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Abstract
The purpose of this paper is twofold. First, basic concepts such as Gamma function, almost convergence, fractional order

difference operator and sequence spaces are given as a survey character. Thus, the current knowledge about those concepts
are presented. Second, we construct the almost convergent spaces with fractional order difference operator and compute dual
spaces which help us in the characterization of matrix mappings. After we characterize to the matrix transformations, we give
some examples. In this paper, the notation Γ(n) will be shown the Gamma function. For n 6∈ {0,−1,−2, · · · }, Gamma function is
defined by an improper integral Γ(n) =

∫∞
0 e−ttn−1dt. c©2017 All rights reserved.
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1. Introduction

This paper consists of five sections. In Section 1, we give some basic definitions of the Gamma func-
tions, almost convergent sequence spaces, fractional order difference operators and recall some basic
knowledge related to sequence spaces, Schauder basis, α-, β- and γ- duals, matrix transformations. Sec-
tion 2 deals with the matrix domain of almost convergent space. Also, we compute dual spaces of new
almost convergent space, in Section 2. Section 3 is devoted to the matrix transformations between new
space and classical spaces. In Section 4, we give some examples. In last section, subsequent to giving a
short analysis on the basic results of the present paper, some further suggestions are noted.

1.1. Gamma function
In view of the analogy between infinite series and improper integrals, it is natural to seek an improper

integral corresponding to a power series. If we write the power series as
∞∑
n=0

a(n)xn,
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then a natural analogue is the improper integral∫∞
0
a(t)xtdt.

Except for a minor change in notation, this is the Laplace transform of the function a(t).
An important particular Laplace transform is the following:∫∞

0
tke−stdt, (1.1)

in which a(t) = tk, the parameter k must be greater than −1, to avoid divergence of the integral at t = 0.
With k so restricted, the integral converges for s > 0. When k is 0 or a positive integer, the integral is
easily evaluated: ∫∞

0
e−stdt =

1
s

,
∫∞

0
te−stdt =

1
s2 , · · · , (s > 0).

In general, an integration by parts shows that, for s > 0,∫∞
0
tke−stdt =

k

s

∫∞
0
tk−1e−stdt. (1.2)

Accordingly, we can apply induction to conclude that, for s > 0,∫∞
0
tke−stdt =

k

s

k− 1
s
· · · 1
s

1
s
=

k!
sk+1 . (1.3)

For s = 1, (1.3) can be written:

k! =
∫∞

0
tke−tdt. (1.4)

This suggests a method of generalizing the factorial, that is, we could use the equation (1.4) to define k!
for k an arbitrary real number greater than −1. It is customary to denote this generalized factorial by
Γ(k+ 1), the Gamma function Γ(k) is defined by the equation

Γ(k) =

∫∞
0
tk−1e−tdt, k > 0,

when k is positive integer or 0,

Γ(k+ 1) = k! =
{

1.2. · · ·k, k > 0,
1, k = 0.

The integral (1.1) is expressible in terms of the Gamma function∫∞
0
tke−stdt =

Γ(k+ 1)
sk+1 (s > 0).

Equation (1.2) then states that
Γ(k+ 1)
sk+1 =

k

s

Γ(k)

sk
,

that is,
Γ(k+ 1) = kΓ(k).

This is the functional equation of the Gamma function. The functional equation can be used to define
Γ(k) for negative k. Thus, we write

Γ(
1
2
) = (−

1
2
)Γ(−

1
2
), Γ(−

1
2
) = (−

3
2
)Γ(−

3
2
), · · · ,

in order to define Γ(−1/2), Γ(−3/2), · · · , in terms of the known value of Γ(1/2). This procedure fails only
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for k = −1,−2, · · · . In fact, we can show that

lim
k→∞ Γ(k) = +∞,

and, if the Gamma function is extended to negative nonintegral k as above,

lim
k→−n

|Γ(k)| = +∞,

for every negative integer −n.
Historically, the Gamma function was introduced as

Γ(x) =
1
k

∞∏
n=1

(1 + 1
n)
k

(1 + k
n)

,

by Euler, in 1729. In 1814, Legendre defined the Gamma function Γ(x) with the improper integral as
below:

Γ(x) =

∫∞
0
tk−1e−tdt, k > 0.

1.2. Almost convergence
In theory of sequence spaces, there are many applications of Hahn-Banach extension theorem. One of

the most important of these applications is Banach limit which further leads to an important concept of
almost convergence. That is, the lim functional defined on c can be extended to the whole of `∞. This
extended functional is called the Banach limit. Lorentz [43] gave a new type of convergence definition
based on the Banach limit which is called almost convergence, in 1948.

