

s(1 − s)α−1q1(s)ds > 1,

there exists ρ∗3 > ρ2 > 0 such that g(y) > M1y for y > ρ∗3 . Let

ρ3 =
16ρ∗3

3(α− 1)
+ ρ2.

Then for any y ∈ K∩ ∂Ωρ3 , we have

y(t) >
3(α− 1)

16
‖y‖ = 3(α− 1)

16
ρ3 > ρ

∗
3 , t ∈

[
1
4

,
3
4

]
.

Consequently,

‖T∗y‖ > (T∗y)(
1
2
)

=

∫ 1

0
G∗(

1
2

, s)f(s, sα−2y(s))ds

>
α− 1
4Γ(α)

∫ 1

0
s(1 − s)α−1q1(s)g(y(s))ds

>
M1(α− 1)

4Γ(α)

∫ 1

0
s(1 − s)α−1q1(s)y(s)ds

>
3M1(α− 1)2

64Γ(α)
‖y‖
∫ 3

4

1
4

s(1 − s)α−1q1(s)ds

> ‖y‖,

which implies that ‖T∗y‖ > ‖y‖ for any y ∈ K∩ ∂Ωρ3 .
Therefore T∗ has a fixed point y(t) in K ∩ (Ωρ3 \Ωρ2). Clearly, system (1.1) has a positive solution

u(t) = tα−2y(t). So the proof is completed.

Theorem 3.5. Assume that the following two conditions hold:

(P5) there exists an r1 > 0 such that g(y) >M1r1 for 3(α−1)
16 r1 6 y 6 r1;

(P6) there exists an r2 > 0 such that g(y) 6M2r2 for 0 < y 6 r2,
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where

M1 =

[
α− 1
4Γ(α)

∫ 3
4

1
4

s(1 − s)α−1q1(s)ds

]−1

,

M2 =

[
1
Γ(α)

∫ 1

0
s(1 − s)α−1q2(s)ds

]−1

.

Then system (1.1) has at least one positive solution.

Proof. Without loss of generality, we can assume that r1 > r2. By (P5), Lemma 2.7, and (3.1), for any
y ∈ K∩ ∂Ωr1 , we have

‖T∗y‖ > (T∗y)(
1
2
) =

∫ 1

0
G∗(

1
2

, s)f(s, sα−2y(s))ds

>
α− 1
4Γ(α)

∫ 3
4

1
4

s(1 − s)α−1q1(s)g(y(s))ds

>
M1r1(α− 1)

4Γ(α)

∫ 3
4

1
4

s(1 − s)α−1q1(s)ds

= r1 = ‖y‖,

which leads to ‖T∗y‖ > ‖y‖ for any y ∈ K∩ ∂Ωr1 .
On the other hand, by (P6), one has

(T∗y)(t) 6
1
Γ(α)

∫ 1

0
s(1 − s)α−1f(s, sα−2y(s))ds

6
1
Γ(α)

∫ 1

0
s(1 − s)α−1q2(s)g(y(s))ds

6
M2r2

Γ(α)

∫ 1

0
s(1 − s)α−1q2(s)ds

= r2 = ‖y‖,

which yields ‖T∗y‖ 6 ‖y‖ for any y ∈ K∩ ∂Ωr2 .
Therefore, from Theorem 2.9, T∗ has a fixed point in K ∩ (Ωr1 \Ωr2). Further, we can obtain that

system (1.1) has at least one positive solution. The proof is completed.

Theorem 3.6. Assume that (P2), (P3), and (P5) hold. Then system (1.1) has at least two positive solutions.

Proof. Firstly, by (P3), for any ε > 0 satisfying

ε

Γ(α)

∫ 1

0
s(1 − s)α−1q2(s)ds 6 1,

there exists ρ4 ∈ (0, r1) such that g(y) 6 εy for y 6 ρ4.
Then by Lemma 2.7 and (3.1), we have

(T∗y)(t) 6
1
Γ(α)

∫ 1

0
s(1 − s)α−1f(s, sα−2y(s))ds

6
1
Γ(α)

∫ 1

0
s(1 − s)α−1q2(s)g(y(s))ds
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6
ε

Γ(α)

∫ 1

0
s(1 − s)α−1q2(s)y(s)ds

6 ‖y‖,

which shows that ‖T∗y‖ 6 ‖y‖ for y ∈ K∩ ∂Ωρ4 .
Secondly, in view of (P2), for any ε > 0 satisfying

ε

Γ(α)

∫ 1

0
s(1 − s)α−1q2(s)ds 6

1
2

,

there exists an M2 > 0, such that g(y) 6 εy for y > M2. Let

ρ5 > M2 + r1 +
1
ε

max
y∈[0,M2]

{g(y)}.

