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Abstract
The concept of hesitant triangular intuitionistic fuzzy sets (HTIFSs) presented in this paper is based upon hesitant fuzzy sets

and triangular intuitionistic fuzzy numbers (TIFNs). We have developed some hesitant triangular intuitionistic fuzzy aggregation
operators and standardized hesitant triangular intuitionistic fuzzy aggregation operators. Inspired by Li et al. [D.-Q. Li, W.-
Y. Zeng, Y.-B. Zhao, Inform. Sci., 321 (2015), 103–115], the distance measures of hesitant triangular intuitionistic fuzzy sets
are given, in order to explore the applications of which we have proposed three methods of multi-attribute decision making
(MADM) problems, as well as analysis of the comparison between those methods, thus we give an example to illustrate these
methods’ applicability and availability. c©2017 All rights reserved.
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1. Introduction

It is hard for decision-makers to find an optimal choice that has the highest degree of satisfaction from
a set of alternatives that are characterized in terms of their attributes in some situations, especially when
relying on inaccurate, uncertain, or incomplete information. That is what are called MADM problems. So
far, there have been two common methods for MADM problems. One way is to gather all the information
related to the attributes in the multiple attribute decision making by aggregating operators and to rank
the alternatives by the score function; the other way is to select the best alternative by calculating the
distance measure between each alternative and the ideal one.

With information given by different environment, different aggregating operators have been proposed,
which are being involved in different calculation processes for different decision making environment. In
the research process of data information integration, the weighted averaging [4] operator, the ordered
weighted averaging [20] operator, the weighted geometric [11] operator and the ordered weighted geo-
metric [5, 18] operator are four common data aggregating operators. As the theory of fuzzy sets have
been proposed by Zadeh [21], Atanassov [1, 2] gave the concept of intuitionistic fuzzy set, after the intu-
itionistic fuzzy weighted averaging, intuitionistic fuzzy ordered weighted averaging, intuitionistic fuzzy
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weighted geometric and intuitionistic fuzzy ordered weighted geometric operators were proposed, Torra
[12, 13] introduced the concept of hesitant fuzzy set which permitted membership to have a set of possible
values in order that the hesitant fuzzy set can reflect the human’s hesitant behavior, after which Xia and
Xu [16] proposed some operations of hesitant fuzzy set. And Zhao et al. [23] gave hesitant triangular
fuzzy information and some aggregating operators like hesitant triangular fuzzy weighted averaging op-
erator, hesitant triangular fuzzy ordered weighted averaging operator, hesitant triangular fuzzy weighted
geometric operator, hesitant triangular fuzzy ordered weighted geometric operator to aggregate all the
related information for MADM problems.

Distance measure, as an important topic in the fuzzy set theory that has been extensively applied in
decision making, is an another method to deal with multi-attribute decision making and has attracted
some researchers’ interest. Many distance measures of fuzzy set [9], intuitionistic fuzzy set [17], interval-
valued fuzzy set [22] and interval-valued intuitionistic fuzzy set [10] have been proposed to solve decision
making problems in place of operators, especially the Hamming distance, the Euclidean distance and the
Hausdorff metric. Furthermore, Xu and Xia [19] first investigated distance measures of hesitant fuzzy
sets. Then Li et al. [7, 8] provided some new distance measures on hesitant fuzzy sets which concluded
the values and the number of values in order to overcome some drawbacks of existing distance measures.
In addition, Wan et al. [14] gave the distance of TIFNs based on Hausdorff distance. However, For multi-
attribute decision making, distance measure must satisfy certain conditions, like the ideal alternative
discussed earlier. Obviously, the aggregating operators are more extensive than the distance measures
in multi-attribute decision making. And both the aggregation operators and the distance measures have
to be built in a certain environment, such as intuitionistic fuzzy set, fuzzy environment and so on. In
this paper, we give the hesitant triangular intuitionistic fuzzy set based on the hesitant fuzzy set and the
triangular intuitionistic fuzzy numbers. Since the intuitionistic fuzzy set is a special case of the triangular
intuitionistic fuzzy sets, and the hesitant triangular intuitionistic fuzzy set is the generalization of hesitant
intuitionistic fuzzy sets, thus in many practical problems, the information provided by decision makers
might hardly be described by intuitionistic fuzzy set. What the researchers could give is merely a set of
real numbers on R rather than an exact crisp degree of membership or non-membership. Under such
circumstance, we make full use of the triangular intuitionistic fuzzy number and effectively overcome
the difficulty. Meanwhile, the hesitant triangular intuitionistic fuzzy set is fit for the case when lots of
decision makers provide the data like triangular intuitionistic fuzzy numbers. And inspired by the relative
concepts of the aggregation operators and distance measures given by [8], three methods of the triangular
intuitionistic fuzzy set are proposed to apply in MADM problems.

The remainder of the paper is organized as follows: In Section 2, we recall some basic concepts of
hesitant sets and distance measures. In Section 3, new distance measures of triangular intuitionistic
fuzzy numbers are given. In Section 4, we present the concepts of hesitant triangular intuitionistic fuzzy
sets, and then we have developed some hesitant triangular intuitionistic fuzzy aggregation operators,
standardized hesitant triangular intuitionistic fuzzy aggregation operators and the distance measures of
hesitant triangular intuitionistic fuzzy sets. In Section 5, three methods to MADM problems with hesitant
triangular intuitionistic fuzzy information are given based on Section 4. In Section 6, three methods of
MADM problems, as well as the analysis of the comparison between these methods have been proposed
to illustrate their applicability and availability by an example, and Section 7 comes to the conclusion of
this paper.

2. Preliminaries

Throughout this paper, we use X = {x1, x2, ...xn} to denote the discourse set, TIFNs, HTIFS and HTIFE
stand for triangular intuitionistic fuzzy numbers, hesitant triangular intuitionistic fuzzy set and hesitant
triangular intuitionistic fuzzy element, respectively, H represents the set of hesitant triangular intuitionis-
tic fuzzy elements on X, and H(x) denotes the set of HTIFEs on x.
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Definition 2.1 ([12]). Let X be a reference fixed set, and E be an HFS given in terms of a function that will
return a subset of [0,1] when applied to X.

For convenience, the HFS is often expressed simply by mathematical symbol in Xia and Xu [16]:

E = (< x,hE(x) >| x ∈ X),

where hE(x) is a set of some values in [0,1], denoting the possible membership degree of the element
x ∈ X to the set E. The variable hE(x) is denoted as a hesitant fuzzy element.

Definition 2.2 ([16]). For a HFE h, s(h) = 1
#h
∑
γ∈h γ is called the score function of h, where #h is the

number of the elements in h. For two HFEs h1 and h2, if s(h1) > s(h2), then h1 > h2; if s(h1) = s(h2),
then h1 = h2.

Xu and Xia [16] also defined some operations on the HFEs h, h1, and h2:

(1) hλ = ∪γ∈h{γλ};
(2) λh = ∪γ∈h{1 − (1 − γ)λ};
(3) h1 ⊕ h2 = ∪γ1∈h1,γ2∈h2{γ1 + γ2 − γ1γ2};
(4) h1 ⊗ h2 = ∪γ1∈h1,γ2∈h2{γ1γ2}.

Definition 2.3 ([19]). Let M and N be two hesitant fuzzy sets on X, then the distance measure between M
and N is defined as which satisfies the following properties:

(i) 0 6 d(M,N) 6 1;
(ii) d(M,N) = 0 if and only if M = N;

(iii) d(M,N) = d(N,M).

Notice that the number of elements in different hesitant fuzzy elements may be different. To operate
correctly, Xu and Xia [19] gave the following regulation: the shorter one is extended by adding the
minimum value, the maximum value, or any value in it until it has the same length with the longer one.
And Li et al. [8] extended the shorter one by adding the minimum value and proposed the concepts of
distance measures considering hesitance degree.

Definition 2.4 ([8]). Let M be a hesitant fuzzy set on X = {x1, x2, ...xn}, and for any xi ∈ X, l(hM(xi)) be
the length of hM(xi). Denote

u(hM(xi)) = 1 −
1

l(hM(xi))
,

u(M) =
1
n

n∑
i=1

u(hM(xi)),

we call u(hM(xi)) the hesitance degree of hM(xi), and u(M) the hesitance degree of M.