Now, we will give some definitions related to the above concept.
A linear functional L on `∞ is said to be a Banach limit if, L(x) > 0 for x > 0, L(e) = 1, where

e = (1, 1, 1, · · · ) and L(Sx) = L(x), where S is the shift operator defined by (Sx)n = xn+1.
Let L denote all Banach limits and (xk) be a bounded sequence. A sequence (xk) is said to be almost

convergence to value L if all its Banach limits coincide, i.e., L(x) = L. A sequence (xk) is said to be almost
A-summable to the value L if its A-transform is almost convergent to L.

Lorentz [43] established the following characterization:
A sequence (xk) is almost convergent to the number L, if and only if tmn(x) → L as m → ∞, uniformly
in n, where

tmn(x) =
1

m+ 1

m∑
i=0

xn+i.

Let f denote the set of all almost convergent sequences, i.e.,

f =
{
x = (xk) ∈ `∞ : ∃α ∈ C 3 lim

m→∞ tmn(x) = L uniformly in n
}

.

Then, the number L is called the generalized limit of x, and we write L = f− lim xk.
There are not essential studies about algebraic structure and topological structure of the almost con-

vergent space f. However, Başar and Kirişci [13] have stated and proved that the space f is non-separable
closed subspace of (`∞, ‖.‖∞) and the Banach space f has no Schauder basis.

We will give some known properties of almost convergent:

(i) Every convergent sequence is almost convergence at the same limit. But, converse of this statement
is not true.

(ii) The space f is non-separable closed subspace of (`∞, ‖.‖∞) [13]. But the space c is a separable closed
subspace of (`∞, ‖.‖∞).
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(iii) f endowed with the norm ‖.‖∞ is a BK-space.

(iv) f is nowhere dense in `∞, dense in itself and closed and therefore perfect.

(v) Almost convergence is not representable by a matrix method.

(vi) The ξ-dual of f is `1, where ξ ∈ {α,β,γ}.

Following Lorentz [43], many mathematicians have considered almost convergence as summability
methods defined by sequences of infinite matrices. King [36] used the idea of almost convergence to
study the almost conservative and almost regular matrices. In [26], Eizen and Laush considered the class
of almost coercive matrices. Schaefer [50] showed that the classes of almost regular and almost coercive
matrices are disjoint. Duran [24] studied the classes of almost strongly regular matrices.

1.3. Fractional order difference operator
The idea of the difference of fractional order operator firstly was used by Chapman [21] and has been

studied by many mathematicians [5–9, 22, 25, 27, 29, 41, 42].
Let (xn) be any sequence of complex numbers. If s is any real constant, then

∆sxn =

∞∑
m=0

(
m− s− 1

m

)
xn+m,

where (
u

m

)
=
u(u− 1) · · · (u−m+ 1)

m!
,

and we assume that if m is a negative integer, then we have
(
u
m

)
= 0.

Let (xn) be any sequence of complex numbers and r, s are positive integers or zero. Then,

∆r+sxn = ∆r(∆sxn). (1.5)

This equation has been extended to other values of r, s. The sequence (xn) has been mostly chosen as
bounded. If the sequence (xn) is bounded then, for r > −1, s > 0 and r+ s > 0, the equation (1.5) holds
and if xn → 0 as n → ∞, then the condition r+ s > 0 may be replaced by r+ s > 0 [4]. Also, Bosanquet
[15, Lemma 1], proved the same theorem. Basically, later studies of these type problems have been in
the direction of strengthening the restrictions on (xn). It is known that the extending the set of values in
which (1.5) is hold. Andersen [6] was giving a number of these type theorems. A part of the Andersen’s
results were proved by Kuttner [41]. In [42], Kuttner mentioned that the given Theorem A is the best
possible result for all concerns the order of magnitude of the individual terms ∆(r)xn. At the same time,
if we choose s > −1, then we obtain a stronger result concerning with the order of magnitude of their
Cesàro means. These new obtained results are best possible in a sense analogues to that of Theorem A.

The definition of a sequence of methods of summability of all integer orders, Borel’s integral and
exponential methods being particular cases of this sequence has been extended to every real index r,
−∞ < r < ∞ and investigated to properties of this definition in detail by Ogieveckii [48]. In [49],
Ogieveckii obtained new results of earlier study [48].

Baliarsingh [7] introduced difference sequence spaces of fractional order and examined some topo-
logical properties and also computed the Köthe-Toeptlitz duals of new spaces. Baliarsingh extended the
sequence spaces defined by difference operator to the spaces of fractional order difference operator.

