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1. Introduction and preliminaries

In Banach spaces, iterative construction of fixed points of nonexpansive mappings and their general-
izations depend on the linear structure of the space. A nonlinear framework for the iterative construction
of fixed points of certain classes of nonlinear mappings is a metric space embedded with a convex struc-
ture. Different notions of convexity in metric spaces are available (see, for example Kohlenbach [11],
Menger [13], Reich and Shafrir [15], Penot [14] and Takahashi [17]).

A metric space (X,d) is called a convex metric space [13] if

(i) there exists a family z of metric segments such that any two points x,y in X are endpoints of a
unique metric segment [x,y] ∈ z ([x,y] is an isometric image of [0,d(x,y)]);

(ii) the unique point z = αx⊕ (1 −α)y of [x,y] satisfies

d(x, z) = (1 −α)d(x,y), and d(z,y) = αd(x,y), for α ∈ I = [0, 1] .

Above definition provides that 0x⊕ 1y = y, 1x⊕ 0y = x and αx⊕ (1 −α) x = x.
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A convex metric space X is hyperbolic if

d (αx⊕ (1 −α)y,αz⊕ (1 −α)w) 6 αd (x, z) + (1 −α)d (y,w) ,

for all x,y, z,w ∈ X and α ∈ I (see also [1]).
For z = w, the hyperbolic inequality reduces to:

d (αx⊕ (1 −α)y, z) 6 αd (x, z) + (1 −α)d (y, z) , (1.1)

which is the convex structure inequality due to Takahashi [17].
A subset K of X is convex, if αx⊕ (1 − α)y ∈ K for all x,y ∈ K and α ∈ I. Normed spaces and their

subsets are linear hyperbolic spaces while CAT(0) spaces qualify for the criteria of nonlinear hyperbolic
spaces. For a fixed a ∈ X, r > 0 and ε > 0, set

δ(r, ε) = inf
d(a,x)6r,d(a,y)6r,

d(x,y)>rε

(
1 −

1
r
d

(
a,

1
2
x⊕ 1

2
y

))
,

for any x,y ∈ X. Then the hyperbolic space X is uniformly convex if δ(r, ε) > 0.
From now onwards we assume that X is a uniformly convex hyperbolic space with the property that

for every s > 0, ε > 0, there exists η(s, ε) > 0 depending on s and ε such that δ(r, ε) > η(s, ε) > 0 for any
r > s.

Let T : K → K be a mapping. A point x ∈ K is a fixed point of T , if Tx = x. Denote by F(T), the set of
all fixed points of T . The mapping T is

(i) nonexpansive, if d(Tx, Ty) 6 d(x,y) for all x,y ∈ K;

(ii) quasi-nonexpansive, if d(Tx,y) 6 d(x,y) for all x ∈ K,y ∈ F(T);

(iii) said to satisfy condition (C), if 1
2d(x, Tx) 6 d(x,y) implies d(Tx, Ty) 6 d(x,y) for all x,y ∈ K.

It has been shown in [16] that condition (C) is weaker than nonexpansiveness but stronger than quasi-
nonexpansiveness. Moreover, if a mapping T satisfies condition (C), it may or may not be continuous.

We present the following example (see also [16]).

Example 1.1. Take X = R,K = [0, 3] , T1, T2 : K→ K are given by

T1 (x) =

{
0 if x 6= 3,
2
3 if x = 3,

and

T2 (x) =

{
0 if x 6= 3,
3
2 if x = 3.

Then we observe that

(i) T1 satisfies condition (C) and T1 is not nonexpansive as it is discontinuous at x = 3;

(ii) F (T2) = {0} and T2 is quasi-nonexpansive but T2 does not satisfy condition (C).

