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Abstract
Let (fn) be a given sequence of continuous selfmaps of a compact metric space Xwhich converges uniformly to a continuous
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1. Introduction

Throughout this paper, a topological dynamical system is a pair (X, f), where f : X→ X is a continuous
surjective map acting on a compact metric space X with a metric d, and Z+ denotes the set of nonnegative
integers.

Finding conditions assuring the preservation of a chaotic property under limit operations is an inter-
esting problem (see [2, 6, 7, 12, 14, 17, 19]). In [17] the author proved that if the fn are continuous functions
acting on a metric space (X,d) converging uniformly to a function f and fn is topologically transitive for
all n > 1, then f is not necessarily topologically transitive, and he gave some sufficient conditions for
the uniform limit function f to be topologically transitive. Recently, Fedeli and Donne [7] studied the
dynamical behavior of the uniform limit map of a sequence of continuous selfmaps of a compact metric
space satisfying (topological) transitivity or other related properties and gave some conditions for the
topological transitivity of such a limit map. In [5], the author studied the limit behavior of sequences
with the form fn ◦ · · · ◦ f1(x), x ∈ [0, 1], and whether the simplicity (respectively chaoticity) of f implies the
simplicity (respectively chaoticity) of f1,∞, where f1,∞ = (fn) is a sequence of continuous interval maps
which converges uniformly to a continuous map f. More recently, in [6] the author considered nonau-
tonomous discrete dynamical systems f1,∞, which is given by sequence (fn) of surjective continuous maps
fn : I → I converging uniformly to a map f : I → I, where I = [0, 1], and showed that, even if the full
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Lebesgue measure of a distributionally scrambled set of the nonautonomous system does not guarantee
the existence of distributional chaos of the uniform limit map and conversely, there is a nonautonomous
system with arbitrarily small distributionally scrambled set that converges uniformly to a map, which is
distributionally chaotic a.e.. It is well-known that the sensitivity property characterizes the unpredictabil-
ity of chaotic phenomenon and it is the essential condition of various definitions of a system to be chaotic.
Therefore, when is a system sensitive? This question has gained some attention in more recent papers
(see [1, 4, 8, 9, 15, 16]). More recently, in [19] the authors gave an equivalence conditions for the uniform
limit map f to be sensitive.

Roughly speaking, a dynamical system (X, f) is sensitive if for any region U of the phase space, there
exist two points in U and an integer n > 0 such that the nth iterates of the two points under the map f
are significantly separated. For a dynamical system, the size of the set of all n ∈ Z+ where this significant
separation or sensitivity happens can be thought of as a measure of how sensitive the dynamical system
is. Especially, if this set is quite thin with arbitrarily large gaps between consecutive entries, then one has
some excuse for treating the dynamical system as practically non-sensitive!

For continuous self-maps of compact metric spaces, Moothathu [16] introduced stronger forms of sen-
sitivity in terms of large subsets of Z+. Mainly he considered syndetic sensitivity and cofinite sensitivity.
Also, he constructed a topologically transitive and sensitive map which is not syndetically sensitive and
proved that the followings hold: (1) any syndetically transitive, non-minimal map is syndetically sensitive
(this improves the result that sensitivity is redundant in Devaney’s definition of chaos); (2) any sensitive
map of [0, 1] is cofinitely sensitive; (3) any sensitive subshift of finite type is cofinitely sensitive; (4) any
syndetically transitive, infinite subshift is syndetically sensitive; (5) no Sturmian subshift is cofinitely
sensitive.

In [12], we obtained an equivalence condition for the uniform limit map f to be topologically transitive
or syndetically transitive or topologically weak mixing or topological mixing and a necessary condition
for the uniform limit map f to be sensitive or cofinitely sensitive or multi-sensitive. In [14], we gave the
correct proofs of Theorems 3.4-3.7 in [12] and presented an equivalence condition for the uniform limit
map f to be syndetically sensitive or cofinitely sensitive or multi-sensitive or ergodically sensitive and
a sufficient condition for the uniform limit map f to be totally transitive or topologically weak mixing,
where a sequence (fn) of continuous selfmaps of a compact metric space X converging uniformly to a
continuous selfmap f of the compact metric space X.