Dutta and Baliarsingh [25] introduced paranormed difference spaces with fractional order. In [8],
Baliarsingh and Dutta inverstigated some basic properties of the operator ∆r and gave the applications
to the numerical analysis as Newton’s forward difference formula and Newton’s backward difference
formula. In [29], Euler sequence spaces were generalized by the operator ∆r. Baliarsingh and Dutta
[9] defined the new paranormed spaces derived by fractional order and also Kadak [27] introduced the
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concept of ∆rv-strongly Cesàro convergence and denoted the set of all ∆rv-strongly Cesàro convergent
sequences by ∆rv(ωp). Demiriz and Duyar [22] defined the new sequence spaces with fractional order
difference operator. In [30] and [28], new convergence definitions based on difference operators were
given and approximation theorems were applied.

1.4. Sequence spaces
It is well-known that, the ω denotes the family of all real (or complex)-valued sequences. ω is a

linear space and each linear subspace of ω (with the included addition and scalar multiplication) is called
a sequence space such as the spaces c, c0 and `∞, where c, c0 and `∞ denote the set of all convergent
sequences in fields R or C, the set of all null sequences and the set of all bounded sequences, respectively.
It is clear that the sets c, c0 and `∞ are the subspaces of the ω. Thus, c, c0 and `∞ equipped with a vector
space structure, from a sequence space. By bs and cs, we define the spaces of all bounded and convergent
series, respectively.

The vector space of numerical sequences is called a K-space (or coordinate space). In coordinate space,
addition and scalar multiplication are defined pointwise. An FK-space is a K-space which provided X is a
complete linear metric space. An FK-space whose topology is normable is called a BK-space.

Let A = (ank) be an infinite matrix of complex numbers ank and x = (xk) ∈ ω, where k,n ∈ N.
Then the sequence Ax is called as the A-transform of x defined by the usual matrix product. Hence, we
transform the sequence x into the sequence Ax = {(Ax)n}, where

(Ax)n =
∑
k

ankxk, (1.6)

for each n ∈N, provided the series on the right hand side of (1.6) converges for each n ∈N.
Let X and Y be two sequence spaces. If Ax exists and is in Y for every sequence x = (xk) ∈ X, then

we say that A defines a matrix mapping from X into Y, and we denote it by writing A : X → Y, if and
only if the series on the right hand side of (1.6) converges for each n ∈ N and every x ∈ X and we have
Ax = {(Ax)n}n∈N ∈ Y for all x ∈ X. A sequence x is said to be A-summable to l if Ax converges to l
which is called the A-limit of x.

Let X be a sequence space and A be an infinite matrix. The sequence space

XA = {x = (xk) ∈ ω : Ax ∈ X},

is called the domain of A in X which is a sequence space.
In the book of Basar [11], it can be seen that the qualified studies about matrix domain (also, [1–3, 7–

10, 12, 14, 16, 18, 19, 31, 32, 35, 37–40]).

2. Spaces of almost null and almost convergent sequences of fractional order

In this section, we carry to the fractional order operator which is a different difference operator, to the
idea of the difference operators. Using the fractional order operator, we will define the new almost null
and almost convergent sequence spaces and give some properties of new spaces.

If we take a positive proper fraction r, then we can define the generalized fractional difference operator
∆(r) as below [7–9, 25]:

∆(r)(xk) =

∞∑
i=0

(−1)i
Γ(r+ 1)

i!Γ(r− i+ 1)
xk−i. (2.1)

In this text, we suppose that the infinite series (2.1) is convergent for all x ∈ ω, without loss of
generality. The difference operator ∆(r) can be given by a triangle:

∆
(r)
nk =

{
(−1)n−k Γ(r+1)

(n−k)!Γ(r−n+k+1) , (0 6 k 6 n),
0, (k > n),

(2.2)
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∆(r) =


1 0 0 0 · · ·
−r 1 0 0 · · ·
r(r−1)

2! −r 1 0 · · ·
−r(r−1)(r−2)

3!
r(r−1)

2! −r 1 · · ·
...

...
...

...
. . .

 .

Thus, from the above definition, we can write the inverse of the difference matrix ∆(r)
nk as

∆
(−r)
nk =

{
(−1)n−k Γ(1−r)

(n−k)!Γ(−r−n+k+1) , (0 6 k 6 n),
0, (k > n),

∆(−r) =


1 0 0 0 · · ·
r 1 0 0 . . .

r(r+1)
2! r 1 0 · · ·

r(r+1)(r+2)
3!

r(r+1)
2! r 1 · · ·

...
...

...
...

. . .

 .

Baliarsingh and Dutta [8] proved the following equalities:

∆(r) ◦∆(s) = ∆(r+s) = ∆(s) ◦∆(r).