Denote by N = {1, 2, 3, · · · , r}, the indexing set. To reduce computational cost of a two-step iterative
algorithm for two finite families {Sn : n ∈ N} and {Tn : n ∈ N} of nonexpansive mappings on a convex
subset K of a Banach space, Khan et al. [9] introduced the following one-step implicit iterative algorithm
(see also [12]):

x0 ∈ K, xn = αnxn−1 +βnTnxn + γnSnxn,



S. H. Khan, H. Fukhar-ud-din, J. Nonlinear Sci. Appl., 10 (2017), 734–743 736

where Sn = Sn(mod r) and Tn = Tn(mod r), 0 6 αn, βn,γn 6 1 and satisfy αn +βn + γn = 1.
Keeping in mind that explicit iterative algorithm is simpler than an implicit iterative algorithm and

has less computational cost, Gunduz and Akbulut [6] constructed a one-step explicit iterative algorithm
for two finite families {Sn : n ∈ N} and {Tn : n ∈ N} of nonexpansive mappings in a hyperbolic space as
under

x1 ∈ K, xn+1 = αnTnxn ⊕ (1 −αn)

(
βn

1 −αn
Snxn ⊕

(
1 −

βn

1 −αn

)
xn

)
, (1.2)

where Sn = Sn(mod r), Tn = Tn(mod r), 0 < b 6 αn, βn 6 c < 1, αn +βn < 1.
Nonexpansive mappings are always continuous but mappings satisfying condition (C) may or may

not be continuous. We study (1.2) for discontinuous mappings, namely mappings satisfying condition
(C). For more details about convergence analysis of different iterative algorithms for different classes of
mappings, we refer the reader to [7, 8].

Let {xn} be a bounded sequence in a metric space X. We define a functional r(., {xn}) : X→ R+ by

r(x, {xn}) = lim sup
n→∞ d(x, xn),

for all x ∈ X. The asymptotic radius of {xn} with respect to K ⊆ X is defined as

r({xn}) = inf
x∈K

r (x, {xn}) .

A point y ∈ K is called the asymptotic center of {xn} with respect to K ⊆ X if

r(y, {xn}) 6 r(x, {xn}),

for all x ∈ K. The set of all asymptotic centers of {xn} is denoted by A({xn}).
A sequence {xn} in (X,d) :

(iv) is Fejér monotone with respect to a subset K of X, if d(xn+1, x) 6 d(xn, x) for all x ∈ K;

(v) 4-converges to x ∈ X, if x is the unique asymptotic center of {un} for every subsequence {un} of
{xn} [10]. In this case, we write x as 4-limit of {xn}, i.e., 4-limn xn = x.

To develop our main section, we need the following lemmas.

Lemma 1.2 ([16]). Let T be a mapping on a subset K of a metric space X. Assume that T satisfies condition (C) and
has a fixed point. Then T is quasi-nonexpansive.

Lemma 1.3 ([16]). Let T be a mapping on a subset K of a metric space X. If T satisfies condition (C), then

d (x, Ty) 6 3d (Tx, x) + d (x,y) ,

for all x,y ∈ K.

Lemma 1.4 ([2]). Let K be a nonempty closed subset of a complete metric space (X,d) and {xn} be Fejér monotone
with respect to K. Then {xn} converges to p ∈ K, if and only if limn→∞ d(xn,K) = 0.

Lemma 1.5 ([3]). Let K be a nonempty, closed and convex subset of a complete uniformly convex hyperbolic space
X. Then every bounded sequence {xn} in X has a unique asymptotic center with respect to K.

Lemma 1.6 ([3]). Let K be a nonempty closed and convex subset of a uniformly convex hyperbolic space and {xn}

a bounded sequence in K such that A({xn}) = {y} and r ({xn}) = ρ. If {ym} is another sequence in K such that
limm→∞ r(ym, {xn}) = ρ, then limm→∞ ym = y.
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Lemma 1.7 ([5]). Let X be a uniformly convex hyperbolic space. Let x ∈ X and {an} be a sequence in [b, c] for some
b, c ∈ (0, 1). If {un} and {vn} are sequences in X such that

lim sup
n−→∞ d(un, x) 6 r, lim sup

n−→∞ d(vn, x) 6 r,

and
lim
n−→∞d(anun ⊕ (1 − an) vn, x) = r,

for some r > 0, then limn→∞ d(un, vn) = 0.

From now onwards, we set F = ∩i∈N (F(Ti)∩ F(Si)) 6= φ for two finite families {Tn : n ∈ N} and
{Sn : n ∈ N} of mappings on K.