In [18], the authors introduced and studied some concepts of sensitivity via Furstenberg families.
Moreover, by investigating these notions they obtained some interesting results. In particular, they dis-
cussed the sensitivity of symbolic dynamical systems in the sense of Furstenberg families. Inspired by
[19] we further study the chaoticity of the uniform limit maps via Furstenberg families.

In this paper, given a sequence (fn) of continuous selfmaps of a compact metric space X which con-
verges uniformly to a continuous selfmap f of a compact metric space X and three Furstenberg families F,
F1 and F2, we establish an equivalence condition for the uniform limit map f to be F-transitive or weakly
F-sensitive or F-sensitive or (F1,F2)-sensitive and a necessary condition for the uniform limit map f to
be weakly F-sensitive or F-sensitive or (F1,F2)-sensitive. These results extend and improve some existing
ones.

The organization of this paper is as follows: In Section 2, we recall some concepts. Main results are
established in Section 3.

2. Preliminaries

Firstly we complete some notations and recall some concepts.
A subset S ⊂ Z+ is thick if S contains arbitrarily large blocks of consecutive numbers. A subset S ⊂ Z+

is syndetic if Z+ \ S is not thick.
Let (X, f) be a dynamical system. According to the classical definition, f is sensitive if there exists δ > 0

such that for any x ∈ X and any open neighborhood Vx of x, there is n ∈ Z+ such that sup{d(fn(x), fn(y)) :
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y ∈ Vx} > δ. One can write this in a slightly different way. For V ⊂ X and δ > 0, let Nf(V , δ) = {n ∈ Z+ :
there exist x,y ∈ V with d(fn(x), fn(y)) > δ}. Now, we say:

(1) f is sensitive if there exists δ > 0 such that Nf(V , δ) is nonempty for any nonempty open set V ⊂ X;

(2) f is syndetically sensitive if there is δ > 0 such that Nf(V , δ) is syndetic for every nonempty open
subset V ⊂ X;

(3) f is cofinitely sensitive if there is δ > 0 such that Nf(V , δ) is cofinite for every nonempty open subset
V ⊂ X, that is, Z+ \Nf(V , δ) is finite;

(4) f is multi-sensitive if there is δ > 0 such that for every integer k > 0,
k⋂

i=1
Nf(Vi, δ) 6= ∅ for any

nonempty open subsets V1,V2, · · · ,Vk ⊂ X;

(5) f is ergodically sensitive (see [10, 11, 13]) if there is δ > 0 such that Nf(V , δ) has positive upper density
for every nonempty open subset V ⊂ X, that is,

lim sup
n→∞

1
n
|Nf(V , δ)∩ {0, 1, · · · ,n− 1}| > 0,

where |A| denotes the cardinality of A.

Clearly, by the definitions syndetic sensitivity implies ergodic sensitivity, and ergodic sensitivity implies
sensitivity. Corollary 3 and Theorem 5 from [16] show that every Sturmian subshift is syndetically sen-
sitive, and that no Sturmian subshift is cofinitely sensitive. In addition, Theorem 7 in [16] shows that
there exists a sensitive subshift which is not syndetically sensitive. Consequently, there exist sensitive
transformations that are not syndetically sensitive, and syndetically sensitive maps that are not cofinitely
sensitive.

For any given two dynamical systems (X, f) and (X,g), d∞(f,g) = supx∈X d(f(x),g(x)), where (X,d)
is a perfect metric space (i.e., X is closed and has no isolated points) (see [17]).

Now we introduce some notations related to a family. Let Z+ be the set of all nonnegative integers,
and let P be the collection of all subsets of Z+. A subset F ⊂ P is called a Furstenberg family (see [3]) if
it is hereditary upwards, that is, F1 ⊂ F2 and F1 ∈ F imply F2 ∈ F.

Let F be a Furstenberg family. A dynamical system (X, f) is F-sensitive if there is an ε > 0 such that
for any given x ∈ X and any given open neighborhood U of x, there is y ∈ U such that the pair (x,y) is
not F-ε-asymptotic (i.e., {n : d(fn(x), fn(y)) > ε} ∈ F). The ε > 0 is called a constant of F-sensitivity for f
(see [18]).

