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Abstract
New exact solutions including periodic breather wave, kink breather wave and doubly breather wave solutions are obtained

for (2+1)D BK equation by using Painleve analysis, variable separation approach, the homoclinic test method and generalized
CK method via the linearization of equation, variable separation and equivalent transformation, respectively. The dynamical be-
havior and interaction between different waves are investigated. These results enrich the dynamic features of higher dimensional
nonlinear system. c©2017 All rights reserved.
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1. Introduction

Many nonlinear phenomena in nature and human society are usually characterized by nonlinear evo-
lution equations. Searching for an analytical exact solution to a nonlinear system becomes one of the
central themes of perpetual interest in nonlinear science. Various methods for obtaining exact solutions
of a nonlinear system have been proposed, such as the Hirota bilinear method, the homogeneous bal-
ance method, inverse scattering method, Backlund transformation, variable separation approach, Painleve
analysis method, Darboux transformation, symmetry reduction method, homoclinic test method, the ex-
tended homoclinic test method [2] and so on. The (2+ 1)-dimensional Broer-Kaup Equation ((2+ 1)D BK
for short) comes from the constraints of the KP equation and it is of importance in mathematical physics
field. Many researchers pay more and more attention to search for analytical exact solution to (2+1)D BK
Equation because of its rich physical connotation [1, 3–14, 16–24]. By means of the homogeneous balance
method [8, 16–19, 21, 24] solitary wave solutions, exact multi-soliton solutions and soliton-like solutions
of the BK equation were obtained. Meanwhile, doubly periodic wave solutions, folded solitary wave so-
lutions, non-Lie symmetry groups and new exact solutions were derived [6] by using variable separation
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approach [1, 3, 11, 12, 15, 22], Painleve analysis method [5, 20] and generalized Riccati mapping method
[10, 23]. In this work, we consider the following (2 + 1)D BK Equation:{

uty − uxxy + 2(uux)y + 2vxx = 0,
vt + vxx + 2(uv)x = 0. (1.1)

We will study on the new exact solutions including periodic breather wave, kink breather wave and dou-
bly breather wave solutions by Painleve analysis, variable separation approach, homoclinic test method,
generalized CK method and equivalent transformation via the linearization of equation, respectively. The
dynamical behavior and interaction between different waves are investigated.

2. The linearization of Equation (1.1)

Substituting v = uy into (1.1), we get

uty + uxxy + (u2)xy = 0,

integrating with respect to y and set the integration constant to zero, we can obtain

ut + uxx + (u2)x = 0. (2.1)

Equation (2.1) is a Burgers type equation. Based on the Painleve analysis, we take the following transfor-
mation

u = (lnϕ)x. (2.2)

Substituting (2.2) into (2.1) and integrating with respect to x, we get the following second-order LPDE.

ϕt +ϕxx = 0, (2.3)

where ϕ is function of variable (x,y, t) to be determined. Based on the solutions of (2.3), we can obtain
the exact solutions for the BK system.

3. Exact solutions of the Equation (1.1)

From the transformation (2.2), we assume the variable separation solutions in this form

ϕ = f(x, t) + g(y), (3.1)

where f(x, t) is function of (x, t) to be determined later and g(y) is arbitrary function of y, respectively.
Substituting (3.1) into (2.3), we have

ft(x, t) + fxx(x, t) = 0. (3.2)

This is a famous heat conduction equation. Next, we will derive two types of variable separation solutions
of (3.2).

3.1. Variable separation solutions with sum-form
Now, we suppose the solution of (3.2) as

f(x, t) = p(x) + q(t). (3.3)

Substituting (3.3) into (2.3), we get the following results:

q(t) = c0t, p(x) =
−c0x

2

2
+ c1x+ c2, ϕ1 =

c0x
2

2
− c1x− c0t+ c2 + g(y), (3.4)

where c0, c1, c2 are arbitrary constants.