Let Iprop be the identity operator on ω. Then, we have

∆(r) ◦∆(−r) = ∆(−r) ◦∆(r) = Iprop. (2.3)

Now, we will define the sequence spaces fdf and fdf0 as the set of all sequences whose ∆(r)-transforms
are in the spaces almost convergent sequence and almost null sequence spaces, respectively.

fdf =
{
x = (xk) ∈ ω : ∃L ∈ C 3 lim

m→∞ tmn
(
∆(r)x

)
= L uniformly in n

}
,

and
fdf0 =

{
x = (xk) ∈ ω : lim

m→∞ tmn
(
∆(r)x

)
= 0 uniformly in n

}
,

where

tmn(∆
(r)x) =

1
m+ 1

m∑
k=0

(
∆(r)x

)
n+k

=
1

m+ 1

m∑
k=0

n+k∑
j=0

[
k−j∑
i=0

(−1)i
Γ(r+ 1)

i!Γ(r+ 1 − i)

]
xj,

uniformly in n and for allm,n ∈N. Thus, using the (2.1), we can write the sequence y = (yk) = ∆
(r)(xk).

Theorem 2.1. The sequence spaces fdf0 and fdf are linearly isomorphic to the spaces f0 and f, respectively.

Proof. We prove only case fdf ∼= f. Therefore, we need find a linear bijection between the spaces fdf and
f. Now, we define the transformation T such that T : fdf → f by x 7→ y = Tx = ∆(r)x. It is clear that the
transformation T is linear. For, θ = (0, 0, · · · ), if we choose Tx = θ, then, we obtain x = θ. This shows us
that the transformation T is injective.

We take the matrix (2.2) and any y = (yk) ∈ f. Then, we can define the sequence x = (xk) as

xk =

∞∑
j=0

(−1)j
Γ(1 − r)

j!(Γ(1 − r− j))
yk−j − yk−j−1,

for all k ∈N. Consider the equality (2.3). Then, we have

lim
m→∞

[
tmn

(
∆(r)

)
x
]
= lim
m→∞ 1

m+ 1

m∑
i=0

yn+i = f− limyn, uniformly in n.

This means that x = (xk) ∈ fdf. It can conclude that the transformation T is surjective and this completes
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the proof.

Since the spaces f0 and f endowed with the norm ‖.‖∞ are BK-spaces and ∆(r) is a triangle, the spaces
fdf and fdf0 are BK-spaces with the norm ‖.‖fdf [53]. Therefore, there is no need for detailed proof of the
following theorem.

Theorem 2.2. Spaces of almost null and almost convergent sequences of fractional order fdf and fdf0 are BK-spaces
with the same norm given by

‖x‖fdf = ‖∆(r)x‖f = sup
m,n∈N

|tmn(∆
(r)x)|.

In Theorem 2.3 and Theorem 2.4, we give some inclusion relations between new spaces and some
known spaces.

Theorem 2.3. The sequence spaces fdf0 and fdf strictly include the spaces f0 and f, respectively.

Proof. By the definition on the almost null and almost convergent sequence spaces, these inclusions are
held, i.e., f0 ⊂ fdf0 and f ⊂ fdf.

We will show that these inclusions are strict. Therefore, we give the sequence d = (dk) defined by

dk =

{
(−1)n−k

Γ(1 − r)

(n− k)!Γ(−r−n+ k+ 1)

(
1 − (−1)k

2

)}
,

for all n,k ∈N. The sequence is not in f, but ∆rd is almost convergent to 1/2, as we desired.

Theorem 2.4. The inclusions fdf ⊂ `∞ and c ⊂ fdf strictly hold.

Proof. It is well-known that c ⊂ f ⊂ `∞. We easily obtain that the inclusions c ⊂ fdf and fdf ⊂ `∞ are
held because of Theorem 2.3 and the fact that c ⊂ f ⊂ `∞. Further, we must prove that these inclusions
are strict.

First, we investigate whether the inclusion fdf ⊂ `∞ is strict. Let r be a positive proper fraction. We
choose the sequence x = ∆(−r)y with the sequence y = (yk) such that the terms of this sequence be it
so the blocks 0’s are increasing by factors of 100 and the blocks of 1’s are increasing by factors of 10 (cf.
Miller and Orhan [45]). This sequence is in the set `∞/f. Then, the sequence x is not in the space almost
convergent sequence of fractional order but in the space `∞, as desired.

Second, we must show that the inclusion c ⊂ fdf is strict. We know that the inclusion f ⊂ fdf strictly
holds from Theorem 2.3 and the inclusion c ⊂ f also strictly holds. Therefore, from these results, we can
write the inclusion c ⊂ fdf strictly holds.