Let F1 and F2 be Furstenberg families. A dynamical system (X, f) is (F1,F2)-sensitive if there is an
ε > 0 such that each point x ∈ X is a limit of points y ∈ X such that the pair (x,y) is F1-proximal but not
F2-ε-asymptotic (that is, {n : d(fn(x), fn(y)) < δ} ∈ F1 for any δ > 0 and {n : d(fn(x), fn(y)) > ε} ∈ F2).
The ε > 0 is called a constant of (F1,F2)-sensitivity for f (see [18]).

3. Main results

In all theorems it is assumed that limn→∞ d∞(fnn, fn) = 0.
It is well-known that family machinery is applied to describe the family versions of several stronger

forms of sensitivity and transitivity, and different notions can be unified by this family viewpoint. So, this
kind of machinery is a very important tool in topological dynamical system and ergodic theory.

Let F be a Furstenberg family and let B be the family consisting of all infinite subsets of Z+. Write
Nf(U,V) = {n ∈ Z+ : U∩ f−n(V) 6= ∅} for any U,V ⊂ X. Clearly, Nf(U,V) = {n ∈ Z+ : fn(U)∩ V 6= ∅}. A
map f : X → X of a metric space X is said to be F-transitive if Nf(U,V) ∈ F for any two nonempty and
open sets U,V ⊂ X. By the definitions, we know that for a given continuous map f : X → X of a metric
space X, the followings hold:
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(1) f is topologically transitive if and only if Nf(U,V) ∈ B for any two nonempty open sets U,V ⊂ X;

(2) f is syndectically transitive if and only if Nf(U,V) ∈ Fs for any two nonempty open sets U,V ⊂ X,
where Fs is the collection of all syndetic subsets of Z+;

(3) f is topologically ergodic if and only if Nf(U,V) ∈ Fe for any two nonempty open sets U,V ⊂ X,
where Fe = {A ⊂ Z+ : A has positive upper density};

(4) f is topologically weak mixing if and only if Nf(U,V) ∈ Ft for any two nonempty open sets U,V ⊂ X,
where Ft is the collection of all thick subsets of Z+;

(5) f is topologically mixing if and only if Nf(U,V) ∈ Fcof for any two nonempty open sets U,V ⊂ X,
where Fcof is the collection of all cofinite subsets of Z+;

(6) f is sensitive if and only if there exists δ > 0 such that Nf(V , δ) ∈ B for any nonempty open set V ⊂ X;

(7) f is syndetically sensitive if and only if there exists δ > 0 such that Nf(V , δ) ∈ Fs for any nonempty
open set V ⊂ X;

(8) f is cofinitely sensitive if and only if there exists δ > 0 such that Nf(V , δ) ∈ Fcof for any nonempty
open set V ⊂ X;

(9) f is ergodically sensitive if and only if there exists δ > 0 such that Nf(V , δ) ∈ Fe for any nonempty
open set V ⊂ X.

For a Furstenberg family F, its dual family is

κF = {F ∈ P : F∩ F ′ 6= ∅,∀F ′ ∈ F}.

It is easily seen that
κF = {F ∈ P : Z+ \ F /∈ F},

and that if F is a Furstenberg family then so is κF. A Furstenberg family F is said to be full if and only if
F · κF ⊂ B, where F · κF = {F ∩G : F ∈ F,G ∈ κF}. By the definition we can see that B, Fs, Ft, and Fcof

are full. Furthermore, it is easily verified that if F is a given full Furstenberg family, and if A = {ai : ai <
ai+1, i ∈ {0, 1, · · · }} ∈ F, then for any given integer m > 0, A ′ = {ai : ai < ai+1, i ∈ {m,m+ 1, · · · }} ∈ F.

Theorem 3.1. Let (X,d) be a metric space and F be a full family, and let (fn) be a sequence of continuous
functions from X into itself such that (fn) converges uniformly to a function f. Then f is F-transitive if and only if
N(fnn)

(U,V) ∈ F for any two nonempty open subsets U,V ∈ X, where

N(fnn)
(U,V) = {m ∈ Z+ : fmm(U)∩ V 6= ∅}.