3.2. Variable separation solutions with product-form
We suppose the solution of (3.2) as f(x, t) = p(x)q(t). Substituting it into (3.2), we get the following

results:
p(x) = c1e

c0x + c2e
−c0x,
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or
p(x) = sinh(c0x), or p(x) = cosh(c0x), q(t) = e−c

2
0t,

ϕ2 = e−c
2
0t cosh(c0x) + g(y). (3.5)

Based on linear superposition principle of solutions of linear equations, the following superposition solu-
tions are available

ϕ3 = c3(
c0x

2

2
− c1x− c0t+ c2) + c4(e

−c2
0t cosh(c0x)) + g(y), (3.6)

where ci ∈ R(i = 0, · · · , 4). Substituting (3.4), (3.5), (3.6) into (2.2) and notice v = uy, we obtain the exact
solutions of (1.1) as follows:

u1 =
c0x− c1

c0x2

2 − c1x− c0t+ c2 + g(y)
, v1 =

−(c0x− c1)g
′(y)

[c0x2

2 − c1x− c0t+ c2 + g(y)]2
,

u2 =
c0e

−c2
0t sinh(c0x)

e−c
2
0t cosh(c0x) + g(y)

, v2 =
−c0e

−c2
0t sinh(c0x)g

′(y)

[e−c
2
0t cosh(c0x) + g(y)]2

,
u3 =

c0x−c1−c0e
−c2

0t sinh(c0x)
c0x

2
2 −c1x−c0t+c2+e

−c2
0t cosh(c0x)+g(y)

,

v3 =
−[c0x−c1−c0e

−c2
0t sinh(c0x)]g

′(y)

[
c0x

2
2 −c1x−c0t+c2+e

−c2
0t cosh(c0x)+g(y)]2

.

3.3. Interaction between periodic breather wave and single solitary wave
Based on the homoclinic test method, we suppose

ϕ = ek1x+s1y+c1t+r1 + a cos(k2x+ s2y+ c2t+ r2) + b cosh(k3x+ s3y+ c3t+ r3), (3.7)

where a,b,ki, si, ci, ri(i = 1, 2, 3) are constants to be determined later. Substituting (3.7) into (2.3), we
obtain the set of algebraic equations for a,b,ki, si, ci, ri(i = 1, 2, 3)

k3
2 + k

2
1k2 + c1k2 + c2k1 = 0, · · · , c3k2 + c2k3 = 0, c3k3 − c2k2 = 0. (3.8)

The solution of (3.8) is c1 = −k2
1 + k

2
3 , when a = c3 = 0. Thus we have

ϕ4 = ek1x+s1y−(k2
1−k

2
3)t+r1 + b cosh(k3x+ s3y+ r3). (3.9)

Substituting (3.9) into (2.2) and v = uy in turn, we can derive the following exact solutions of (1.1):
u4 =

k1e
k1x+s1y−(k2

1−k
2
3)t+r1+bk3 sinh(k3x+s3y+r3)

e
k1x+s1y−(k2

1−k
2
3)t+r1+b cosh(k3x+s3y+r3)

,

v4 =
s1e

k1x+s1y−(k2
1−k

2
3)t+r1+bs3 sinh(k3x+s3y+r3)

[ek1x+s1y−(k2
1−k

2
3)t+r1+b cosh(k3x+s3y+r3)]2

.

3.4. Equivalence transformation of Equation (2.3)
Based on generalized CK method, we suppose ϕ as

ϕ = α+βf(ξ,η), (3.10)

where α = α(x,y, t),β = β(x,y, t), ξ = ξ(x,y, t),η = η(x,y, t) are functions of (x,y, t) to be determined
later and f(ξ,η) is a solution of linear equations

fη + fξξ = 0. (3.11)

Substituting (3.10) and (3.11) into (2.3), we obtain

α = g(y), β = 1, ξ = h(y)x, η = h2(y)t, (3.12)

where h(y),g(y) are arbitrary functions of y. Substituting (3.12) into (3.10), we obtain equivalence trans-
formation of (2.3)

ϕ = f(h(y)x,h2(y)t) + g(y).
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Base on transformation (3.10) of (2.3), we obtain invariant form solutions,

ϕ5 =
c0h

2(y)x2

2
− c1h(y)x− c0h

2(y)t+ c2 + g(y), (3.13)