Remark 2.5. It is well-known that the almost convergent sequence space f is a non-separable closed sub-
space of (`∞, ‖.‖∞) and as a direct consequence of this case, we can write the Banach space f has no
Schauder basis [13]. For A = (ank) is a triangle and X is a normed sequence space, the domain XA in a
sequence space X has a basis if and only if X has a basis.

Then, we have:

Corollary 2.6. The spaces of almost null and almost convergent sequences of fractional order have no Schauder
basis.

If X, Y ⊂ ω and z any sequence, we can write z−1 ∗ X = {x = (xk) ∈ ω : xz ∈ X} and M(X, Y) =⋂
x∈X x

−1 ∗ Y. If we choose Y = cs,bs, then we obtain the β-, γ-duals of X, respectively as

Xβ =M(X, cs) = {z = (zk) ∈ ω : zx = (zkxk) ∈ cs, for all x ∈ X},
Xγ =M(X,bs) = {z = (zk) ∈ ω : zx = (zkxk) ∈ bs, for all x ∈ X}.

Now, we will give some lemmas, which provide convenience in the compute of the dual spaces and
characterize of matrix transformations.
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Lemma 2.7. Matrix transformations between BK-spaces are continuous.

Lemma 2.8 ([12, Lemma 5.3]). Let X, Y be any two sequence spaces. A ∈ (X : YT ) if and only if TA ∈ (X : Y),
where A is an infinite matrix and T is a triangle matrix.

Lemma 2.9 ([2, Theorem 3.1]). We define the BT = (bnk) depending on a sequence a = (ak) ∈ ω and give the
inverse of the triangle matrix T = (tnk) by

bnk =

n∑
j=k

ajvjk,

for all k,n ∈N. Then,
X
β
T = {a = (ak) ∈ ω : BT ∈ (X : c)},

and
X
γ
T = {a = (ak) ∈ ω : BT ∈ (X : `∞)}.

Now, we list the following useful conditions from [10, 14, 24] and [51].

sup
n∈N

∑
k

|ank| <∞, (2.4)

lim
n→∞ank = αk, for each fixed k ∈N , (2.5)

lim
n→∞

∑
k

ank = α, (2.6)

lim
n→∞

∑
k

|∆(ank −αk)| = 0, (2.7)

f− limank = αk, exists for each fixed k ∈N , (2.8)

f− lim
n→∞

∑
k

ank = α, (2.9)

lim
m→∞

∑
k

|∆(a(n,k,m) −αk)| = 0, uniformly in n, (2.10)

sup
n∈N

∑
k

|a(n,k)| <∞, (2.11)∑
k

ank = αk, for each fixed k ∈N , (2.12)∑
n

∑
k

ank = α, (2.13)

lim
n→∞

∑
k

|∆[a(n,k) −αk]| = 0, (2.14)

where a(n,k,m) = 1
m+1

∑m
j=0 an+j,k and ∆ank = (ank − an,k+1).

The following lemma will be used for Theorem 2.11 and some examples in Section 4.

Lemma 2.10. For the characterization of the class (X : Y) with X = {f} and Y = {`∞, c, cs,bs, f}, we can give the
necessary and sufficient conditions from Table 1, where

1. (2.4);

2. (2.4), (2.5), (2.6), (2.7);

3. (2.11), (2.12), (2.13), (2.14);

4. (2.11);

5. (2.4), (2.8), (2.9), (2.10).
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Table 1: The class A ∈ (X : Y) with X = {f} and Y = {`∞, c, cs,bs, f}.

To `∞ c cs bs f

From f 1. 2. 3. 4. 5.

In Table 1, we can see that the characterization of the classes (X : Y) with X= {f} and Y = {`∞, c, cs,bs, f}.
Let uk = ak

∑k
i=0(−1)i Γ(1−r)

i!Γ(1−r−i) . For using in the proof of Theorem 2.11, we define the matrix
V = (vnk) as below:

vnk =


uk − uk+1, (k < n),
un, (k = n),
0, (k > n).

(2.15)

Theorem 2.11. The β- and γ- duals of the space fdf are defined by

(fdf)β = {u = (uk) ∈ ω : V ∈ (f : c)},

and
(fdf)γ = {u = (uk) ∈ ω : V ∈ (f : `∞)}.