Proof. Let U,V ⊂ X be nonempty and open subsets. Choose v ∈ V and ε > 0 such that B(v, ε) ⊂ V . By the
F-transitivity of f and the assumption that limn→∞ d∞(fnn, fn) = 0,

U∩ f−n(B(v,
1
2
ε)) 6= ∅

and

d∞(fmm, fm) <
1
2
ε,

for some integer n > 0 and any integer m > n, where

B(v,
1
2
ε) = {u ∈ X : d(u, v) <

1
2
ε}.
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Take
u ∈ U∩ f−n(B(v,

1
2
ε)).

Then
d(fnn(u), v) 6 d(f

n
n(u), f

n(u)) + d(fn(u), v) 6 d∞(fnn, fn) +
1
2
ε < ε.

This implies that
fnn(u) ∈ B(v, ε) ⊂ V .

Since

(−∞,m]∩ {n ∈N : U∩ (fn)−n(B(v,
1
2
ε)) 6= ∅} = (−∞,m]∩ {n ∈N : fnn(U)∩B(v,

1
2
ε) 6= ∅} ∈ F,

we have
(−∞,m]∩ {n ∈N : fnn(U)∩ V 6= ∅} ∈ F.

This means that
{n ∈N : fnn(U)∩ V 6= ∅} ∈ F.

Now, we suppose that
{n ∈N : fnn(U)∩ V 6= ∅} ∈ F,

for any two nonempty and open subsets U,V ⊂ X. Choose v ∈ V and ε > 0 with

B(v, ε) ⊂ V .

Then
U∩ f−n

n (B(v,
1
2
ε)) 6= ∅ and d∞(fmm, fm) <

1
2
ε,

for some integer n > 0 and any integer m > n. Fix

u ∈ U∩ f−n
n (B(v,

1
2
ε)).

Then we have
d(fn(u), v) 6 d(fn(u), fnn(u)) + d(f

n
n(u), v) 6 d∞(fnn, fn) +

1
2
ε < ε.

This implies that
fn(u) ∈ B(v, ε) ⊂ V .

Since

(−∞,m]∩ {n ∈N : U∩ f−n(B(v,
1
2
ε)) 6= ∅} ∈ F,

(−∞,m]∩ {n ∈N : fn(U)∩B(v, 1
2
ε) 6= ∅} ∈ F.

This means that
(−∞,m]∩ {n ∈N : fn(U)∩ V 6= ∅} ∈ F.

Consequently,
{n ∈N : fn(U)∩ V 6= ∅} ∈ F.

By the definition, f is F-transitive. This completes the proof.

Remark 3.2. Theorem 3.1 extends and improves the corresponding results in [14, 19].
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A dynamical system (X, f) is weakly F-sensitive (see [3]) if there exists some ε > 0 (a constant of weak
F-sensitivity for f) such that for any open subset U ⊂ X there are two points x,y ∈ U such that the pair
(x,y) is not F-ε-asymptotic, that is,

{n ∈ Z+ : d(fn(x), fn(y)) > ε} ∈ F.

Theorem 3.3. Let (X,d) be a metric space and F be a given full family, and let (fn) be a sequence of continuous
functions from X into itself such that (fn) converges uniformly to a function f. Then f is F-sensitive if and only if
there is δ > 0 such that N(fn)(V , δ) ∈ F for any nonempty open set V ⊂ X, where N(fnn)

(V , δ) = {n ∈ Z+ : there
are x,y ∈ V with d(fnn(x), fnn(y)) > δ}.