ϕ6 = h(y) cosh(c0h(y)x)e
−c0h

2(y)t + g(y), (3.14)

ϕ7 = c3[
c0h

2(y)x2

2
− c1h(y)x− c0h

2(y)t+ c2] + c4h(y)e
k2h2(y)t cosh(c0h(y)x) + g(y). (3.15)

We can derive the following exact solutions of (1.1) from (3.13), (3.14), (3.15):

u5 =
c0h

2(y)x− c1h(y)
c0h2(y)x2

2 − c1h(y)x− c0h2(y)t+ c2 + g(y)
, v5 = [

c0h
2(y)x− c1h(y)

c0h2(y)x2

2 − c1h(y)x− c0h2(y)t+ c2 + g(y)
]y,

u6 =
c0h

2(y)x− c1h(y)
c0h2(y)x2

2 − c1h(y)x− c0h2(y)t+ c2 + g(y)
, v6 = [

c0h
2(y)x− c1h(y)

c0h2(y)x2

2 − c1h(y)x− c0h2(y)t+ c2 + g(y)
]y,


u7 =

c3[c0h
2(y)x−c1h(y)]−c4kh

2(y)ek
2h2(y)tsin(kh(y)x

c3[c0h2(y)( x
2

2 −t)−c1h(y)x+c2]+c4h(y)ek
2h2(y)tcos(kh(y)x+g(y)

,

v7 = [
c3[c0h

2(y)x−c1h(y)]−c4kh
2(y)ek

2h2(y)tsin(kh(y)x

c3[c0h2(y)( x
2

2 −t)−c1h(y)x+c2]+c4h(y)ek
2h2(y)tcos(kh(y)x+g(y)

]y.

4. Dynamic behavior analysis of solution of Equation (1.1)

In this section, we mainly discuss the dynamical behavior and localized structure of solution u7 and
v7 for (1.1). u7 and v7 describe the behavior of inelastic collision between line soliton g(y) and different
kink-type breather solitons. At the same time, they show different structures of solitons in different
regions.

4.1 Interaction between breather wave and kink wave.

For example, if we choose g(y) = y6 + 1,h(y) = tanh(y) + 1,k = 0.03, ci = 1(i = 0, · · · , 4), we can obtain
the localized structure of u7 and v7 at time t = −0.8, t = 0, t = 0.8, respectively. They are expressed by
Figure 1 in turn.

Figure 1: Row 1 Shows that u7 is kink-type breather wave and it describes the interaction between kink wave and breather wave
with different directions. Row 2 Shows that v7 is doubly breather-type wave and it describes the interaction between kink wave
and doubly breather-type wave with different directions.
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4.2 Interaction between line solition and dromion solition.

If we choose g(y) = y4 + 1,h(y) = y sin(ln(y2)),k = 0.11, ci = 1(i = 0, · · · , 4), we can obtain the localized
structure of u7 and v7 at time t = −3.6, t = 0, t = 3.6, respectively. They are expressed by Figure 2 in turn.

Figure 2: Row 1 and Row 2 show interaction between line solition and dromion solition, which is inelastic collision, and exhibit
the evolution of the two solitons from the chaotic line solition to the chaotic structure.

4.3 Interaction between line solition and compaction.

If we choose g(y) = sech(y) + 1,h(y) = sin(y),k = 0.3, ci = 1(i = 0, · · · , 4), we can obtain the localized
structure of u7 and v7 at time t = −0.5, t = 0, t = 0.5, respectively. They are expressed by Figure 3 in turn.

Figure 3: Row 1 and Row 2 show interaction between line solition and compaction, which are inelastic collision, and exhibit
degradation of chaotic line soliton, but they have not chaotic structure.
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5. Conclusions

In this paper, we study the linearization of (2 + 1)D BK Equation and obtain some new exact solu-
tions including periodic breather-type wave, kink breather wave and doubly breather wave using Painleve
analysis, variable separation approach, the homoclinic test method and generalized CK method. Further-
more, we discuss its dynamical behavior and localized structure of interaction between breather wave and
kink wave, line solition and dromion solution, line solition and compaction, etc. These results enrich the
dynamic significance of the higher dimensional nonlinear system.
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