2. Main results

We start with the following lemma.

Lemma 2.1. Let K be a closed and convex subset of a hyperbolic space X and the two finite families {Sn : n ∈ N}

and {Tn : n ∈ N} of mappings on K, satisfy condition (C). If F 6= φ, then for the sequence {xn} defined in (1.2), we
have the followings:

(a) {xn} is Fejér monotone with respect to F;

(b) limn→∞ d(xn,p) exists for each p ∈ F;

(c) limn→∞ d(xn, F) exists.

Proof. Let p ∈ F. In the light of Lemma 1.2, we apply inequality (1.1) to the iterative algorithm (1.2) and
get that

d (xn+1,p) = d
(
αnTnxn ⊕ (1 −αn)

(
βn

1 −αn
Snxn ⊕

(
1 −

βn

1 −αn

)
xn

)
,p

)
6 αnd (Tnxn,p) +βnd(Snxn,p) + (1 −αn −βn)d(xn,p)
6 αnd (xn,p) +βnd(xn,p) + (1 −αn −βn)d(xn,p)
= d(xn,p).

The above inequality provides that

(a) {xn} is Fejér monotone with respect to F; and

(b) limn→∞ d(xn,p) exists for each p ∈ F.

Also the inequality infp∈F d (xn+1,p) 6 infp∈F d (xn,p) gives that

(c) limn→∞ d(xn, F) exists.

Lemma 2.2. Let K be a closed and convex subset of a complete uniformly convex hyperbolic space X and let
{Sn : n ∈ N} and {Tn : n ∈ N} be two finite families of mappings on K satisfying condition (C). If {xn} is any
bounded sequence in K such that

lim
n→∞d (xn,Slxn) = 0 = lim

n→∞d (xn, Tlxn) ,

for all l ∈ N, then F 6= φ.
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Proof. Since {xn} is bounded, therefore {xn} has a unique asymptotic centre, that is, A({xn}) = {x}. We
show that x ∈ F (Sl) . By Lemma 1.3, we have

d (xn,Slx) 6 3d (xn,Slxn) + d (xn, x) ,

which further implies

lim sup
n→∞ d (xn,Slx) 6 3 lim sup

n→∞ d (xn,Slxn) + lim sup
n→∞ d (xn, x)

= lim sup
n→∞ d (xn, x) .

By the uniqueness of asymptotic centers, we have that Slx = x. Similarly, we can prove that Tlx = x.
Hence F 6= φ.

Lemma 2.3. Let K be a closed and convex subset of a hyperbolic space X and let {Sn : n ∈ N} and {Tn : n ∈ N} be
two finite families of mappings on K satisfying condition (C) and {xn} be given in (1.2). Then {xn} is bounded and

lim
n→∞d (xn,Slxn) = 0 = lim

n→∞d (xn, Tlxn) ,

for all l ∈ N.

Proof. Let p ∈ F. Then by Lemma 2.1, limn→∞ d(xn,p) exists and therefore {xn} is bounded. Next, we
show that

lim
n→∞d (xn,Slxn) = 0 = lim

n→∞d (xn, Tlxn) ,

for all l ∈ N. Assume that limn→∞ d(xn,p) = c. The result is trivial, if c=0. If c>0, then limn→∞ d(xn,p)=
c can be written as

lim
n→∞d

(
αnTnxn ⊕ (1 −αn)

(
βn

1 −αn
Snxn ⊕

(
1 −

βn

1 −αn

)
xn

)
,p

)
= c. (2.1)

Since Tn satisfies condition (C) and has a fixed point p, therefore d(Tnxn,p) 6 d(xn,p) which further
implies that lim supn→∞ d(Tnxn,p) 6 c.