Proof. Since lim
n→∞d∞(fnn, fnn) = 0, for any ε > 0, there is an integer n0 > 0 such that

|d(fnn(x), f
n
n(y)) − d(f

n(x), fn(y))| 6 d(fnn(x), f
n(x)) + d(fnn(y), f

n(y)) <
1
4
ε+

1
4
ε =

1
2
ε, (3.1)

for any x,y ∈ X and any integer n > n0.
Now we suppose on the contrary that there is δ > 0 such that N(fn)(V , δ) ∈ F for any nonempty open

set V ⊂ X, and that f is not F-sensitive. Then, for every ε > 0 and any integer m > n0, there are an integer
k > m with k ∈ F, an x ∈ X and a neighborhood U of x such that for all x ′,y ∈ U,

d(fk(x ′), fk(y)) <
ε

2
.

By (3.1),
d(fkk(x

′), fkk(y)) < ε,

for all x ′,y ∈ U. This is a contradiction.
Assume that f is F-sensitive, and that for any δ > 0, there is nonempty open set V ⊂ X such that

N(fn)(V , δ) /∈ F. Then, for any ε > 0, there are x ∈ X and a neighborhood U of x such that N(fnn)
(U, 1

2ε) /∈
F. This implies that for any integer m > n0, there is an integer k > m with k /∈ N(fnn)

(U, 1
2ε). By (3.1),

d(fk(x), fk(y)) < ε,

for all x,y ∈ U. It is a contradiction. Thus, the proof is complete.

Remark 3.4. Theorem 3.3 extends and improves the corresponding results in [14, 19].

Theorem 3.5. Let (X,d) be a metric space and F be a given full family, and let (fn) be a sequence of continuous
functions from X into itself such that (fn) converges uniformly to a function f. Then f is weakly F-sensitive if
and only if there is ε > 0 such that for any nonempty open set V ⊂ X, there are two points x,y ∈ V with
{n ∈ Z+ : d(fnn(x), fnn(y)) > ε} ∈ F.

Proof. Now we suppose on the contrary that there is ε > 0 such that for any nonempty open set V ⊂ X,
there are two points x,y ∈ V with {n ∈ Z+ : d(fnn(x), fnn(y)) > ε} ∈ F, and that f is not weakly F-sensitive.
By (3.1), for the above ε > 0, we get

|d(fnn(x), f
n
n(y)) − d(f

n(x), fn(y))| 6 d(fnn(x), f
n(x)) + d(fnn(y), f

n(y)) <
1
4
ε+

1
4
ε =

1
2
ε, (3.2)

for any x,y ∈ V and any integer n > n0. Then, for the above ε > 0, there is a nonempty open set V ⊂ X
such that

[n0,+∞)∩ {k ∈ Z+ : d(fk(x), fk(y)) >
3ε
2
} /∈ F,

for any x,y ∈ V . By (3.2),
d(fnn(x), f

n
n(y)) > ε,
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for any x,y ∈ V and any

n ∈ [n0,+∞)∩ {k ∈ Z+ : d(fk(x), fk(y)) >
3ε
2
}.

This implies that
[n0,+∞)∩ {k ∈ Z+ : d(fkk(x), f

k
k(y)) > ε} /∈ F,

for any x,y ∈ V . So,
{k ∈ Z+ : d(fkk(x), f

k
k(y)) > ε} /∈ F,

for any x,y ∈ V . It is a contradiction.
Assume that f is weakly F-sensitive, and that for any ε > 0, there is a nonempty open set V ⊂ X such

that
{k ∈ Z+ : d(fkk(x), f

k
k(y)) > ε} /∈ F,

for any x,y ∈ V . By the definition, there is some ε > 0 such that

{k ∈ Z+ : d(fk(x), fk(y)) >
3
2
ε} ∈ F,

for some x,y ∈ V . This implies that

[n0,+∞)∩ {k ∈ Z+ : d(fk(x), fk(y)) >
3
2
ε} ∈ F.

By (3.1),
d(fkk(x), f

k
k(y)) > ε,

for all x,y ∈ V and any

k ∈ [n0,+∞)∩ {k ∈ Z+ : d(fk(x), fk(y)) >
3
2
ε}.

This means that
[n0,+∞)∩ {k ∈ Z+ : d(fkk(x), f

k
k(y)) > ε} ∈ F,

for all x,y ∈ V . So,
{k ∈ Z+ : d(fkk(x), f

k
k(y)) > ε} ∈ F,

for all x,y ∈ V . It is a contradiction. Thus, the proof is complete.