Definition 2.5 ([8]). Let {M1,M2, ...,Mm} be a set of HFS on X = {x1, x2, ..., xn}, then for any Mk and Mt,
k, t = 1, 2, ...,m, the normalized Hamming distance including hesitance degree between Mk and Mt is
defined as

dhuh(Mk,Mt) =
1

2n

n∑
i=1

[|u(hMk
(xi)) − u(hMt

(xi))|+
1
lxi

lxi∑
j=1

|h
σ(j)
Mk

(xi) − h
σ(j)
Mt

(xi)|].

The normalized Euclidean distance including hesitance degree between Mk and Mt is defined as

dhue(Mk,Mt) = [
1

2n

n∑
i=1

(|u(hMk
(xi)) − u(hMt

(xi))|
2 +

1
4lxi

lxi∑
j=1

|h
σ(j)
Mk

(xi) − h
σ(j)
Mt

(xi)|
2)]1/2.
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The normalized generalized distance including hesitance degree between Mk and Mt is defined as

dhug(Mk,Mt) = [
1

2n

n∑
i=1

(|u(hMk
(xi)) − u(hMt

(xi))|
λ +

1
4lxi

lxi∑
j=1

|h
σ(j)
Mk

(xi) − h
σ(j)
Mt

(xi)|
λ)]1/λ,

where λ > 1 and h
j
Mk

(xi) and h
j
Mt

(xi) are the jth values in hMk
(xi) and hMt

(xi), respectively, and
lxi = maxq∈I{l(hq(xi))}, I = {1, 2, ...,m}.

3. Distance measure of triangular intuitionistic fuzzy numbers

3.1. The definition and operations of TIFNs
Definition 3.1 ([3]). A TIFN ã=((a ,a, ā);ωã,uã) is a special IFS on the set R of real numbers, whose
membership function and non-membership function are defined as follows:

µã(x) =


x−a
a−āωã, if a 6 x < a,
ωã, if x = a,
ā−x
ā−aωã, if a < x 6 ā,
0, if x < a or x > ā,

and

νã(x) =


a−x+(x−a)uã

a−ā , if a 6 x < a,
uã, if x = a,
x−a+(a−x)uã

ā−a , if a < x 6 ā,
1, if x < a or x > ā,

respectively. The values ωã and uã represent the maximum degree of membership and the minimum
degree of nonmembership, respectively, such that they satisfy the conditions 0 6 ωã 6 1, 0 6 uã 6 1, and
0 6 ωã + uã 6 1, a ,a, ā ∈ R.

Let
πã(x) = 1 − µã(x) − νã(x),

which is called an intuitionistic fuzzy index of an element x in ã. It is the degree of the indeterminacy
membership of the element x in ã.

The used arithmetical operations over triangular intuitionistic fuzzy numbers may be shown as follows
[6]:

Definition 3.2 ([6]). Let ã=((a ,a, ā);ωã,uã) and b̃=((b ,b, b̄);ωb̃,ub̃) be two TIFNs and λ be a real number.
The arithmetical operations are stipulated as follows:

ã± b̃ = ((a± b,a± b, ā± b̄); min{ωã,ωb̃}, max{uã,ub̃}),

ãb̃ =


((ab,ab, āb̄); min{ωã,ωb̃}, max{uã,ub̃}), if ã > 0 and b̃ > 0,
((ab̄,ab, āb); min{ωã,ωb̃}, max{uã,ub̃}), if ã < 0 and b̃ > 0,
((āb̄,ab,ab); min{ωã,ωb̃}, max{uã,ub̃}), if ã < 0 and b̃ < 0,

ã/b̃ =


((a/b̄,a/b, ā/b); min{ωã,ωb̃}, max{uã,ub̃}), if ã > 0 and b̃ > 0,
((ā/b̄,a/b,a/b); min{ωã,ωb̃}, max{uã,ub̃}), if ã < 0 and b̃ > 0,
((ā/b,a/b,a/b̄); min{ωã,ωb̃}, max{uã,ub̃}), if ã < 0 and b̃ < 0,

λã =

{
((λa, λa, λā);ωã,uã), if λ > 0,
((λā, λa, λa);ωã,uã), if λ < 0,

ã−1 = ((1/ā, 1/a, 1/a);ωã,uã).
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It is proven that the results from multiplication and division are not TIFNs. But we always use TIFNs
to express these operational results approximately.

3.2. The distance of TIFNs
In [14], the values of the membership function µã(x) and the non-membership function νã(x) for the

TIFN ã=((a ,a, ā);ωã,uã) are calculated as follows:

Vµ(ã) =
(a+ 4a+ ā)ωã

6
, (3.1)

Vν(ã) =
(a+ 4a+ ā)(1 − µã)

6
, (3.2)

respectively.
At the same time, the ambiguities of the membership function µã(x) and the non-membership function

νã(x) for the TIFN ã=((a ,a, ā);ωã,uã) are calculated as follows:

Aµ(ã) =
(ā− a)ωã

3
,

Aν(ã) =
(ā− a)(1 − µã)

3
,

respectively.
Based on the values and ambiguities of TIFNs, we give the following definition.

Definition 3.3. Let ã=((a ,a, ā);ω1,u1) and b̃=((b ,b, b̄);ω2,u2) be two TIFNs. The distance between them
is defined as follows:

dh(ã, b̃) =
1
2
[λ(|Vµ(ã)

∗ − Vµ(b̃)
∗|+ |Vν(ã)

∗ − Vν(b̃)
∗|) + (1 − λ)(|Aµ(ã)

∗ −Aµ(b̃)
∗|+ |Aν(ã)

∗ −Aν(b̃)
∗|)],

where Vµ(ã)∗=
(a+4a+ā)ωã

6a∗ , Vµ(b̃)∗ =
(b+4b+b̄)ωb̃

6b∗ , Vν(ã)∗ =
(a+4a+ā)(1−µã)

6a∗ , Vν(b̃)∗ =
(b+4b+b̄)(1−µb̃)

6b∗ ,

Aµ(ã)
∗ =

(ā−a)ωã
3a∗ , Aµ(b̃)∗ =

(b̄−b)ωb̃
3b∗ , Aν(ã)∗ =

(ā−a)(1−µã)
3a∗ , Aν(b̃)∗ =

(b̄−b)(1−µb̃)
3b∗ , and 0 6 λ 6 1. a∗

and b∗ are standardized constants.

Remark 3.4. The values of a∗ and b∗ depend on the requirement of environment. It concludes two cases:
(1) the two numbers’ distance of TIFNs ãi=((ai ,ai, āi);ωi,ui) without any scene: a∗ = b∗ = max{āi};
(2) the a∗ of TIFNs can be embodied in the specific environment and satisfy the condition a∗ > max{āi},
such as the following example.

Example 3.5. In the final assessment of a class, the distribution of the final examination results of all the
students is a TIFN ã=((50,70,80),0.6,0.3), the total score is 100, and the students in the class of the usual
performance is the TIFN b̃=((5,7,8),0.6,0.3), the total scores is 10. Then we have a∗ = 100, b∗ = 10, and

dh(ã, b̃) = de(ã, b̃) = 0,

so the final examination results are consistent with the usual performance. This conclusion is apparent in
line with the reality.

Remark 3.6. The distance contains both values and ambiguities of TIFNs, and the preferences between
values and ambiguities depends on the value λ. When we only consider values of TIFNs (λ = 0),
dh(ã, b̃) = λ(|Vµ(ã) − Vµ(b̃)|+ |Vν(ã) − Vν(b̃)|).

Definition 3.7. For a TIFN ã, s(ã) = (a+2a+ā)(ωã−uã)
4a∗ and h(ã) = (a+2a+ā)(ωã+uã)

4a∗ are called the score
function and the accuracy function of ã, respectively, where a∗ is a standardized constant.



J. J. Chen, X. J. Huang, J. Nonlinear Sci. Appl., 10 (2017), 1012–1029 1017

For two TIFNs ã1 and ã2,

• if s(ã1) > s(ã2), then ã1 � ã2;

• if s(ã1) < s(ã2), then ã1 ≺ ã2;

• if s(ã1) = s(ã2) and

∗ h(ã1) > h(ã2), then ã1 � ã2;

∗ h(ã1) < h(ã2), then ã1 ≺ ã2;

∗ h(ã1) = h(ã2), then ã1 = ã2.

So we can compare two score functions and judge the magnitudes of two TIFNs.

