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Abstract

The fixed point theorems in various contraction mappings have been provided by many researchers. Some of them used
certain functions in mapping to guarantee the existence of fixed point. The purpose of this paper is to present some fixed
point result on contraction mapping in partially ordered quasi-metric space that applying a w-distance. The generalized altering
distance function on the mapping plays a role in theorems. The results extend some well-known results in the references. We
also improve these new results to the common fixed point. c©2017 All rights reserved.
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1. Introduction and preliminaries

The availability of references about a generalization of the Banach contraction principle has been
studied in many branches of research. For instance the weak contraction mapping has been researched
by many authors in different spaces, see [1, 3, 4, 21, 23, 27]. In [2, 6, 7, 10, 15, 18, 19, 22, 29], they have
proved some results of fixed point theorems on weak contractions mappings in metric spaces. Among
the references, they have applied an altering distance function. Khan et al. [15] introduced this concept
to handle functions which changes the distance between two points in metric space. Recently, Su [28] has
expanded the concept and introduced a generalized altering distance function as follows.

Definition 1.1 ([28]). A generalized altering distance function is a function ψ : [0,∞) → [0,∞) which
satisfies:

(a) ψ is nondecreasing;
(b) ψ(t) = 0 if and only if t = 0.
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In 2010, Harjani and Sadarangani [10] have proved some fixed point theorems for weak contraction
and generalized contractions in partially ordered metric spaces by using the altering distance function.
Theorems in [6, 18] were updated by these results.

Theorem 1.2 ([10]). Let (X,�) be a partially ordered set and suppose that there exists a metric d ∈ X such that
(X,d) is a complete metric space. Let f : X→ X be a continuous and nondecreasing mapping such that

ψ(d(f(x), f(y)) 6 ψ(d(x,y)) −φ(d(x,y)) for x > y,

where ψ and φ are altering distance functions. If there exists x0 ∈ X with x0 � f(x0), then f has a fixed point.

Su [28] established a new fixed point theorem by using the generalized altering distance function.
Then, Shaddad et al.[22] has made general results not only for fixed point but also for coupled coincidence
point in partially ordered metric space. The important results of them are in the following.

Theorem 1.3 ([22]). Let (X,d,�) be a complete partially ordered metric space. Let f : X→ X be a mapping which
obeys the following conditions:

(1) there exist a generalized altering distance function ψ, an upper semi-continuous function ϕ : [0,∞)→ [0,∞)
and a lower semi-continuous function φ : [0,∞)→ [0,∞) such that

ψ(d(f(x), f(y))) 6 ϕ(d(x,y)) −φ(d(x,y)) for x � y,

where ϕ(0) = φ(0) = 0 and ψ(t) −ϕ(t) +φ(t) > 0 for all t > 0;
(2) there exists x0 ∈ X such that x0 � fx0;
(3) f is nondecreasing;
(4) (a) either f is continuous or

(b) if xn → x when n→∞ in X, then xn � x for all n.

Then f has a fixed point. Moreover, if for each x,y ∈ X there exists z ∈ X which is comparable to x and y then the
fixed point is unique.

The concept of w-distance was initiated by Kada et al. [14]. Several researchers involve this notion to
obtain some fixed point results not only in usual metric spaces but also in partially ordered metric spaces.
Now, we recall the definition of w-distance.

Definition 1.4 ([14]). A w-distance on a metric space (X,d) is a function q : X×X→ [0,∞) satisfying the
following conditions:

(w1) q(x,y) 6 q(x, z) + q(z,y) for all x,y, z ∈ X;
(w2) q(x, .) : X → [0,∞) is a lower-semicontinuous for all x ∈ X (i.e., if x ∈ X and yn → y, then

q(x,y) 6 limn→∞ infn q(x,yn));
(w3) for each ε > 0 there exists δ > 0 such that q(x,y) 6 δ and q(x, z) 6 δ imply d(y, z) 6 ε for all

x,y, z ∈ X.

Note that in general for x,y ∈ X, q(x,y) 6= q(y, x) and not either the implications q(x,y) = 0⇔ x = y
is necessarily true [16].

Meanwhile, Ω-distance as a generalized form of w-distance was also studied. This notion has intro-
duced by Saadati et al. [21] in 2010. They have proved fixed point theorems on a complete partially
ordered G-metric space as well. Then, Ω-distance function was expanded by Gholizadeh et al. [8] and
they gave an application in integral equations. In 2013, Shatanawi and Pitea [26] have used the concept of
Ω-distance to establish some common coupled fixed point results. They continued their work to construct
and prove some fixed and coupled fixed point theorems for a nonlinear contraction [25] . Other interest-
ing results are gained by Shatanawi et al. [23, 24] in 2016. Shatanawi et al. [24] have introduced new fixed
point and common fixed point for mappings of the cyclic form of Ω-distance in G-metric space. Next,
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Shatanawi et al. [23] improved the usability of this notion by introducing a new contraction mapping
called Ω-suzuki-construction in g-metric space.