Theorem 3.6. Let (X,d) be a metric space and F1,F2 be two given full families, and let (fn) be a sequence of
continuous functions from X into itself such that (fn) converges uniformly to a function f. Then, f is (F1,F2)-
sensitive if and only if there is ε > 0 such that each point x ∈ X is a limit of points y ∈ X such that the pair (x,y)
satisfies that

{n ∈ Z+ : d(fnn(x), f
n
n(y)) < δ} ∈ F1,

for any δ > 0, and that
{n ∈ Z+ : d(fnn(x), f

n
n(y)) > ε} ∈ F2.

Proof. Now we suppose that there is ε > 0 such that each point x ∈ X is a limit of points y ∈ X such that
the pair (x,y) satisfies that

{n ∈ Z+ : d(fnn(x), f
n
n(y)) < δ} ∈ F1,

for any δ > 0, and that
{n ∈ Z+ : d(fnn(x), f

n
n(y)) > ε} ∈ F2.

By (3.1), for the above ε > 0, we get

|d(fnn(x), f
n
n(y)) − d(f

n(x), fn(y))| 6 d(fnn(x), f
n(x)) + d(fnn(y), f

n(y)) <
1
4
ε+

1
4
ε =

1
2
ε, (3.3)
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for any x,y ∈ X and any integer n > n0. So, we have that

d(fn(x), fn(y)) > d(fnn(x), f
n
n(y)) −

1
2
ε,

for any x,y ∈ X and any integer n > n0. This implies that if a pair (x,y) ∈ X×X satisfies that

{n ∈ Z+ : d(fnn(x), f
n
n(y)) > ε} ∈ F2,

then the pair (x,y) ∈ X×X satisfies that

{n ∈ Z+ : d(fn(x), fn(y)) >
1
2
ε} ∈ F2.

By (3.1), for any given δ > 0, there is an integer n0 > 0 such that

|d(fnn(x), f
n
n(y)) − d(f

n(x), fn(y))| 6 d(fnn(x), f
n(x)) + d(fnn(y), f

n(y)) <
1
4
δ+

1
4
δ =

1
2
δ, (3.4)

for any x,y ∈ X and any integer n > n0. Therefore,

d(fn(x), fn(y)) 6 d(fnn(x), f
n
n(y)) +

1
2
δ,

for any x,y ∈ X and any integer n > n0. This means that if a pair (x,y) ∈ X×X satisfies that

{n ∈ Z+ : d(fnn(x), f
n
n(y)) < δ} ∈ F1,

for any δ > 0, then the pair (x,y) ∈ X×X satisfies that

{n ∈ Z+ : d(fn(x), fn(y)) <
3
2
δ} ∈ F1,

for any δ > 0. By the definition and the above argument, f is (F1,F2)-sensitive.
Assume that f is (F1,F2)-sensitive. Then, by the definition, there is ε > 0 such that each point x ∈ X is

a limit of points y ∈ X such that the pair (x,y) ∈ X×X satisfies that

{n ∈ Z+ : d(fn(x), fn(y)) < δ} ∈ F1,

for any δ > 0, and
{n ∈ Z+ : d(fn(x), fn(y)) > ε} ∈ F2.

By (3.3), for the above ε > 0 and any x,y ∈ X, there exists a positive integer n0 such that

d(fnn(x), f
n
n(y)) > d(f

n(x), fn(y)) −
1
2
ε,

for any x,y ∈ X and any integer n > n0. This implies that if a pair (x,y) ∈ X×X satisfies that

{n ∈ Z+ : d(fn(x), fn(y)) > ε} ∈ F2,

then the pair (x,y) ∈ X×X satisfies that

{n ∈ Z+ : d(fnn(x), f
n
n(y)) >

1
2
ε} ∈ F2.