4. Hesitant triangular intuitionistic fuzzy information

4.1. Hesitant triangular intuitionistic fuzzy sets
As can be seen from Definition 2.1, hesitant fuzzy set expresses the membership degrees of an element

to a given set only by several real numbers between 0 and 1, while in many real-world situations assigning
exact values to the membership degrees do not describe properly the imprecise or uncertain decision
information. Thus, it seems to be difficult for the decision makers to rely on hesitant fuzzy sets for
expressing uncertainty of an element.

To overcome the difficulty associated with expressing uncertainty of an element to a given set, the
concept of hesitant triangular intuitionistic fuzzy set is introduced here to let decision makers provide
the data like triangular intuitionistic fuzzy numbers based on the concepts of hesitant fuzzy sets and
triangular intuitionistic fuzzy numbers.

Definition 4.1. Given a fixed set X, a hesitant triangular intuitionistic fuzzy set (HTIFS) on X is in terms of
a function that is applied to each x in X and returns a set of some possible triangular intuitionistic fuzzy
numbers.

To be easily understood, we express the HTIFS by a mathematical symbol:

E = {< x, h̃ ′E(x) > |x ∈ X},

where h̃ ′E(x) is a set of some possible triangular intuitionistic fuzzy numbers, denoting the possible mem-
bership degrees of the element x ∈ X to the set E. For convenience, we call h̃ ′E(x)=

⋃
i((ai,ai, āi);ωi,ui) (i =

1, 2, ..., l(h̃ ′)) a hesitant triangular intuitionistic fuzzy element (HTIFE)(l(h̃ ′) is the length of HTIFE) and
E the set of all HTIFEs.

Example 4.2. Let X = {x1, x2} be a fixed set, and h ′E(x1) = {((5, 8, 9); 0.6, 0.3), ((6, 7, 8); 0.5, 0.3), ((4, 7, 8); 0.6,
0.3)} and h ′E(x2) = {((4, 6, 10); 0.4, 0.3), ((5, 7, 9); 0.7, 0.2)} be the HTIFEs of xi(i = 1, 2) to a set E. E can be
considered an HTIFS, and can be denoted as follows:

E = { < x1, {((5, 8, 9); 0.6, 0.3), ((6, 7, 8); 0.5, 0.3), ((4, 7, 8); 0.6, 0.3)} >,
< x2, {((4, 6, 10); 0.4, 0.3), ((5, 7, 9); 0.7, 0.2)} >}.

4.2. Some aggregating operators with hesitant triangular intuitionistic fuzzy information
Definition 4.3. Let ã ′ =

⋃
i((ai,ai, āi);ωi,ui) and b̃ ′ =

⋃
i((bj,bj, b̄j);ωj,uj) be two HTIFEs and λ > 0,

the operations are given as follows:

(1) λã ′ =
⋃
i{((λai, λai, λāi);ωi,ui)},

(2) ã ′λ =
⋃
i{((a

λ
i ,aλi , āλi );ωj,uj)},
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(3) ã ′ + b̃ ′ =
⋃
i,j{((ai + aj,ai + bj, āi + b̄j);min{ωi,ωj}, max{ui,uj})},

(4) ã ′b̃ ′ =


⋃
i,j{((aibj,ab, āb̄); min{ωãi ,ωb̃j}, max{uãi ,ub̃j})}, if ãi > 0 and b̃j > 0,⋃
i,j{((aib̄j,aibj, āibj); min{ωãi ,ωb̃j}, max{uãi ,ub̃j})}, if ãi < 0 and b̃j > 0,⋃
i,j{((āib̄j,aibj,aibj); min{ωãi ,ωb̃j}, max{uãi ,ub̃j})}, if ãi < 0 and b̃j < 0.

For comparing two HTIFEs, we give the score function as follows:

Definition 4.4. Let h̃ ′=
⋃
i((ai,ai, āi);ωi,ui) (i=1,2,...,l(h)) be an HTIFE and

s(h) =
1

l(h ′)

l(h ′)∑
i=1

(ai + 2ai + āi)(ωi − ui)
4a∗

be the score function of h ′, where l(h ′) is the number of the triangular intuitionistic fuzzy values in h̃ ′,
and a∗ is the standardized constant. For two HTIFEs h ′1 and h ′2, if s(h ′1) > s(h ′2), then h ′1 � h ′2, and, if
s(h ′1) = s(h

′
2), then h ′1 = h ′2.

Based on the operational principle for HTIFEs, we develop the hesitant triangular intuitionistic fuzzy
weighted averaging (HTIFWA) operator and hesitant triangular intuitionistic fuzzy ordered weighted
averaging (HTIFOWA) operator.

Definition 4.5. Let h̃ ′j =
⋃
i((aij,aij, āij);ωij,uij) (j = 1, 2, ...,n) be a collection of HTIFEs. Let HTIFWA:

Ωn → Ω, if

HTIFWA(h̃ ′1, h̃ ′2, ..., h̃ ′n) =
n∑
j=1

wjh̃
′
j =

⋃
i

{((

n∑
j=1

wjaij,
n∑
j=1

wjaij,
n∑
j=1

wijāj); min
j
ωij, max

j
uij)}, (4.1)

where Ω is the set of all HTIFEs, wj is the weight of h̃ ′j satisfying that wj ∈ [0, 1] (j = 1, 2, ...,n) and∑n
j=1wj = 1.

Definition 4.6. Let h̃ ′j =
⋃
i((aij,aij, āij);ωij,uij) (j = 1, 2, ...,n) be a collection of HTIFEs. Let HTIFWA:

Ωn → Ω, if

HTIFOWA(h̃ ′1, h̃ ′2, ..., h̃ ′n) =
n∑
j=1

wjh̃
′
σ(j)

=
⋃
(i)

{((

n∑
j=1

wjaσ(ij),
n∑
j=1

wjaσ(ij),
n∑
j=1

wjāσ(ij)); min
j
ωσ(ij), max

j
uσ(ij))},

(4.2)

where Ω is the set of all HTIFEs, wj is the weight of h̃ ′j satisfying that wj ∈ [0, 1] (j = 1, 2, ...,n) and∑n
j=1wj = 1, (σ(i1),σ(i2), ...,σ(in)) is a permutation of (1, 2, ...,n), such that h̃ ′(j) 6 h̃ ′(j+1) for all j =

1, 2, ...,n− 1.

In the following, we propose the hesitant triangular intuitionistic fuzzy weighted geometric (HTIFWG)
operator and hesitant triangular intuitionistic fuzzy ordered weighted geometric (HTIFOWG) operator.

Definition 4.7. Let h̃ ′j =
⋃
i((aij,aij, āij);ωij,uij) (j = 1, 2, ...,n) be a collection of HTIFEs with aj > 0.

Let HTIFWG: Ωn → Ω, if

HTIFWG(h̃ ′1, h̃ ′2, ..., h̃ ′n) =
n∏
j=1

h̃
′wj
j =

⋃
i

{((

n∏
j=1

a
wj
ij ,

n∏
j=1

a
wj
ij ,

n∏
j=1

ā
wj
ij ); min

j
ωij, max

j
uij)}, (4.3)

where Ω is the set of all HTIFEs, wj is the weight of h̃ ′j satisfying that wj ∈ [0, 1] (j = 1, 2, ...,n) and∑n
j=1wj = 1.
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Definition 4.8. Let h̃ ′j =
⋃
i((aij,aij, āij);ωij,uij) (j = 1, 2, ...,n) be a collection of HTIFEs with aj > 0.

Let HTIFWG: Ωn → Ω, if

HTIFOWG(h̃ ′1, h̃ ′2, ..., h̃ ′n) =
n∏
j=1

(h̃ ′σ(j))
wj

=
⋃
i

((

n∏
j=1

(aσ(ij))
wj ,

n∏
j=1

(aσ(ij))
wj ,

n∏
j=1

(āσ(ij))
wj); min

j
ωij, max

j
uij)

 ,

(4.4)

where Ω is the set of all HTIFEs, wj is the weight of h̃ ′j satisfying that wj ∈ [0, 1] (j = 1, 2, ...,n) and∑n
j=1wj = 1, and (σ(i1),σ(i2), ...,σ(in)) is a permutation of (1, 2, ...,n), such that h̃ ′(j) 6 h̃ ′(j+1) for all

j = 1, 2, ...,n− 1.

We can aggregate hesitant triangular intuitionistic fuzzy information by Definitions 4.5, 4.6, 4.7, 4.8.

4.3. Some aggregating operators with the standardized hesitant triangular intuitionistic fuzzy information
Based on TIFNs and the (3.1) and (3.2), we give the following definition.