Also the inequality

d

(
βn

1 −αn
Snxn ⊕

(
1 −

βn

1 −αn

)
xn,p

)
6

βn

1 −αn
d(Snxn,p) +

(
1 −

βn

1 −αn

)
d(xn,p)

6
βn

1 −αn
d(xn,p) +

(
1 −

βn

1 −αn

)
d(xn,p)

= d(xn,p),

provides that

lim sup
n→∞ d

(
βn

1 −αn
Snxn ⊕

(
1 −

βn

1 −αn

)
xn,p

)
6 c. (2.2)

Setting x = p, r = c, an = αn, wn = Tnxn, zn = βn
1−αn

Snxn ⊕
(

1 − βn
1−αn

)
xn in Lemma 1.7 together

with (2.1) and (2.2), we get

lim
n→∞d

(
Tnxn,

βn

1 −αn
Snxn ⊕

(
1 −

βn

1 −αn

)
xn

)
= 0. (2.3)

Observe that

d(xn+1, Tnxn) = d
(
αnTnxn ⊕ (1 −αn)

(
βn

1 −αn
Snxn ⊕

(
1 −

βn

1 −αn

)
xn

)
, Tnxn

)
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6 (1 −αn)d

(
βn

1 −αn
Snxn ⊕

(
1 −

βn

1 −αn

)
xn, Tnxn

)
6 (1 − a)d

(
βn

1 −αn
Snxn ⊕

(
1 −

βn

1 −αn

)
xn, Tnxn

)
.

Taking lim supn→∞ on both sides in the above inequality and using (2.3), we have

lim
n→∞d(xn+1, Tnxn) = 0. (2.4)

Moreover by triangle inequality,

d(xn+1,p) 6 d (xn+1, Tnxn) + d
(
Tnxn,

βn

1 −αn
Snxn ⊕

(
1 −

βn

1 −αn

)
xn

)
+ d

(
βn

1 −αn
Snxn ⊕

(
1 −

βn

1 −αn

)
xn,p

)
.

Taking lim infn→∞ on both sides of the above estimate and then utilizing (2.3) and (2.4), we have

c 6 lim inf
n→∞ d

(
βn

1 −αn
Snxn ⊕

(
1 −

βn

1 −αn

)
xn,p

)
. (2.5)

Combining (2.2) and (2.5), we get

lim
n→∞d

(
βn

1 −αn
Snxn ⊕

(
1 −

βn

1 −αn

)
xn,p

)
= c. (2.6)

Choosing x = p, r = c, an = βn
1−αn

, wn = Snxn, zn = xn in Lemma 1.7 together with (2.6), we get

lim
n→∞d(xn,Snxn) = 0. (2.7)

From the inequality

d(xn+1, xn) 6 d
(
αnTnxn ⊕ (1 −αn)

(
βn

1 −αn
Snxn ⊕

(
1 −

βn

1 −αn

)
xn

)
, xn

)
6 αnd(Tnxn, xn) + (1 −αn)d

(
βn

1 −αn
Snxn ⊕

(
1 −

βn

1 −αn

)
xn, xn

)
6 αnd (Tnxn, xn) +βnd (Snxn, xn)
6 αn {d (xn+1, Tnxn) + d (xn+1, xn)}+βnd (Snxn, xn) ,

we obtain that

d(xn+1, xn) 6
αn

1 −αn
d (xn+1, Tnxn) +

βn

1 −αn
d (Snxn, xn)

6
c

1 − c
d (xn+1, Tnxn) +

c

1 − c
d (Snxn, xn) .

Taking lim supn→∞ on both sides in the above inequality and then using (2.4) and (2.7), we have

lim
n→∞d(xn+1, xn) = 0. (2.8)

For each l < r, the inequality

d(xn, xn+l) 6 d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+l−1, xn+l),
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and (2.8) provide that
lim
n→∞d(xn, xn+l) = 0, for each l < r. (2.9)

Since
d(xn, Tnxn) 6 d(xn, xn+1) + d(xn+1, Tnxn),

therefore it follows that
lim
n→∞d(xn, Tnxn) = 0.

Using Lemma 1.2, we estimate

d(xn,Sn+lxn) 6 d(xn, xn+l) + d(xn+l,Sn+lxn+l) + d(Sn+lxn+l,Sn+lxn)
6 d(xn, xn+l) + 2d(xn+l,Sn+lxn+l) + d(xn+l,Sn+lxn)
6 2d(xn, xn+l) + 5d(xn+l,Sn+lxn+l).