By (3.4), for any given δ > 0, there is an integer n0 > 0 such that

d(fnn(x), f
n
n(y)) 6 d(f

n(x), fn(y)) +
1
2
δ,
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for any x,y ∈ X and any integer n > n0. This means that if a pair (x,y) ∈ X×X satisfies that

{n ∈ Z+ : d(fn(x), fn(y)) < δ} ∈ F1,

for any δ > 0, then the pair (x,y) ∈ X×X satisfies that

{n ∈ Z+ : d(fnn(x), f
n
n(y)) <

3
2
δ} ∈ F1,

for any δ > 0. By the above argument, there is ε > 0 such that each point x ∈ X is a limit of points y ∈ X
such that the pair (x,y) ∈ X×X satisfies that

{n ∈ Z+ : d(fnn(x), f
n
n(y)) < δ} ∈ F1,

for any δ > 0, and
{n ∈ Z+ : d(fnn(x), f

n
n(y)) > ε} ∈ F2.

We are done.

The following lemma which comes from [2] is needed.

Lemma 3.7. Let (X,d) be a compact metric space, and let (fn) be a sequence of continuous functions from X into
itself such that (fn) converges uniformly to a function f. Then given ε > 0 and a positive integer l there exists a
positive integer n0 (possibly depending on l) such that for any integer n > n0, d(fln(x), fl(x)) < ε for all x ∈ X.

Theorem 3.8. Let (X,d) be a compact metric space and F be a fixed family, and let (fn) be a sequence of continuous
functions from X into itself such that (fn) converges uniformly to a function f. If the integer n0 in Lemma 3.7 is
independent of l and f is F-sensitive with δ as a constant of sensitivity, then there exists an integer N > 0 such that
fn is F-sensitive with 1

3δ as a constant of sensitivity for any n > N.

Proof. Suppose that f is F-sensitive with δ > 0 as a constant of F-sensitivity for f. Then, by the definition,
for any nonempty and open set V ⊂ X, Nf(V , δ) ∈ F. By hypothesis and Lemma 3.7, there is an integer
N > 0, which is independent of l, such that for any integer n > N,

d(fln(x), f
l(x)) <

1
3
δ,

for any integer l > 1 and any x ∈ X. This means that

d(fjn(x), f
j(x)) <

1
3
δ,

for any integer n > N, any j ∈ Nf(V , δ), and any x ∈ X. So, we have that

d(fjn(x), f
j
n(y)) > d(f

j(x), fj(y)) − d(fjn(x), f
j(x)) − d(fjn(y), f

j(y)) > δ− 2 · 1
3
δ =

1
3
δ,

for any integer n > N, any j ∈ Nf(V , δ) and any x,y ∈ V with x 6= y. This implies that

Nf(V , δ) ⊂ N(fn)(V ,
1
3
δ),

for any integer n > N. As

Nf(V , δ) ∈ F, N(fn)(V ,
1
3
δ) ∈ F,

for any integer n > N. Thus, the proof is complete.

Remark 3.9. Theorem 3.8 extends and improves the corresponding results in [12].
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Theorem 3.10. Let (X,d) be a compact metric space and F be a fixed family, and let (fn) be a sequence of continuous
functions from X into itself such that (fn) converges uniformly to a function f. If the integer n0 in Lemma 3.7 is
independent of l and f is weakly F-sensitive with δ as a constant of weak F-sensitivity, then there exists an integer
N > 0 such that fn is weakly F-sensitive with 1

3δ as a constant of weak F-sensitivity for any integer n > N.

Proof. Suppose that f is weakly F-sensitive with δ as a constant of weak F-sensitivity. Then, by the
definition, for any open subset U ⊂ X there are two points x,y ∈ U such that

{n ∈ Z+ : d(fn(x), fn(y)) > δ} ∈ F.

By hypothesis and Lemma 3.7, there is an integer N > 0, which is independent of l, such that for any
integer n > N,

d(fln(x), f
l(x)) <

1
3
δ,

for any integer l > 1 and any x ∈ X. This means that

d(fjn(x), f
j(x)) <

1
3
δ,

for any integer n > N, any j ∈ {n ∈ Z+ : d(fn(x), fn(y)) > δ}, and any x ∈ X. So, for the above pair (x,y)
we have that

d(fjn(x), f
j
n(y)) > d(f

j(x), fj(y)) − d(fjn(x), f
j(x)) − d(fjn(y), f

j(y)) > δ− 2 · 1
3
δ =

1
3
δ,

for any integer n > N and any j ∈ {n ∈ Z+ : d(fn(x), fn(y)) > δ}. This implies that