Definition 4.9. Let h̃ ′=
⋃
i((ai,ai, āi);ωi,ui) (i = 1, 2, ..., l(h)) be an HTIFE and µ∗(ãi) =

(ai+4ai+āi)ωi
6a∗(1+ωi−ui)

,

ν∗(ãi) =
(ai+4ai+āi)(1−µi)

6a∗(1+ωi−ui)
be the values of the membership degree and the non-membership degree of

the HTIFE. Then we call H̃ ′E(x) =
⋃
i{(µ

∗
(ãi)

,ν∗(ãi))} (i = 1, 2, ..., l(H̃ ′)) the standardized HTIFE (l(H̃ ′) is
the length of the standardized HTIFE), and E = {< x, H̃ ′E(x) > |x ∈ X} the standardized HTIFS. For
convenience, we call it S-HTIFS for short.

Example 4.10. As it is showen like Example 4.2, we get E = {< x1, {((5, 8, 9); 0.6, 0.3), ((6, 7, 8); 0.5, 0.3),
((4, 7, 8); 0.6, 0.3)} >,< x2, {((4, 6, 10); 0.4, 0.3), ((5, 7, 9); 0.7, 0.2)} >}. And a∗=10, then µ∗(ãi)=

(ai+4ai+āi)ωi
6a∗(1+ωi−ui)

,

ν∗(ãi)=
(ai+4ai+āi)(1−µi)

6a∗(1+ωi−ui)
. So we can easily calculate that

E = {< x1, {(0.35, 0.41), (0.29, 0.41), (0.31, 0.36)} >,< x2, {(0.23, 0.40), (0.33, 0.37)} >}.

Given two standardized HTIFEs Ã ′ =
⋃
i{(µ(ãi)

∗,ν(ãi)∗} and B̃ ′ =
⋃
j{(µ(b̃j)

∗,ν(b̃j)∗} and
λ > 0, inspired by the operations of hesitant fuzzy set [12], we give the following operations:

(1) λÃ ′ =
⋃
i{(1 − (1 − µ∗(ãi))

λ, (1 − (1 − ν∗(ãi))
λ};

(2) Ã ′λ =
⋃
i{µ
∗
(ãi)

λ,ν∗(ãi)
λ};

(3) Ã ′ ⊕ B̃ ′ =
⋃
i,j{(µ

∗
(ãi)

+ µ∗
(b̃j)

− µ∗(ãi)µ
∗
(b̃j)

,ν∗(ãi) + ν
∗
(b̃j)

− ν∗(ãi)ν
∗
(b̃j)

)};

(4) Ã ′ ⊗ B̃ ′ =
⋃
i,j{(µ

∗
(ãi)

µ∗
(b̃j)

,ν∗(ãi)ν
∗
(b̃j)

)}.

Definition 4.11. For a standardized HTIFE H̃ ′ =
⋃
i{(µ

∗
(ãi)

,ν∗(ãi))} (i = 1, 2, ..., l(H)), s(H̃ ′) = 1
l(H ′)

∑l(H ′)
i=1

(µ∗(ãi) −ν
∗
(ãi)

) is called the score function of H̃ ′. For two standardized HTIFEsH ′1 and H ′2, if s(H ′1) > s(H
′
2),

then H ′1 � H ′2, and, if s(H ′1) = s(H
′
2), then H ′1 = H ′2.

Based on the above operations for the standardized HTIFEs, we also introduce the standardized hesi-
tant triangular fuzzy weighted averaging (S-HTIFWA) operator, the standardized hesitant triangular fuzzy
ordered weighted averaging (S-HTIFOWA) operator, the standardized hesitant triangular fuzzy weighted
geometric (S-HTIFWG) operator and the standardized hesitant triangular fuzzy ordered weighted geo-
metric (S-HTIFOWG) operator.

Definition 4.12. Let H̃ ′j =
⋃
i{(µ

∗
(ãij)

,ν∗(ãij))} be the standardized HTIFE. The standardized hesitant trian-
gular fuzzy weighted averaging operator is a mapping Ωn → Ω such that

S-HTIFWA(H̃ ′1, H̃ ′2, ..., H̃ ′n) = ⊕nj=1wjH̃
′
j =

⋃
i

{(1 −

n∏
j=1

(1 − µ∗(ãij))
wj , 1 −

n∏
j=1

(1 − ν∗(ãij))
wj)}, (4.5)

where Ω is the set of all HTIFEs, wj is the weight vector of H̃ ′j, and wj ∈ [0, 1](j = 1, 2, ...,n),
∑n
j=1wj = 1.
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Definition 4.13. Let H̃ ′j =
⋃
i{(µ

∗
(ãij)

,ν∗(ãij))} be the standardized HTIFE. The standardized hesitant tri-
angular fuzzy ordered weighted averaging operator of dimension n is a mapping Ωn → Ω, that has an
associated weight vector w = (w1,w2, ...wn)T such that wj > 0 and

∑n
j=1wj = 1. Furthermore,

S-HTIFOWA(H̃ ′1, H̃ ′2, ..., H̃ ′n) = ⊕nj=1wjH̃
′
σ(j) =

⋃
i

{(1 −

n∏
j=1

(1 − µ∗(ãσ(ij)))
wj , 1 −

n∏
j=1

(1 − ν∗(ãσ(ij)))
wj)}, (4.6)

where (σ(i1),σ(i2), ...,σ(in)) is a permutation of (1, 2, ...,n), such that H̃ ′(j) 6 H̃
′
(j+1) for all j = 1, 2, ...,n−1.

Definition 4.14. Let H̃ ′j =
⋃
i{(µ

∗
(ãij)

,ν∗(ãij))} be the standardized HTIFE. The standardized hesitant trian-
gular fuzzy weighted geometric operator is a mapping Ωn → Ω such that

S-HTIFWG(H̃ ′1, H̃ ′2, ..., H̃ ′n) = ⊗nj=1wjH̃
′
j =

⋃
i

{(

n∏
j=1

(µ∗(ãij))
wj ,

n∏
j=1

(ν∗(ãij))
wj)}, (4.7)

where Ω is the set of all HTIFEs, wj is the weight vector of H̃ ′j, and wj ∈ [0, 1](j = 1, 2, ...,n),
∑n
j=1wj = 1.

Definition 4.15. Let H̃ ′j =
⋃
i{(µ

∗
(ãij)

,ν∗(ãij))} be the standardized HTIFE. The standardized hesitant tri-
angular fuzzy ordered weighted geometric operator of dimension n is a mapping Ωn → Ω, that has an
associated weight vector w = (w1,w2, ...wn)T such that wj > 0 and

∑n
j=1wj = 1. Furthermore,

S-HTIFOWG(H̃ ′1, H̃ ′2, ..., H̃ ′n) = ⊗nj=1wjH̃
′
σ(j) =

⋃
i

{(

n∏
j=1

(µ∗(ãσ(ij)))
wj ,

n∏
j=1

(ν∗(ãσ(ij)))
wj)}, (4.8)

where (σ(i1),σ(i2), ...,σ(in)) is a permutation of (1, 2, ...,n), such that H̃ ′(j) 6 H̃
′
(j+1) for all j = 1, 2, ...,n−1.

4.4. The distance measure of hesitant triangular intuitionistic fuzzy sets
In order to improve the distance measure of hesitant fuzzy sets, Li et al. [8] gave the hesitance degree

of hesitant fuzzy set. Similarly, we give the hesitance degree of hesitant triangular intuitionistic fuzzy set.

Definition 4.16. Let h ′ be a hesitant triangular intuitionistic fuzzy set on X = {x1, x2, ...xn}, and for any
xi ∈ X, l(h ′(xi)) be the length of h ′(xi). Denote

u(h ′(xi)) = 1 −
1

l(h ′(xi))
,

u(h ′) =
1
n

n∑
i=1

u(h ′(xi)),

where u(h ′(xi)) is the hesitance degree of h ′(xi), and u(h ′) the hesitance degree of h ′, respectively.