Proof. Let u = (uk) ∈ ω. We begin the equality
n∑
k=0

ukxk =

n∑
k=0

[
ak

∞∑
i=0

(−1)i
Γ(1 − r)

i!Γ(1 − r− i)

]
(yk−i − yk−i−1)

=

n−1∑
k=0

[
ak

k∑
i=0

(−1)i
Γ(1 − r)

i!Γ(1 − r− i)
− ak+1

k+1∑
i=0

(−1)i
Γ(1 − r)

i!Γ(1 − r− i)

]
yk

+

[
an

n∑
i=0

(−1)i
Γ(1 − r)

i!Γ(1 − r− i)

]
yn = (Vy)n,

(2.16)

where V = (vnk) is defined by (2.15). Using (2.16), we can see that ux = (ukxk) ∈ cs or bs whenever
x = (xk) ∈ fdf, if and only if Vy ∈ c or `∞ whenever y = (yk) ∈ f. Then, from Lemma 2.8 and Lemma 2.9,
we obtain the result that u = (uk) ∈ (fdf)β or u = (uk) ∈ (fdf)γ if and only if V ∈ (f : c) or V ∈ (f : `∞),
which is what we wished to prove.

From this theorem, we have the following corollary:

Corollary 2.12. The β- and γ-duals of the space almost convergent sequence of fractional order are given by

fdfβ = {u = (uk) ∈ ω : (uk − uk+1) ∈ `1, and (un) ∈ c} ,

and
fdfγ = {u = (uk) ∈ ω : (uk − uk+1) ∈ `1, and (un) ∈ `∞} .

Therefore, we have defined the new spaces derived by fractional order and examined some structural
and topological properties, in this section. Especially, the β- and γ-duals of new spaces will help us in the
characterization of the matrix transformations.

3. Some matrix mappings related to the new space

Let X and Y be arbitrary subsets of ω. We shall show that, the characterizations of the classes (X, YT )
and (XT , Y) can be reduced to that of (X, Y), where T is a triangle.

It is well-known that if fdf ∼= f, then the equivalence

x ∈ fdf⇔ y ∈ f,

holds. Then, the following theorems will be proved and given some corollaries which can be obtained to
that of Theorems 3.1 and 3.2. Then, using Lemmas 2.8 and 2.9, we have:
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Theorem 3.1. Consider the infinite matrices A = (ank) and D = (dnk). These matrices get associated with each
other the following relations:

dnk =


tnk − tn,k+1, (k < m),
tnm, (k = m),
0, (k > m),

(3.1)

for all k,m,n ∈N, where

tnk = ank

k∑
j=0

(−1)j
Γ(1 − r)

j!Γ(1 − i− r)
.

Then A ∈ (fdf : Y) if and only if {ank}k∈N ∈ fdfβ for all n ∈N and D ∈ (f : Y), where Y is any sequence space.

Proof. We assume that the (3.1) holds between the entries of A = (ank) and D = (dnk). Let us remember
that from Theorem 2.1, the spaces fdf and f are linearly isomorphic. Firstly, we choose any y = (yk) ∈ f
and consider A ∈ (fdf : Y). Then, we obtain that D∆r exists and {ank}fdf

β for all k ∈ N. Therefore, the
necessity of (3.1) yields and {dnk} ∈ fβ for all k,n ∈N. Hence, Dy exists for each y ∈ f. Thus, if we take
m→∞ in the equality

m∑
k=0

ankxk =

m−1∑
k=0

(tnk − tn,k+1)yk + tnmym,

for all m,n ∈N, then, we understand that Dy = Ax. So, we obtain that D ∈ (f : Y).
Now, we consider that {ank}k∈N ∈ fdfβ for all n ∈ N and D ∈ (f : Y). We take any x = (xk) ∈ fdf.

Then, we can see that Ax exists. Therefore, for m→∞, from the equality

m∑
k=0

dnkyk =

m∑
k=0

 m∑
j=k

(
j−k∑
i=0

(−1)j
Γ(1 + r)

j!Γ(1 + r− j)

)
cnj

 xk,

for all n ∈N, we obtain that Ax = Dy. Therefore, this shows that A ∈ (fdf : Y).

Theorem 3.2. Consider that the infinite matrices A = (ank) and E = (enk) with

enk :=

n∑
j=0

[
n−j∑
i=0

(−1)i
Γ(1 + r)

i!Γ(r+ 1 − i)

]
ajk. (3.2)

Then, A = (ank) ∈ (X : fdf) if and only if E ∈ (X : f).

Proof. We take any z = (zk) ∈ X. Using the (3.2), we have

m∑
k=0

enkzk =

n∑
j=0

[
m∑
k=0

(
n−j∑
i=0

(−1)i
Γ(1 + r)

i!Γ(1 + r− i)

)
ajk

]
zk, (3.3)

for all m,n ∈ N. Then, for m → ∞, equation (3.3) gives us that (Ez)n = {∆r(Az)}n. Therefore, one can
immediately observe from this that Az ∈ fdf whenever z ∈ X, if and only if Ez ∈ f whenever z ∈ X. Thus,
the proof is completed.