Then we have

(T∗y)(t) 6
1
Γ(α)

∫ 1

0
s(1 − s)α−1f(s, sα−2y(s))ds

6
1
Γ(α)

∫ 1

0
s(1 − s)α−1q2(s)g(y(s))ds

6
1
Γ(α)

{∫
I1

s(1 − s)α−1q2(s)max{g(y(s))}ds+
∫
I2

s(1 − s)α−1q2(s)εy(s)ds
}

6
1
Γ(α)

∫ 1

0
s(1 − s)α−1q2(s)max{g(y(s))}ds+

ε

Γ(α)
‖y‖
∫ 1

0
s(1 − s)α−1q2(s)ds

6
1
2ε
ερ5 +

‖y‖
2

= ‖y‖,

where I1 = {s ∈ [0, 1] | 0 6 y(s) 6 M2}, I2 = {s ∈ [0, 1] | y(s) > M2}. Hence, ‖T∗y‖ 6 ‖y‖ for
y ∈ K∩ ∂Ωρ5 .

Finally, set Ωr1 = {y ∈ C[0, 1] | ‖y‖ < r1}. Then, by (P5), we get

‖T∗y‖ > (T∗y)(
1
2
)

=

∫ 1

0
G∗(

1
2

, s)f(s, sα−2y(s))ds

>
α− 1
4Γ(α)

∫ 3
4

1
4

s(1 − s)α−1q1(s)g(y(s))ds

>
M1(α− 1)

4Γ(α)
r1

∫ 3
4

1
4

s(1 − s)α−1q1(s)ds

= r1 = ‖y‖,

which yields ‖T∗y‖ > ‖y‖ for any y ∈ K∩ ∂Ωr1 .
Therefore, T∗ has a fixed point y1 in Ωr1 \Ωρ4 , and a fixed point y2 in Ωρ5 \Ωr1 . One can easily

see that both u1 = tα−2y1 and u2 = tα−2y2, t ∈ [0, 1] are positive solutions of system (1.1). The proof is
completed.

Theorem 3.7. Assume that (P1), (P4), and (P6) hold. Then system (1.1) has at least two positive solutions.
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Proof. In view of (P1), for any M3 > 0 satisfying

M3(α− 1)2

4Γ(α)

∫ 1

0
s2(1 − s)αq1(s)ds > 1,

there exists a ρ6 ∈ (0, r2) such that g(y) >M3y for y 6 ρ6. Then by Lemma 2.7 and (3.1), we obtain

‖T∗y‖ > (T∗y)(
1
2
)

=

∫ 1

0
G∗(

1
2

, s)f(s, sα−2y(s))ds

>
α− 1
4Γ(α)

∫ 1

0
s(1 − s)α−1q1(s)g(y(s))ds

>
M3(α− 1)

4Γ(α)

∫ 1

0
s(1 − s)α−1q1(s)y(s)ds

>
M3(α− 1)2

4Γ(α)
‖y‖
∫ 1

0
s2(1 − s)αq1(s)ds

> ‖y‖,

which yields ‖T∗y‖ > ‖y‖ for any y ∈ K∩ ∂Ωρ6 . In addition, by (P4), for any M4 > 0 satisfying

3M4(α− 1)2

64Γ(α)

∫ 3
4

1
4

s(1 − s)α−1q1(s)ds > 1,

there exists ρ∗7 > 0 such that g(y) > M4y for y > ρ∗7 . Take

ρ7 =
16ρ∗7

3(α− 1)
+ ρ2,

then for any y ∈ K∩ ∂Ωρ7 , we have

y(t) >
3(α− 1)

16
‖y‖ = 3(α− 1)

16
ρ7 > ρ

∗
7 , t ∈

[
1
4

,
3
4

]
.

Furthermore,

‖T∗y‖ > (T∗y)(
1
2
)

>
α− 1
4Γ(α)

∫ 1

0
s(1 − s)α−1q1(s)g(y(s))ds

>
α− 1
4Γ(α)

∫ 3
4

1
4

s(1 − s)α−1q1(s)g(y(s))ds

>
M4(α− 1)

4Γ(α)

∫ 3
4

1
4

s(1 − s)α−1q1(s)y(s)ds

>
3M4(α− 1)2

64Γ(α)
‖y‖
∫ 3

4

1
4

s(1 − s)α−1q1(s)ds

> ‖y‖,

which implies that ‖T∗y‖ > ‖y‖ for any y ∈ K∩ ∂Ωρ7 .
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Finally, by (P6), we have

(T∗y)(t) 6
1
Γ(α)

∫ 1

0
s(1 − s)α−1f(s, sα−2y(s))ds

6
1
Γ(α)

∫ 1

0
s(1 − s)α−1q2(s)g(y(s))ds

6
M2r2

Γ(α)

∫ 1

0
s(1 − s)α−1q2(s)ds

= r2 = ‖y‖,

which yields ‖T∗y‖ 6 ‖y‖ for any y ∈ K∩ ∂Ωr2 .
Therefore, T∗ has a fixed point y1 in Ωr2 \Ωρ6 , and a fixed point y2 in Ωρ7 \Ωr2 . Thus, system (1.1)

has at least two positive solutions u1 = tα−2y1, u2 = tα−2y2, t ∈ [0, 1]. The proof is completed.