For the number of elements of a HTIFE, we denote l(h ′E(x)) as the number of elements. When
l(h ′P(x)) 6= l(h ′Q(x)) with two HTIFEs h ′P(x) and h ′Q(x), we add the shorter one with some values. The
problem is how to select the value. We give a method as follows:

For a HTIFE h ′E(x) = {ã1, ã2, ..., ãn} (ãi = ((ai,ai, āi);ωi,ui)), ãn+i = α1ã1 + α2ã2 + ... + αnãn is
the added one for the shorter HTIFE, where α1,α2, ...,αn are the weight of ã1, ã2, ..., ãn, respectively,
i = 1, 2, ...,α1 + α2 + ... + αn = 1. When α1 = α2 = ... = αn = 1

n , ãn+i = ã1+ã2+...+ãn
n . Obviously, the

added value of a HTIFS depends on the existing HTIFEs. In [8, 19], the added one of a HFS depends on the
decision makers’ risk preferences and the decision makers always hold a pessimistic attitude subjectively,
the method is more objective than that of [8, 19]. On the other hand, as the information of HTIFEs is
given by decision makers, the weights can reflect the importance of different decision makers in decision
making problem.

Based on Definitions 3.3, 4.1, and 4.16, we give some distances of HTIFSs in the following.
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Definition 4.17. Let h ′k,h ′t be two HTIFSs on X = {x1, x2, ...xn} and

h ′k(xj) =
⋃
i

((aij,aij, āij);ωãij ,µãij), h ′t(xj) =
⋃
i

((bij,aij, b̄ij);ωb̃ij ,µb̃ij)

be two HTIFEs, where k, t = 1, 2, ...,m, then the distance is defined as

dhth(h
′
k,h ′t) =

1
2n

n∑
j=1

[|u(h ′k(xj)) − u(h
′
t(xj))|+

1
2lxj

lxj∑
i=1

(λ(|Vµ(ã
σ(k)
ij )∗ − Vµ(b̃

σ(k)
ij )∗|+ |Vν(ã

σ(k)
ij )∗

− Vν(b̃
σ(k)
ij )∗|) + (1 − λ)(|Aµ(ã

σ(k)
ij )∗ −Aµ(b̃

σ(k)
ij )∗|+ |Aν(ã

σ(k)
ij )∗ −Aν(b̃

σ(k)
ij )∗|))],

where

Vµ(ã
σ(k)
ij )∗ =

(a
σ(k)
ij + 4aσ(k)ij + ā

σ(k)
ij )ω

ã
σ(k)
ij

6a∗
, Vµ(b̃

σ(k)
ij )∗ =

(b
σ(k)
ij + 4bσ(k)ij + b̄

σ(k)
ij )ω

b̃
σ(k)
ij

6b∗
,

Vν(ã
σ(k)
ij )∗ =

(a
σ(k)
ij + 4aσ(k)ij + ā

σ(k)
ij )(1 − µ

ã
σ(k)
ij

)

6a∗
, Vν(b̃

σ(k)
ij )∗ =

(b
σ(k)
ij + 4bσ(k)ij + b̄

σ(k)
ij )(1 − µ

b̃
σ(k)
ij

)

6b∗
,

Aµ(ã
σ(k)
ij )∗ =

(ā
σ(k)
ij − a

σ(k)
ij )ω

ã
σ(k)
ij

3a∗
, Aµ(b̃

σ(k)
ij )∗ =

(b̄
σ(k)
ij − b

σ(k)
ij )ω

b̃
σ(k)
ij

3b∗
,

Aν(ã
σ(k)
ij )∗ =

(ā
σ(k)
ij − a

σ(k)
ij )(1 − µ

ã
σ(k)
ij

)

3a∗
, Aν(b̃

σ(k)
ij )∗ =

(b̄
σ(k)
ij − b

σ(k)
ij )(1 − µ

b̃
σ(k)
ij

)

3b∗
,

lxi = maxq∈I{l(h ′q(xi))}, I = {1, 2, ...,m}, 0 6 λ 6 1, and hk(xj)σ(k) =
⋃
i ((a

σ(k)
ij ,aσ(k)ij , āσ(k)ij );ωãij ,µãij)

and ht(xj)σ(k) =
⋃
i ((b

σ(k)
ij ,aσ(k)ij , b̄σ(k)ij );ω

b̃
σ(k)
ij

,µ
b̃
σ(k)
ij

) are the jth values in hk(xj) and ht(xj), respec-

tively, a∗ and b∗ are standardized constants.

We give an example to illustrate the calculating process of dhth:

Example 4.18. Assume that

h1 = {< x1, {((3, 4, 5); 0.4, 0.3), ((5, 6, 7); 0.5, 0.3)},< x2, {((3, 5, 7); 0.6, 0.2)}},
h ′2 = {< x1, {((3, 4, 6); 0.6, 0.3), ((5, 7, 7); 0.4, 0.3), ((4, 7, 10); 0.7, 0.1)},< x2, {((3, 4, 6); 0.5, 0.1)}}.

So a∗ = max{āi, b̄i} = 10. And we consider ãn+i = ã1+ã2
2 to extend the shorter HTIFE, we can obtain

h ′1 = {< x1, {((3, 4, 5); 0.4, 0.3), ((5, 6, 7); 0.5, 0.3)((4, 5, 6); 0.4, 0.3)},< x2, {((3, 5, 7); 0.6, 0.2)}}.

Let λ = 0.5, then dhth = 1
4 [|

1
2 −

2
3 |+

1
6 × ((0.5× 0.4+ 0.5× 0.12) + (0.5× 6.5

60 + 0.5× 1.7
30 ) + (0.5× 22

60 + 0.5×
0)) + |0 − 0|+ 1

2 × (0.5× 7
60 + 0.5× 7

150)] = 0.074.

Considering the preferences between the hesitance degree and the values and ambiguities of TIFNs,
we propose the distance with preferences as follows:

Definition 4.19. Let h ′k,h ′t be two HTIFSs on X = {x1, x2, ...xn} and h ′k(xj) =
⋃
i ((aij,aij, āij);ωãij ,µãij),

h ′t(xj) =
⋃
i ((bij,aij, b̄ij);ωb̃ij ,µb̃ij) be two HTIFEs, k, t = 1, 2, ...,m, then the distance measure is defined

as

dphth(h
′
k,h ′t) =

1
n

n∑
j=1

[α|u(h ′k(xj)) − u(h
′
t(xj))|+

1 −α

2lxj

lxj∑
i=1

(λ(|Vµ(ã
σ(k)
ij )∗ − Vµ(b̃

σ(k)
ij )∗|+ |Vν(ã

σ(k)
ij )∗

− Vν(b̃
σ(k)
ij )∗|) + (1 − λ)(|Aµ(ã

σ(k)
ij )∗ −Aµ(b̃

σ(k)
ij )∗|+ |Aν(ã

σ(k)
ij )∗ −Aν(b̃

σ(k)
ij )∗|))],
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where

Vµ(ã
σ(k)
ij )∗ =

(a
σ(k)
ij + 4aσ(k)ij + ā

σ(k)
ij )ω

ã
σ(k)
ij

6a∗
, Vµ(b̃

σ(k)
ij )∗ =

(b
σ(k)
ij + 4bσ(k)ij + b̄

σ(k)
ij )ω

b̃
σ(k)
ij

6b∗
,

Vν(ã
σ(k)
ij )∗ =

(a
σ(k)
ij + 4aσ(k)ij + ā

σ(k)
ij )(1 − µ

ã
σ(k)
ij

)

6a∗
, Vν(b̃

σ(k)
ij )∗ =

(b
σ(k)
ij + 4bσ(k)ij + b̄

σ(k)
ij )(1 − µ

b̃
σ(k)
ij

)

6b∗
,

Aµ(ã
σ(k)
ij )∗ =

(ā
σ(k)
ij − a

σ(k)
ij )ω

ã
σ(k)
ij

3a∗
, Aµ(b̃

σ(k)
ij )∗ =

(b̄
σ(k)
ij − b

σ(k)
ij )ω

b̃
σ(k)
ij

3b∗
,

Aν(ã
σ(k)
ij )∗ =

(ā
σ(k)
ij − a

σ(k)
ij )(1 − µ

ã
σ(k)
ij

)

3a∗
, Aν(b̃

σ(k)
ij )∗ =

(b̄
σ(k)
ij − b

σ(k)
ij )(1 − µ

b̃
σ(k)
ij

)

3b∗
,

lxi = maxq∈I{l(h ′q(xi))}, I = {1, 2, ...,m}, 0 6 λ 6 1, and hk(xj)σ(k) =
⋃
i ((a

σ(k)
ij ,aσ(k)ij , āσ(k)ij );ωãij ,µãij)

and ht(xj)σ(k) =
⋃
i ((b

σ(k)
ij ,aσ(k)ij , b̄σ(k)ij );ω

b̃
σ(k)
ij

,µ
b̃
σ(k)
ij

) are the jth values in hk(xj) and ht(xj), respec-

tively, a∗ and b∗ are standardized constants.