4. Examples

In this section, we give some examples related to classes of A ∈ (X : fdf) and A ∈ (fdf : Y).
If we choose any sequence spaces X and Y in Theorems 3.1 and 3.2 in previous section, then, we can

find several consequences in every choice. For example, if we take the space `∞ and the spaces which are
isomorphic to `∞ instead of Y in Theorem 3.1, we obtain the following corollaries and examples:
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Corollary 4.1. A ∈ (fdf : `∞) if and only if {ank} ∈ {fdf}β and

sup
n∈N

∑
k

|dnk| <∞. (4.1)

Corollary 4.2. A ∈ (fdf : f) if and only if {ank}n∈N ∈ {fdf}β, (4.1) holds and there are αk,α ∈ C such that

f− lim
n→∞dnk = αk, for each k ∈N,

f− lim
n→∞

∑
k

dnk = α,

lim
n→∞

∑
k

|∆[d(n,k,m) −αk]| = 0, uniformly in m,

where d(n,k,m) = 1
n+1
∑n
j=0 dm+j,k.

Example 4.3. The Euler sequence space er∞ is defined by

er∞ = {x ∈ ω : sup
n∈N

|

n∑
k=0

(
n

k

)
(1 − r)n−krkxk| <∞}, ([1, 3]).

We consider the infinite matrix A = (ank) and define the matrix C = (cnk) by

cnk =

n∑
j=0

(
n

j

)
(1 − r)n−jrjajk, (k,n ∈N).

If we want to get necessary and sufficient conditions for the class (fdf : er∞) in Theorem 3.1, then, we replace the
entries of the matrix A by those of the matrix C.

Example 4.4. Let Tn =
∑n
k=0 tk and A = (ank) be an infinite matrix. We define the matrix G = (gnk) by

gnk =
1
Tn

n∑
j=0

tjajk (k,n ∈N).

Then, the necessary and sufficient conditions in order for A belongs to the class (fdf : rt∞) are obtained from in
Theorem 3.1 by replacing the entries of the matrix A by those of the matrix G, where rt∞ is the space of all sequences
whose Rt-transforms are in the space `∞ [44].

Example 4.5. In the space rt∞, if we take t = e, then, this space become to the Cesaro sequence space of non-absolute
type X∞ [47]. As a special case, Example 4.4 includes the characterization of class (fdf : rt∞).
Example 4.6. The Taylor sequence space tr∞ is defined by

tr∞ = {x ∈ ω : sup
n∈N

|

∞∑
k=n

(
k

n

)
(1 − r)n+1rk−nxk| <∞}, ([40]).

We consider the infinite matrix A = (ank) and define the matrix P = (pnk) by

pnk =

∞∑
k=n

(
k

n

)
(1 − r)n+1rk−najk (k,n ∈N).

If we want to get necessary and sufficient conditions for the class (fdf : tr∞) in Theorem 3.1, then, we replace the
entries of the matrix A by those of the matrix P.
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Example 4.7. Let A = (ank) be an infinite matrix and the matrix C = (cnk) defined by Example 4.3. Then, the
necessary and sufficient conditions in order for A belongs to the class (fdf : f(E)) is obtained from in Corollary 4.2
by replacing the entries of the matrix A by those of the matrix C, where

f(E) = {x = (xk) ∈ ω : ∃l ∈ C 3 lim
m→∞

m∑
j=0

n+j∑
k=0

(
n+j
k

)
(1 − r)n+j−krkxk

m+ 1
= l uniformly in n },

defined by Kirişci [38].

Example 4.8. Let A = (ank) be an infinite matrix and the matrix H = (hnk) defined by hnk = san−1,k + rank.
Then, the necessary and sufficient conditions in order forA belongs to the class (fdf : f̂) is obtained from in Corollary
4.2 by replacing the entries of the matrix A by those of the matrix H, where

f̂ = {x = (xk) ∈ ω : ∃α ∈ C 3 lim
m→∞

m∑
j=0

sxk−1+j + rxk+j
m+ 1

= α uniformly in k },

defined by Başar and Kirişci [13].

Example 4.9. Let A = (ank) be an infinite matrix and the matrix M = (mnk) defined by mnk =
∑∞
j=k

anj
j+1 .