Theorem 3.8. Assume that

(P7) g0 = α1 ∈ [0,M2) and (P8) g∞ = β1 ∈
(

16
3(α− 1)

M1,∞)
hold, where M1,M2 are defined in Theorem 3.5. Then system (1.1) has at least one positive solution.

Proof. By (P7), for ε =M2 −α1 > 0, there exists a sufficiently small r̂2 > 0 such that

max
g(y)

y
< α1 + ε =M2, for y 6 r̂2,

which yields g(y) < M2y 6M2r̂2. Hence, the condition (P6) is satisfied.
By (P8), for ε = β1 −

16
3(α−1)M1 > 0, there exists a sufficiently large r1 > 0, such that

min
g(y)

y
> β1 − ε =

16
3(α− 1)

M1, for y >
3(α− 1)

16
r1.

Thus, when 3(α−1)
16 r1 6 y 6 r1, we have

g(y) >
16

3(α− 1)
M1y >

16
3(α− 1)

M1 ·
3(α− 1)

16
r1 =M1r1,

which implies the condition (P5) hold. By Theorem 3.5, we complete the proof.

Theorem 3.9. Assume that

(P9) g0 = α2 ∈
(

16
3(α− 1)

M1,∞) and (P10) g∞ = β2 ∈ [0,M2)

hold, where M1,M2 are defined in Theorem 3.5. Then system (1.1) has at least one positive solution.

Proof. By (P9), for ε = α2 −
16

3(α−1)M1 > 0, there exists a sufficiently small r̂1 > 0 such that

min
g(y)

y
> α2 − ε =

16
3(α− 1)

M1, for y 6 r̂1.

Thus, when 3(α−1)
16 r̂1 6 y 6 r̂1, one has,

g(y) >
16

3(α− 1)
M1y >M1r̂1,
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which yields the condition (P5) holds. In view of (P10), for ε = M2 − β2 > 0, there exists a sufficiently
large r > 0 such that

max
g(y)

y
< β2 + ε =M2, for y > r.

In the following, we will show that (P6) holds and the discussion is divided into two cases.

Case one: Suppose that g(y) is unbounded, then exists g∗ ∈ C([0,+∞), [0,+∞)) such that g(y) 6 g∗(y∗)

for y 6 y∗ and when y∗ > r, max g
∗(y∗)
y∗ < M2. If we choose y∗ = r2 > r, we will get

g(y) 6 g∗(y∗) < M2y
∗ =M2r2 for y 6 y∗ = r2,

which yields the condition (P6) holds.

Case two: Suppose that g(y) is bounded, there exists an M > 0, such that for any y, we have g(y) 6 M.
In this case, taking sufficiently large r2 > M

M2
, then g(y) 6 M 6 M2r2 for 0 < y < r2 , which implies the

condition (P6) holds.
Therefore, by Theorem 3.5 we complete the proof.

Theorem 3.10. Assume that (P6), (P8), and (P9) hold. Then system (1.1) has at least two positive solutions.

Proof. From (P8) and the proof of Theorem 3.8, we know that there exists a sufficiently large r1 > r2 such
that

g(y) > M1r1, for
3(α− 1)

16
r1 6 y 6 r1.

In view of (P9) and the proof of Theorem 3.9, we see that there exists a sufficiently small r∗1 ∈ (0, r2)
such that

g(y) > M1r
∗
1 , for

3(α− 1)
16

r∗1 6 y 6 r∗1 .

Noting that (P6) is valid, then from the proof of Theorem 3.5, we know T∗ has at least two fixed points.
Thus, system (1.1) has at least two positive solutions. The proof is completed.

Theorem 3.11. Assume that (P5), (P7), and (P10) hold. Then system (1.1) has at least two positive solutions.

Proof. From (P7) and the proof of Theorem 3.8, we know that there exists a sufficiently small r2 ∈ (0, r1)
such that

g(y) 6M2r2, for 0 < y 6 r2.

In view of (P10) and the proof of Theorem 3.9, we see that there exists a sufficiently large r∗2 > r1 such
that

g(y) 6M2r
∗
2 , for 0 < y 6 r∗2 .

Noting that (P5) is also satisfied, then from the proof of Theorem 3.5, we know T∗ has at least two fixed
points. Thus, system (1.1) has at least two positive solutions. The proof is completed.