Definition 4.20. Let h ′k and h ′t be two hesitant triangular intuitionistic fuzzy sets on X = {x1, x2, ..., xn},
then the distance measure between h ′k and h ′t is defined as d(h ′k,h ′t), which satisfies the following prop-
erties:

(1) 0 6 d(h ′k,h ′t) 6 1;
(2) d(h ′k,h ′t) = 0 if and only if h ′k = h ′t;
(3) d(h ′k,h ′t) = d(h

′
t,h
′
k).

Theorem 4.21. dhth and dphth are distance measures.

Proof. As dhth is a particular case of dphth, we only give the proof of dphth.
Assume that h ′k and h ′t are two hesitant triangular intuitionistic fuzzy sets, based on Definition 4.20,

(1) and (3) are straightforward. Below let us prove d(h ′k,h ′t) = 0 if and only if h ′k = h ′t.
Obviously, when h ′k = h ′t, d(h

′
k,h ′t) = 0. On the contrary, when d(h ′k,h ′t) = 0, we have u(h ′k(xj)) −

u(h ′t(xj)) = 0, Vµ(ã
σ(k)
ij )∗ − Vµ(b̃

σ(k)
ij )∗ = 0, Vν(ã

σ(k)
ij )∗ − Vν(b̃

σ(k)
ij )∗ = 0, Aµ(ã

σ(k)
ij )∗ −Aµ(b̃

σ(k)
ij )∗ = 0

and Aν(ã
σ(k)
ij )∗ −Aν(b̃

σ(k)
ij )∗ = 0, then h ′k = h ′t.

This completes the proof.

Theorem 4.22. If h ′s,h ′t,h ′q are three HTIFSs, then d(h ′s,h ′q) 6 d(h ′s,h ′t) + d(h ′t,h ′q) for dhth and dphth.

Proof. Now we give the proof of the case dphth. Assume

h ′s =
⋃
i

((sij, sij, s̄ij);ωs̃ij ,µs̃ij), ht =
⋃
i

((tij, tij, t̄ij);ωt̃ij ,µt̃ij)
′, and h ′q =

⋃
i

((q
ij

,qij, q̄ij);ωq̃ij ,µq̃ij)

are three HTIFS, as

|u(h ′s(xj)) − u(h
′
q(xj))| 6 |u(h ′s(xj)) − u(h

′
t(xj))|+ |u(h ′t(xj)) − u(h

′
q(xj))|,

|Vµ(s̃
σ(k)
ij )∗ − Vµ(t̃

σ(k)
ij )∗| 6 |Vµ(s̃

σ(k)
ij )∗ − Vµ(q̃

σ(k)
ij )∗|+ |Vµ(q̃

σ(k)
ij )∗ − Vµ(t̃

σ(k)
ij )∗|,

|Vν(s̃
σ(k)
ij )∗ − Vν(t̃

σ(k)
ij )∗| 6 |Vν(s̃

σ(k)
ij )∗ − Vν(q̃

σ(k)
ij )∗|+ |Vν(q̃

σ(k)
ij )∗ − Vν(t̃

σ(k)
ij )∗|,

|Aµ(s̃
σ(k)
ij )∗ −Aµ(t̃

σ(k)
ij )∗| 6 |Aµ(s̃

σ(k)
ij )∗ −Aµ(q̃

σ(k)
ij )∗|+ |Aµ(q̃

σ(k)
ij )∗ −Aµ(t̃

σ(k)
ij )∗|,

|Aν(s̃
σ(k)
ij )∗ −Aν(t̃

σ(k)
ij )∗| 6 |Aν(s̃

σ(k)
ij )∗ −Aν(q̃

σ(k)
ij )∗|+ |Aν(q̃

σ(k)
ij )∗ −Aν(t̃

σ(k)
ij )∗|,

we have dphth(h
′
s,h ′q) 6 dphth(h

′
s,h ′t) + dphth(h

′
t,h
′
q). And the proof of the case dhth is similar to that of

dphth.
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Next, we consider both the different preferences between the influences of the hesitance degree and
the values and ambiguities of TIFNs and the weight of each element x ∈ X, then the weighted distance
measure with preferences is given as follows:

Definition 4.23. Let h ′k,h ′t be two HTIFSs on X = {x1, x2, ...xn} and h ′k(xj) =
⋃
i ((aij,aij, āij);ωãij ,µãij),

h ′t(xj) =
⋃
i ((bij,aij, b̄ij);ωb̃ij ,µb̃ij) be two HTIFEs, k, t = 1, 2, ...,m, then the distance is defined as

dwphth(h
′
1,h ′2) =

n∑
j=1

ωj[α|u(h
′
k(xj)) − u(h

′
t(xj))|+

1 −α

2lxj

lxj∑
i=1

(λ(|Vµ(ã
σ(k)
ij )∗ − Vµ(b̃

σ(k)
ij )∗|+ |Vν(ã

σ(k)
ij )∗

− Vν(b̃
σ(k)
ij )∗|) + (1 − λ)(|Aµ(ã

σ(k)
ij )∗ −Aµ(b̃

σ(k)
ij )∗|+ |Aν(ã

σ(k)
ij )∗ −Aν(b̃

σ(k)
ij )∗|))],

where

Vµ(ã
σ(k)
ij )∗ =

(a
σ(k)
ij + 4aσ(k)ij + ā

σ(k)
ij )ω

ã
σ(k)
ij

6a∗
, Vµ(b̃

σ(k)
ij )∗ =

(b
σ(k)
ij + 4bσ(k)ij + b̄

σ(k)
ij )ω

b̃
σ(k)
ij

6b∗
,

Vν(ã
σ(k)
ij )∗ =

(a
σ(k)
ij + 4aσ(k)ij + ā

σ(k)
ij )(1 − µ

ã
σ(k)
ij

)

6a∗
, Vν(b̃

σ(k)
ij )∗ =

(b
σ(k)
ij + 4bσ(k)ij + b̄

σ(k)
ij )(1 − µ

b̃
σ(k)
ij

)

6b∗
,

Aµ(ã
σ(k)
ij )∗ =

(ā
σ(k)
ij − a

σ(k)
ij )ω

ã
σ(k)
ij

3a∗
, Aµ(b̃

σ(k)
ij )∗ =

(b̄
σ(k)
ij − b

σ(k)
ij )ω

b̃
σ(k)
ij

3b∗
,

Aν(ã
σ(k)
ij )∗ =

(ā
σ(k)
ij − a

σ(k)
ij )(1 − µ

ã
σ(k)
ij

)

3a∗
, Aν(b̃

σ(k)
ij )∗ =

(b̄
σ(k)
ij − b

σ(k)
ij )(1 − µ

b̃
σ(k)
ij

)

3b∗
,

lxi = maxq∈I{l(h
′
q(xi))}, I = {1, 2, ...,m}, 0 6 λ 6 1, and hk(xj)σ(k) =

⋃
i ((a

σ(k)
ij ,aσ(k)ij , āσ(k)ij );ωãij ,µãij)

and ht(xj)σ(k) =
⋃
i ((b

σ(k)
ij ,aσ(k)ij , b̄σ(k)ij );ω

b̃
σ(k)
ij

,µ
b̃
σ(k)
ij

) are the jth values in hk(xj) and ht(xj), respec-

tively, a∗ and b∗ are standardized constants.

Assume that if ω1 = ω2 = ... = ωn = 1
n , then dwphth(h

′
1,h ′2) is reduced to dphth(h

′
1,h ′2).

Theorem 4.24. dwphth is a distance measure.

Proof. Based on Theorem 4.21, it is obvious.

5. Several methods to MADM problems with hesitant triangular intuitionistic fuzzy information

The traditional aggregation operations and the distance measures are of great use in MADM prob-
lems. In this section, we give three methods to MADM problems with hesitant triangular intuitionistic
fuzzy information. The following assumptions are used to represent the MADM problems for poten-
tial evaluation of emerging technology commercialization with hesitant triangular intuitionistic fuzzy
information. For a multiple decision making problem with hesitant triangular intuitionistic fuzzy infor-
mation, let X = (X1, X2, ...,Xm) be a discrete set of alternatives, and let G = (G1,G2, ...,Gn) be a finite
set of attributes, ω = (ω1,ω2, ...,ωn)T is the weighting vector of the attribute Gj(j = 1, 2, ...,n), where
ωj ∈ [0, 1],

∑n
j=1ωj = 1. If the decision makers provide several triangular intuitionistic fuzzy values for

the alternative Xi under the attribute Gj, these values can be regarded as hesitant triangular intuitionis-
tic fuzzy element h̃ ′(ij). Suppose that H=(h̃ ′(ij))mn is the hesitant triangular intuitionistic fuzzy decision
matrix.