Therefore by lim supn→∞ on both sides in the above inequality and then using (2.7) and (2.9), we get that

lim
n→∞d(xn,Sn+lxn) = 0, for each l ∈ N.

Similarly, we have
lim
n→∞d(xn, Tn+lxn) = 0, for each l ∈ N.

Since for each l ∈ N, the sequence {d(xn,Slxn)} is a subsequence of ∪Nl=1{d(xn,Sn+lxn)} and

lim
n→∞d(xn,Sn+lxn) = 0,

for each l ∈ N, therefore

lim
n→∞d(xn,Slxn) = 0 = lim

n→∞d(xn, Tlxn), for each l ∈ N.

Now we prove our4-convergence result by using the algorithm (1.2) without requiring the continuity
of the mappings.

Theorem 2.4. Let K be a closed and convex subset of a hyperbolic space X and let {Sn : n ∈ N} and {Tn : n ∈ N}

be two finite families of mappings on K satisfying condition (C) and {xn} be given in (1.2). If F 6= φ, then {xn}

4-converges to an element of F.

Proof. In the proof of Lemma 2.1, we have that {xn} is bounded. Therefore {xn} has a unique asymptotic
centre, that is, A({xn}) = {x}. Let {un} be any subsequence of {xn} such that A({un}) = {u} and

lim
n→∞d(un, Tlun) = 0 = lim

n→∞d(un,Slun),

for each l ∈ N (by Lemma 2.3).
By Lemma 2.2, we get that u ∈ F. Therefore limn→∞ d(xn,u) exists by Lemma 2.1. If x 6= u, then by

the uniqueness of asymptotic centres, we have

lim sup
n→∞ d(un,u) < lim sup

n→∞ d(un, x)

6 lim sup
n→∞ d(xn, x)

< lim sup
n→∞ d(xn,u)

= lim sup
n→∞ d(un,u),

a contradiction. Hence x = u.
Therefore, A({un}) = {u} for all subsequences {un} of {xn}. This proves that {xn}4-converges to x ∈ F.
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A mapping T : K → K is semi-compact, if any bounded sequence {xn} in K has a convergent subse-
quence whenever d(xn, Txn)→ 0.

Two finite families {Tn : n ∈ N} and {Sn : n ∈ N} of mappings on K with nonempty common fixed
point set F are said to satisfy condition (M), if there exists a nondecreasing function f on [0,∞) with
f(0) = 0 and f(t) > 0, for all t ∈ (0,∞) such that

max
i∈N

d (x, Tix) > f(d(x, F)), or max
i∈N

d (x,Six) > f(d(x, F)),

for all x ∈ K.
Using Lemma 1.3 and Lemma 2.3, we obtain the following strong convergence theorems.

Theorem 2.5. Let K be a closed and convex subset of a hyperbolic space X and let {Sn : n ∈ N} and {Tn : n ∈ N}

be two finite families of mappings on K satisfying condition (C) and {xn} be given in (1.2). If at least one T ∈ {Tn :
n ∈ N} or one S ∈ {Sn : n ∈ N} is semi-compact, then the sequence {xn} converges strongly to an element of F.

Proof. Let T1 be semi-compact. Since {xn} is bounded and d (xn, T1xn) → 0, there exists a subsequence
{xnj} of {xn} such that xnj → q ∈ K and

lim
j→∞d(xnj ,Slxnj) = 0 = lim

j→∞d(xnj , Tlxnj),
for each l ∈ N.

By Lemma 1.3, we have
d
(
xnj ,Slq

)
6 3d

(
xnj ,Slxnj

)
+ d

(
xnj ,q

)
.

By limj→∞ on both sides in the above inequality, we have that Slq = q. Similarly Tlq = q. That is q ∈ F.
As limn→∞ d(xn,p) exists (Lemma 2.1), therefore xn → q ∈ F.