Theorem 3.12. Assume that (P1) and (P10) hold. Then system (1.1) has at least one positive solution.

Proof. In view of (P1), we know from the proof of Theorem 3.3 that, for any y ∈ K∩ ∂Ωρ0 , ‖T∗y‖ > ‖y‖.
By (P10), it follows from the proof of Theorem 3.9, there exists a sufficiently large r2 > ρ0 such that

g(y) 6M2r2 for 0 < y 6 r2 and ‖T∗y‖ 6 ‖y‖. This completes the proof.

Similar to Theorem 3.12, one immediately has the following consequences.

Theorem 3.13. Assume that (P2) and (P9) hold. Then system (1.1) has at least one positive solution.

Theorem 3.14. Assume that (P3) and (P8) hold. Then system (1.1) has at least one positive solution.
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Theorem 3.15. Assume that (P4) and (P7) hold. Then system (1.1) has at least one positive solution.

Theorem 3.16. Assume that (P1), (P6), and (P8) hold. Then system (1.1) has at least two positive solutions.

Proof. In view of (P1), we know from the proof of Theorem 3.3 that ‖T∗y‖ > ‖y‖ for any y ∈ K∩ ∂Ωρ0 .
Since (P8), from the proof of Theorem 3.8, there exists a sufficiently large r1 > r2 such that g(y) >M1r1

for 3(α−1)
16 r1 6 y 6 r1.

For any y ∈ K∩ ∂Ωr1 , we have

‖T∗y‖ > (T∗y)(
1
2
)

=

∫ 1

0
G∗(

1
2

, s)f(s, sα−2y(s))ds

>
α− 1
4Γ(α)

∫ 3
4

1
4

s(1 − s)α−1q1(s)g(y(s))ds

>
M1(α− 1)

4Γ(α)
r1

∫ 3
4

1
4

s(1 − s)α−1q1(s)ds

= r1 = ‖y‖.

Further, from the proof of Theorem 3.5, for any y ∈ K ∩ ∂Ωr2 , we have ‖T∗y‖ 6 ‖y‖. Therefore, system
(1.1) has at least two positive solutions. The proof is completed.

The following statements are immediately obtained by applying similar arguments as used in the
proof of Theorem 3.16.

Theorem 3.17. Assume that (P2), (P5), and (P7) hold. Then system (1.1) has at least two positive solutions.

Theorem 3.18. Assume that (P3), (P5), and (P10) hold. Then system (1.1) has at least two positive solutions.

Theorem 3.19. Assume that (P4), (P6), and (P9) hold. Then system (1.1) has at least two positive solutions.

4. Nonexistence of positive solutions of (1.1)

In this section, we will explore the nonexistence of positive solutions of system (1.1).

Theorem 4.1. Assume that (P8), (P9), and the following condition hold

(P11) min
r̂1<y<

3(α−1)
16 r1

g(y)

y
∈
(

16
3(α− 1)

M1,∞) ,

where r1, r̂1 are defined as the proof of Theorems 3.6 and 3.7, respectively. Then (1.1) has no positive solution.

Proof. From (P8) and the proof of Theorem 3.8, it follows that there exists a sufficiently large r1 > r̂1 such
that g(y) > 16

3(α−1)M1y for y > 3(α−1)
16 r1.

From (P9), and the proof of Theorem 3.9, it follows that there exists a sufficiently small r̂1 > 0 such
that g(y) > 16

3(α−1)M1y for y 6 r̂1.
By (P11), we can obtain g(y) > 16

3(α−1)M1y for any y.
If T∗ has a fixed point y, then

‖y‖ = ‖T∗y‖ > (T∗y)(
1
2
) =

∫ 1

0
G∗(

1
2

, s)f(s, sα−2y(s))ds
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>
α− 1
4Γ(α)

∫ 3
4

1
4

s(1 − s)α−1q1(s)g(y(s))ds

>
α− 1
4Γ(α)

· 16
3(α− 1)

M1

∫ 3
4

1
4

s(1 − s)α−1q1(s)y(s)ds

>
α− 1
4Γ(α)

· 16
3(α− 1)

M1 ·
3
16

(α− 1)‖y‖
∫ 3

4

1
4

s(1 − s)α−1q1(s)ds

= ‖y‖,

which is a contradiction. The claim is valid.

The next consequence is presented below whose proof is similar to that of Theorem 4.1, and therefore
is omitted.

Theorem 4.2. Assume that(P7), (P10), and the following condition hold

(P12) max
r̂2<y<r2

g(y)

y
∈ [0,M2),

where r̂2, r2 are defined as the proof of Theorems 3.8 and 3.9, respectively. Then system (1.1) has no positive solution.
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