Then, the necessary and sufficient conditions in order forA belongs to the class (fdf : f̃) is obtained from in Corollary
4.2 by replacing the entries of the matrix A by those of the matrix M, where

f̃ = {x = (xk) ∈ ω : ∃α ∈ C 3 lim
n→∞

n∑
k=0

1
n+ 1

k∑
j=0

xj+p

k+ 1
= α uniformly in p },

defined by Kayaduman and Şengönul [35].

If we take the spaces c, cs and bs instead of X in Theorem 3.2 or Y in Theorem 3.1 we can write the
following examples. Firstly, we give some conditions and following lemmas:

lim
n→∞ank = 0, for each fixed n ∈N , (4.2)

lim
n→∞

∑
k

|∆2ank| = α,

lim
m→∞

∑
k

|a(n,k,m) −αk| = 0, uniformly in n, (4.3)

sup
n∈N

∑
k

|∆ank| <∞. (4.4)

Lemma 4.10. Consider that the X ∈ {`∞, c,bs, cs} and Y ∈ {f}. The necessary and sufficient conditions for
A ∈ (X : Y) can be obtained from Table 2:

6. (2.4), (2.8), (4.3);

7. (2.4), (2.8), (2.9);

8. (4.4), (4.2), (2.8), (2.10);

9. (4.4), (2.8).

Example 4.11. We choose X ∈ {fdf} and Y ∈ {`∞, c, cs,bs, f}. The necessary and sufficient conditions for A ∈ (X :
Y) can be taken from Table 3:



M. Kirişci, U. Kadak, J. Nonlinear Sci. Appl., 10 (2017), 828–842 840

Table 2: The class A ∈ (X : Y) with X ∈ {`∞, c,bs, cs} and Y ∈ {f}.

From `∞ c bs cs

To f 6. 7. 8. 9.

1a. (2.4) holds with dnk instead of ank.

2a. (2.4), (2.5), (2.6), (2.7) hold with dnk instead of ank.

3a. (2.11), (2.12), (2.13), (2.14) hold with dnk instead of ank.

4a. (2.11) holds with dnk instead of ank.

5a. (2.4), (2.8), (2.9), (2.10) hold with dnk instead of ank.

Table 3: The class A ∈ (X : Y) with X = {fdf} and Y = {`∞, c, cs,bs, f}.

To `∞ c cs bs f

From fdf 1a. 2a. 3a. 4a. 5a.

Example 4.12. Consider that the X ∈ {`∞, c,bs, cs} and Y ∈ {fdf}. The necessary and sufficient conditions for
A ∈ (X : Y) can be acquired from Table 4:

6a. (2.4), (2.8), (4.3) hold with enk instead of ank.

7a. (2.4), (2.8), (2.9) hold with enk instead of ank.

8a. (4.4), (4.2), (2.8) (2.10) hold with enk instead of ank.

9a. (4.4), (2.8) hold with enk instead of ank.

Table 4: The class A ∈ (X : Y) with X = {f} and Y = {`∞, c, cs,bs, f}.

From `∞ c bs cs

To fdf 6a. 7a. 8a. 9a.

5. Conclusion

It is well-known that the Gamma function is an extension of the factorial function and is a very useful
tool in applications. In Gamma function, if k is a positive, then the integral∫∞

0
tke−stdt =

Γ(k+ 1)
sk+1 , (s > 0),

converges absolutely. This function is also known as a Euler integral of the second kind. The fractional
difference operator is defined by a Gamma function and uses some important properties of this function.
Therefore, this operator is helping us a lot in practice.

The diffrences ∆rxn were initiated by Chapman [21]. Many mathematicians are studied to this op-
erator (cf. [4–6, 15, 41, 42]). Firstly, Baliarsingh [7] is introduced to the difference sequence spaces for
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fractional order. Later, this operator used in the theory of sequence spaces, in several studies ([8, 9, 22, 25,
27, 29]).

The method of almost convergence has been investigated by Lorentz [43]. We know that the method
of almost convergence is a nonmatrix method. Some general properties about this method are given by
many mathematicians. But, structural properties of the method are not yet obtained. Despite all this, the
method of almost convergence still continues to be important. Recently, following Başar and Kirişci [13],
very high quality studies is done (cf. [17, 20, 23, 33–35, 37–39, 46, 52]).

In this paper, we introduce the method of almost convergence with the fractional order operator and
give some topological properties. We obtain several examples related to this new space. The investigation
of the fractional calculus studies of the method of almost convergence will lead us to new results which
are not comparable with the results of this paper.
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[12] F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, translated from Ukraı̈n.

Mat. Zh., 55 (2003), 108–118, Ukranian Math. J., 55 (2003), 136–147. 1.4, 2.8
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