Now we present three methods to the MADM problems with hesitant triangular intuitionistic fuzzy
information as follows:
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METHOD 1.

Step 1. We utilize the decision information given in matrix H, and the HTIFWA (4.1), HTIFWG (4.3),
HTIFOWA (4.2) and HTIFOWG (4.4) operators to aggregate the hesitant triangular intuitionistic fuzzy
elements h̃i(i = 1, 2, ...,m) of the alternative Xi.

Step 2. Calculate the scores S(h̃i) of the hesitant triangular intuitionistic fuzzy elements h̃i(i = 1, 2, ...,m)
of the alternative Xi by Definition 4.4.

Step 3. Rank all the alternatives Xi(i = 1, 2, ...,m) based on the rank of h̃i and select the best one(s).

Step 4. End.

METHOD 2.

Step 1. We calculate the values of the membership degree and the non-membership degree of every trian-
gular intuitionistic number of the HTIFEs µ∗(ãi) and ν∗(ãi), respectively. Then we can obtain the standard-
ized hesitant triangular intuitionistic fuzzy information matrix H ′ by using H̃ ′E(x) =

⋃
i{(µ

∗
(ãi)

,ν∗(ãi)}(i =
1, 2, ..., l(H̃ ′)) instead of h̃ ′E(x)=

⋃
i((ai,ai, āi);ωi,ui)(i = 1, 2, ..., l(h̃ ′)).

Step 2. We utilize the decision information given in matrix H ′, and the S-HTIFWA (4.5), S-HTIFWG (4.7),
S-HTIFOWA (4.6) and S-HTIFOWG (4.8) operators to aggregate the hesitant triangular intuitionistic fuzzy
elements H̃i(i = 1, 2, ...,m) of the alternative Xi.

Step 3. Calculate the scores S(H̃i) of the hesitant triangular intuitionistic fuzzy elements H̃i(i = 1, 2, ...,m)
of the alternative Xi by Definition 4.9.

Step 4. Rank all the alternatives Xi(i = 1, 2, ...,m) based on the rank of H̃i and select the best one(s).

Step 5. End.

METHOD 3.

Step 1. We can use the equation

dwphth(h
′
k,h ′t) =

n∑
j=1

ωj[α|u(h
′
k(xj)) − u(h

′
t(xj))|+

1 −α

2lxj

lxj∑
i=1

(λ(|Vµ(ã
σ(k)
ij )∗ − Vµ(b̃

σ(k)
ij )∗|+ |Vν(ã

σ(k)
ij )∗

− Vν(b̃
σ(k)
ij )∗|) + (1 − λ)(|Aµ(ã

σ(k)
ij )∗ −Aµ(b̃

σ(k)
ij )∗|+ |Aν(ã

σ(k)
ij )∗ −Aν(b̃

σ(k)
ij )∗|))],

to calculate the distance measure di between the ideal alterative and the alterative Xi based on Definition
4.23.

Step 2. Rank all the alteratives Xi(i = 1, 2, ...,m) based on the rank of H̃i and select the best one(s) based
on the distance measure di.

Step 3. End.

6. Numerical example

Thus, in this section we present a numerical example for supplier selection in supply chain manage-
ment problems with hesitant triangular intuitionistic fuzzy information in order to illustrate the methods
proposed in this paper. Let us suppose there are four alternatives (prospect supplier) Xi(i = 1, 2, 3, 4)
for three attributes Gj(j = 1, 2, 3) with product quality (G1), service (G2), ad price (G3). And the hesitant
triangular intuitionistic fuzzy information matrix is shown in Table 1.
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Table 1: Hesitant triangular intuitionistic fuzzy information matrix.
G1 G2 G3

A1 {((6, 8, 8); 0, 6, 0.3)} {((6, 7, 8); 0.7, 0.2)} {((6, 7, 8); 0.7, 0.2)}

A2 {((4, 6, 8); 0, 5, 0.3)}
{((4, 5, 6); 0.7, 0.2),
((3, 5, 7); 0.5, 0.3),
((4, 5, 6), 0.5, 0.3)}

{((4, 6, 8); 0.6, 0.3),
((6, 7, 9); 0.6, 0.3)),
((6, 7, 8), 0.6, 0.3)}

A3

{((3, 4, 4); 0, 6, 0.3),
(4, 4, 6); 0.5, 0.3),
((4, 6, 8); 0.5, 0.2)}

{((2, 4, 6); 0.7, 0.3)} {((4, 6, 6); 0.5, 0.2))}

A4
{((6, 7, 8); 0, 6, 0.3),
(6, 8, 9); 0.5, 0.3)} {((4, 5, 6); 0.6, 0.2)} {((6, 6, 8); 0.8, 0.1), ((2, 6, 8); 0.4, 0.1))}

In the table, the total score of decision makers is 10. And the attribute weights is known as follows:
ω = (0.4, 0.2, 0.4).

METHOD 1.

Step 1. We utilize the decision information given in matrix H, and the HTIFWA (4.1) and HTIFWG
(4.3) operators to aggregate the hesitant triangular intuitionistic fuzzy elements h̃i(i = 1, 2, ...,m) of the
alternative Xi. Take alternative A4 for an example, we have

HTIFWA(h̃ ′1, h̃ ′2, ..., h̃ ′n) =
n∑
j=1

wjh̃
′
j

=
⋃
i

{((

n∑
j=1

wjaij,
n∑
j=1

wjaij,
n∑
j=1

wijāj); min
j
ωij, max

j
uij)}

= {((5.6, 6.2, 7.6); 0.6, 0.3), ((4, 6.2, 7.6); 0.4, 0.3), ((5.6, 6.6, 8); 0.5, 0.3),
((4, 6.6, 8); 0.4, 0.3)},

HTIFWG(h̃ ′1, h̃ ′2, ..., h̃ ′n) =
n∏
j=1

h̃
′wj
j

=
⋃
i

{((

n∏
j=1

a
wj
ij ,

n∏
j=1

a
wj
ij ,

n∏
j=1

ā
wj
ij ); min

j
ωij, max

j
uij)}

= {((5.5326, 6.1531, 7.5527); 0.6, 0.3), ((3.5652, 6.1531, 7.5527); 0.4, 0.3),
((5.5326, 6.4907, 7.9170); 0.5, 0.3), ((3.5652, 6.4907, 7.9170); 0.4, 0.3)}.

Step 2 and Step 3. Calculate the scores S(h̃i) of the hesitant triangular intuitionistic fuzzy elements
h̃i(i = 1, 2, ...,m) of the alternative Xi by Definition 4.4. Rank all the alternatives Xi(i = 1, 2, ...,m) based
on the rank of h̃i. The results are listed as Table 2.

Table 2: Results of S(h̃i) and rankings.
A1 A2 A3 A4 Rankings

HTIFWA 0.2160 0.122 0.098 0.1125 A1 � A2 � A4 � A3
HTIFWG 0.2158 0.1210 0.0999 0.1106 A1 � A2 � A4 � A3
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METHOD 2.

Step 1. We calculate the values of the membership degree and the non-membership degree of every
triangular intuitionistic number of the HTIFEs µ∗(ãi) and ν∗(ãi), respectively. Then we can obtain the
standardized hesitant triangular intuitionistic fuzzy information matrix H ′ as Table 3.