{n ∈ Z+ : d(fn(x), fn(y)) > δ} ⊂ {j ∈ Z+ : d(fjn(x), f
j
n(y)) >

1
3
δ},

for any integer n > N. As

{n ∈ Z+ : d(fn(x), fn(y)) > δ} ∈ F, {j ∈ Z+ : d(fjn(x), f
j
n(y)) >

1
3
δ} ∈ F,

for any integer n > N. By the definition, fn is weakly F-sensitive with 1
3δ as a constant of weak F-

sensitivity for any integer n > N. Thus, the proof is complete.

Theorem 3.11. Let (X,d) be a compact metric space and F1,F2 be two fixed families, and let (fn) be a sequence
of continuous functions from X into itself such that (fn) converges uniformly to a function f. If the integer n0 in
Lemma 3.7 is independent of l and f is (F1,F2)-sensitive with δ as a constant of (F1,F2)-sensitivity, then there
exists an integer N > 0 such that fn is (F1,F2)-sensitive with 1

3δ as a constant of (F1,F2)-sensitivity for any
integer n > N.

Proof. Suppose that f is (F1,F2)-sensitive with δ as a constant of (F1,F2)-sensitivity. Then, by hypothesis
and the definition, every point x ∈ X is a limit of points y ∈ X such that the pair (x,y) ∈ X× X satisfies
that

{n ∈ Z+ : d(fn(x), fn(y)) < ε} ∈ F1,

for any ε > 0, and that
{n ∈ Z+ : d(fn(x), fn(y)) > δ} ∈ F2.

By hypothesis and Lemma 3.7, there is an integer N > 0, which is independent of l, such that for any
integer n > N,

d(fln(x), f
l(x)) <

1
3
δ,
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for any integer l > 1 and any x ∈ X. This means that

d(fjn(x), f
j(x)) <

1
3
δ,

for any integer n > N, any j ∈ {n ∈ Z+ : d(fn(x), fn(y)) > δ}, and any x ∈ X. So, if the pair (x,y) satisfies
that

{n ∈ Z+ : d(fn(x), fn(y)) > δ} ∈ F2,

then we have that

d(fjn(x), f
j
n(y)) > d(f

j(x), fj(y)) − d(fjn(x), f
j(x)) − d(fjn(y), f

j(y)) > δ− 2 · 1
3
δ =

1
3
δ,

for any integer n > N and any j ∈ {n ∈ Z+ : d(fn(x), fn(y)) > δ}. This implies that

{n ∈ Z+ : d(fn(x), fn(y)) > δ} ⊂ {j ∈ Z+ : d(fjn(x), f
j
n(y)) >

1
3
δ},

for any integer n > N. As

{n ∈ Z+ : d(fn(x), fn(y)) > δ} ∈ F2, {j ∈ Z+ : d(fjn(x), f
j
n(y)) >

1
3
δ} ∈ F2,

for any integer n > N.
By (3.1), for any given ε > 0, there is an integer n0 > 0 such that

|d(fnn(x), f
n
n(y)) − d(f

n(x), fn(y))| 6 d(fnn(x), f
n(x)) + d(fnn(y), f

n(y)) <
1
4
ε+

1
4
ε =

1
2
ε,

for any x,y ∈ X and any integer n > n0. Therefore,

d(fnn(x), f
n
n(y)) 6 d(f

n(x), fn(y)) +
1
2
ε,

for any x,y ∈ X and any integer n > n0. This means that if a pair (x,y) ∈ X×X satisfies that

{n ∈ Z+ : d(fn(x), fn(y)) < ε} ∈ F1,

for any ε > 0, then the pair (x,y) ∈ X×X satisfies that

{j ∈ Z+ : d(fjn(x), f
j
n(y)) <

3
2
ε} ∈ F1,

for any n > n0. By the definition and the above argument, fn is (F1,F2)-sensitive for any integer n >
max{n0,N}. Thus, the proof is complete.
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