Theorem 2.6. Let K be a closed and convex subset of a complete and uniformly convex hyperbolic space X and let
{Sn : n ∈ N} and {Tn : n ∈ N} be two finite families of mappings on K satisfying condition (C) and {xn} be given
in (1.2). If {Tn : n ∈ N} or {Sn : n ∈ N} satisfy condition (M), then the sequence {xn} converges strongly to an
element of F.

Proof. Let zn ∈ F (Tl) such that zn → z. We show that z ∈ F (Tl) .
Appealing to Lemma 1.3, we have

d (zn, Tlz) 6 3d (zn, Tlzn) + d (zn, z) .

This gives that zn → Tlz and hence Tlz = z. Therefore F (Tl) is closed. Similarly F (Sl) is closed. Finally
we get that F is closed. Using condition (M) and Lemma 2.3, we have that limn→∞ d(xn, F) = 0. Since {xn}

is Fejér monotone with respect to the set F, therefore xn → p ∈ F.

The followings are corollaries to our Theorems 2.4–2.6 and yet are new in the literature.

Corollary 2.7. Let K be a closed and convex subset of a hyperbolic space X and let {Tn : n ∈ N} be a finite family
of mappings on K satisfying condition (C) and {xn} be given by

x1 ∈ K, xn+1 = αnTnxn ⊕ (1 −αn) xn,

where Tn = Tn(mod r), 0 < b 6 αn 6 c < 1. If ∩i∈NF(Ti) 6= φ, then {xn} 4-converges to an element of
∩i∈NF(Ti).

Proof. Choose Si = I in Theorem 2.4 for i ∈ N.

Corollary 2.8. Let K be a closed and convex subset of a hyperbolic space X and let T be a mapping satisfying
condition (C) and {xn} be given by

x1 ∈ K, xn+1 = αnTxn ⊕ (1 −αn) xn,

where 0 < b 6 αn 6 c < 1. If F(T) 6= φ, then {xn} 4-converges to an element of F(T).



S. H. Khan, H. Fukhar-ud-din, J. Nonlinear Sci. Appl., 10 (2017), 734–743 742

Proof. Choose Si = I and Tn = T in Theorem 2.4 for i ∈ N.

Corollary 2.9. Let K be a closed and convex subset of a hyperbolic space X and let {Tn : n ∈ N} be a finite family
of mappings on K satisfying condition (C) and {xn} be given by

x1 ∈ K, xn+1 = αnTnxn ⊕ (1 −αn) xn,

where Tn = Tn(mod r), 0 < b 6 αn 6 c < 1. If ∩i∈NF(Ti) 6= φ and at least one T ∈ {Tn : n ∈ N} is semi-compact,
then the sequence {xn} converges strongly to an element of ∩i∈NF(Ti).

Proof. Choose Si = I in Theorem 2.5 for i ∈ N.

Remark 2.10. The CAT (0) spaces and uniformly convex Banach spaces are the special cases of uniformly
convex hyperbolic spaces, therefore our results also hold in CAT (0) spaces and uniformly convex Banach
spaces, simultaneously.

Remark 2.11. Every nonexpansive mapping is a mapping satisfying condition (C), therefore our theorems
generalize the corresponding ones in [1, 4–6, 18, 19], etc.

Remark 2.12. Every nonexpansive mapping is always continuous but a mapping satisfying condition (C)
may or may not be continuous. Therefore our results hold for discontinuous mappings also.

Remark 2.13. The iterative algorithm (1.2) is computationally simpler than the following Ishikawa iterative
algorithm:

x1 ∈ K,
xn+1 = αnTnyn ⊕ (1 −αn) xn,
yn = βnSnxn ⊕ (1 −βn) xn,

therefore our results are better.

Remark 2.14. The essentials of hypotheses in our results are natural in view of the following observations:
αn = n+50

100n , βn = n+51
101n , X = R, K = [0, 3] ,Si, Ti : C→ C are given by

Ti (x) =

{
0 if x 6= 3,
i+1
i+2 if x = 3,

and

Si (x) =

{
0 if x 6= 3,
i+2
i+4 if x = 3.

Then

(i) 0 < αn, βn < 1;

(ii) Si, Ti satisfy condition (C);

(iii) ∩i∈N (F(Ti)∩ F(Si)) = {0} .
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