Table 3: The standardized hesitant triangular intuitionistic fuzzy information matrix H ′.
G1 G2 G3

A1 {(0.3539, 0.4128)} {(0.3267, 0.3733)} {(0.3267, 0.3733)}

A2 {(0.25, 0.35)}
{(0.2333, 0.2667),
(0.2083, 0.2917),
(0.2083, 0.2917)}

{(0.2769, 0.3231),
(0.3308, 0.3859),
(0.3231, 0.3769)}

A3

{(0.1769, 0.2064),
(0.1856, 0.2528),
(0.2308, 0.3692)}

{(0.2, 0.2)} {(0.2179, 0.3487)}

A4
{(0.3231, 0.3769),
(0.3264, 0.4569)} {(0.2143, 0.2857)} {(0.298, 0.3353), (0.1744, 0.3923)}

Step 2. We utilize the decision information given in matrix H’, and the S-HTIFWA (4.5) and S-HTIFWG
(4.7) operators to aggregate the hesitant triangular intuitionistic fuzzy elements H̃i(i = 1, 2, ...,m) of the
alternative Xi. Take A4 for an example, we have

S-HTIFWA(H̃ ′1, H̃ ′2, ..., H̃ ′n) = ⊕nj=1wjH̃
′
j

=
⋃
i

{(1 −

n∏
j=1

(1 − µ∗(ãij))
wj , 1 −

n∏
j=1

(1 − ν∗(ãij))
wj)}

= {(0.2924, 0.3429), (0.2450, 0.3660), (0.2938, 0.3780), (0.2464, 0.3999)},
S-HTIFWG(H̃ ′1, H̃ ′2, ..., H̃ ′n) = ⊗nj=1wjH̃

′
j

=
⋃
i

{(

n∏
j=1

(µ∗(ãij))
wj ,

n∏
j=1

(ν∗(ãij))
wj)}

= {(0.2882, 0.2530), (0.2326, 0.3623), (0.2893, 0.3675), (0.2335, 0.3913)}.

Step 3 and Step 4. Calculate the scores S(H̃i) of the hesitant triangular intuitionistic fuzzy elements
H̃i(i = 1, 2, ...,m) of the alternative Xi by Definition 4.9. Rank all the alternatives Xi(i = 1, 2, ...,m) based
on the rank of H̃i and select the best one(s). The results are listed as Table 4.

Table 4: Results of S(h̃i) and rankings.
A1 A2 A3 A4 Rankings

S-HTIFWA -0.0517 -0.0738 -0.0871 -0.1023 A1 � A2 � A3 � A4
S-HTIFWG -0.0513 -0.0752 -0.0772 -0.1045 A1 � A2 � A3 � A4

METHOD 3.

Suppose that the ideal alternative is the hesitant triangular intuitionistic fuzzy number E∗ = {((10, 10,
10); 1, 0), ((10, 10, 10); 1, 0), ((10, 10, 10); 1, 0)}, which is seen as a special HTIFS. Then, we can select the best
alternative by calculating the distance between each alternative and the ideal alternative. And we utilize
the distance measure to select the most desirable supplier. In order to facilitate the analysis, we adopt
parameters λ = 0.5 and α = 0, 0.01, 0.1, 0.5, 0.9. The results are listed as Table 5.
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Table 5: Results of dwphth and rankings (λ = 0.5).

A1 A2 A3 A4 Rankings
α = 0 0.2665 0.3428 0.3719 0.3144 A1 � A4 � A2 � A3
α = 0.01 0.2705 0.3420 0.3666 0.3103 A1 � A4 � A2 � A3
α = 0.1 0.3065 0.3352 0.3697 0.2942 A4 � A1 � A2 � A3
α = 0.5 0.4666 0.3047 0.3831 0.2227 A4 � A2 � A3 � A1
α = 0.9 0.6267 0.2743 0.3966 0.1512 A4 � A2 � A3 � A1

It is worth mentioning that Method 1 is simple and effective under hesitant triangular intuitionistic
fuzzy environments, and the key to this approach lies in the expression of the distance measure dwphth.
Inspired by Li et al. [8], the distance measure not only takes the hesitance degree, the values and ambigu-
ities of TIFNs into account, but also considers the different preferences of the decision makers. In other
words, we extend the distance measure from hesitant fuzzy sets to hesitant triangular intuitionistic fuzzy
sets, thus, we can deal with the situations without giving properly the imprecise or uncertain decision
information in the real-world environments assigning exact values. On the other hand, the distance mea-
sure, what considers the effect of the hesitance degree of HTIFS, is meaningful. When α = 0, the results
and the rankings are almost different from that of α = 0.01, 0.1, 0.5, 0.9, for example, with the increase
of parameter α, A1 � A4 � A2 � A3 is changed as A4 � A1 � A2 � A3, and at last obtaining that
A4 � A2 � A3 � A1 in Table 5. Besides, the parameter λ have a great effect on the results and rankings,
we give the case of α = 0.5 and α = 0.1, 0.3, 0.7, 0.9 in Table 6. Obviously, as the parameter λ changes, the
results and rankings are different.

Table 6: Results of dwphth and rankings (α = 0.5).

A1 A2 A3 A4 Rankings
λ = 0.1 0.4242 0.2573 0.3190 0.3837 A1 � A4 � A2 � A3
λ = 0.3 0.5121 0.3668 0.4455 0.4829 A4 � A1 � A2 � A3
λ = 0.7 0.7342 0.5855 0.6984 0.6815 A4 � A2 � A3 � A1
λ = 0.9 0.7751 0.6948 0.8248 0.7807 A1 � A4 � A2 � A3

From the results of Method 1 or Method 2, it is easily seen that the rankings of the alternatives are the
same by using two operators respectively. And the overall rankings of alternatives are slightly different
between Method 1 and Method 2, and the optimal alternative is A1. For the Method 3, the rankings
of alternatives depend on the select of the parameter λ, which represents the preference of the hesitant
degree and the membership values. As a whole, the three methods are basically coincident. When
λ = 0.01, the ranking of these three methods have little difference, and the most desirable supplier is A1.
This shows that these three methods are feasible and practical.

6.1. Analysis of three methods
These three methods are used to solve the problem of multiple attribute decision making based on the

triangular intuitionistic fuzzy information. In order to have a good knowledge of these methods, we give
some analysis and description:

1. The scope of the above three methods is different. In terms of the first method, since the operation
law of the triangular intuitionistic fuzzy numbers ã and b̃ in Definition 3.2 is different from the sign
(positive, negative) of ã and b̃, the aggregation operators HTIFWG and HTIFOWG are required to
ensure that the value a of the hesitant triangular fuzzy element ã ′ = ((a,a, ā);ω,u) is positive. After
that we can handle the decision making information to solve the problem. For the other two methods,
the value ã is free without restrictive condition. In other words, the last two methods are more widely
used than the first one. As a matter of fact, the sign (positive, negative) a in the triangular intuitionistic
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fuzzy number ã = ((a,a, ā);ω,u) in some references [15] are not taken into account. To a certain
extent, the limit of the operator we set is relatively not so large.

2. The ways to solve the problem are not the same. In the first two methods, in order to figure out the
problem, we compare the quantified abstract information based upon the information from the aggre-
gating operators and then rank the alternatives through score function. The third method calculates
the distance measure between the ideal alternative and the given alternative to evaluate the merits of
the scheme. During the process of solving the problem, the first two methods are more complex than
the third one in terms of the problem-solving steps.

3. The conditions of the above three methods are also different. The third method needs an ideal alter-
native to be the standard one. In this respect, the first two methods can be applied to more types of
multiple attribute decision making problems than the third one.

4. In the process of solving problems, the operators’ arithmetical operations in the first method is differ-
ent from the second one. The operations of the second method’s operators is more commonly used to
apply in the hesitant fuzzy set and intuitionistic fuzzy set. But the second methods can make the fuzzy
information standardization into an interval valued intuitionistic fuzzy form, which is quite compli-
cated in computation. In the third method, the preference of the hesitant degree, the membership
value, as well as the hesitance degree of HTIFE are all taken into account to reduce the error of the
distance measure.

7. Summaries

In this paper, we aim to propose three approaches of hesitant triangular intuitionistic fuzzy sets for
dealing with Multi-attribute decision making (MADM) problems. We firstly recall some basic concepts
related to hesitant fuzzy sets and triangular intuitionistic fuzzy numbers and present the concepts of
hesitant triangular intuitionistic fuzzy sets. Then we develop some hesitant triangular intuitionistic fuzzy
aggregation operators and standardized hesitant triangular intuitionistic fuzzy aggregation operators and
distance measures of hesitant triangular intuitionistic fuzzy sets. Finally, three methods of MADM prob-
lems, as well as the analysis of the comparison between the methods are proposed to illustrate their
applicability and availability by an example in order to study the application of hesitant triangular in-
tuitionistic fuzzy sets. What is worth mentioning is that we simply give some basic hesitant triangular
intuitionistic fuzzy aggregation operators and standardized hesitant triangular intuitionistic fuzzy ag-
gregation operators, hence in our future work we will investigate the operators of hesitant triangular
intuitionistic fuzzy sets and their application in MADM problems.
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