Now, the following definitions and lemmas which have been stated in metric space [3, 12, 22] will be
used in quasi metric space. Following the terminology of [3], by a quasi metric on a nonempty set X we
mean a function d : X×X→ [0,∞) such that

(i) d(x,y) = d(y, x) if and only if x = y for all x,y ∈ X and
(ii) d(x,y) 6 d(x, z) + d(z,y) for all x,y, z ∈ X.

A quasi metric space is a pair (X,d) such that X is a set and d is a quasi metric on X. Quasi metric satisfies
the triangle inequality but is not symmetric. It can be regarded as an ”asymmetric metric”. In fact, quasi
metric space is more comprehensive than metric space. Given a quasi metric d on X, the function d′

defined by d′(x,y) = d(y, x) for all x,y ∈ X, is also a quasi metric on X. The function ds defined by
ds(x,y) = max{d(x,y),d(y, x)} for all x,y ∈ X is a metric on X. A quasi metric space (X,d) is called
complete if every Cauchy sequence {xn}n∈P in the metric space (X,ds) is convergent [3].

Several results from Kada et al. [14] were continued by Park [17] to quasi-metric spaces. Next, Latif
and Al-Mezel [16] also have proved some fixed point theorems in complete quasi-metric spaces. The
purpose of this paper is to prove some fixed point theorems in partially ordered quasi-metric spaces
by using a w-distance. We discuss the existence of fixed point by extending the results of Harjani and
Sadarangani [10], Imdad and Rouzkard [12], Shaddad et al. [22], Su [28], and Rouzkard et al. [20]. Then,
we apply the results of Alegre et al. [3] to prove the main theorem. After that, we also provide an example
that satisfies our theorems. Furthermore, we improve new result to common fixed points that expands
the results from Ciric et al. [4] and Ilic and Rakocevic [11]. However, in this paper, we prove the shorter
way to common fixed point, that is motivated by the fact that a fixed point of any map on metric spaces
can be viewed as a common fixed point of that mapping.

2. Main results

Throughout this paper, we denote by R and N the sets of real numbers and non-negative integers,
respectively. The definitions and lemmas are crucial in the proof of our main results. We apply the notions
in a metric space for a quasi-metric space in the following.

Definition 2.1 ([12]). Let X be a nonempty set. Then (X,d,�) is called a partially ordered quasi metric
space if

(i) (X,�) is a partially ordered set; and

(ii) (X,d) is a quasi metric space.

Definition 2.2 ([12]). Let (X,�) be a partially ordered set. Then

(a) elements x,y ∈ X are called comparable with respect to ” � ” if either x � y or y � x and we write
x � y;

(b) a mapping f : X→ X is called nondecreasing with respect to ” � ” if x � y implies f(x) � f(y).

Lemma 2.3 ([3]). Let q be an w-distance on a quasi metric space (X,d) and {xn} be a sequence in X such that for
each ε > 0 there exists n0 ∈ N whenever m > n > n0 implies q(xn, xm) 6 ε (or limm,n→∞ q(xn, xm) = 0).
Then {xn} is a Cauchy sequence.

Lemma 2.4 ([3]). If q is an w-distance on a quasi metric space (X,d), then for each ε > 0 there exists δ > 0 such
that q(x,y) 6 δ and q(x, z) 6 δ imply ds(y, z) 6 ε.

Now, we state the main result as follows.
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Theorem 2.5. Let (X,d,�) be a complete partially ordered quasi metric space equipped with w-distance q and
f : X→ X has the following conditions:

(1) there exists x0 ∈ X such that x0 � fx0;
(2) there exist a generalized altering distance function ψ, an upper semi-continuous function ϕ : [0,∞)→ [0,∞)

and a lower semi-continuous function φ : [0,∞)→ [0,∞) such that

ψ(q(fx, fy)) 6 ϕ(Mx,y) −φ(Mx,y) for x � y,

whereMx,y = max{q(x,y),q(x, fx),q(y, fy), 1
2 [q(x, fy)−q(y, fx)]}, ϕ(0) = φ(0) = 0, and ψ(t)−ϕ(t)+

φ(t) > 0 for all t > 0;
(3) f is nondecreasing and continuous.

Then f has a fixed point.

Proof. By condition (1), there exists a point x0 such that x0 � fx0. Take x1 ∈ X such that x1 = fx0, that is,
x0 � x1. Now, take x2 = fx1. In general, we can define fxn = xn+1 for all n ∈N. Using condition (3), i.e.,
f is a nondecreasing, then we obtain that fx0 � fx1 or x1 � x2. Continuing this process inductively, we
have xn � xn+1 for all n ∈N, i.e.,

x0 � x1 � x2 � · · · � xn � · · · .

That is,
x0 � x1 � x2 � · · · � xn � · · ·

or
x0 � x1 � x2 � · · · � xn � · · · .

It means, xn � xn+1 can be written as xn � xm for each n,m ∈N.
Now, if xn = xn+1 for some n ∈ N, then f has a fixed point. Assume that xn 6= xn+1 for all n ∈ N.

Now, we proceed to show that {q(xn, xn+1)} is a decreasing sequence. In contrary, suppose {q(xn, xn+1)}
is a nondecreasing sequence. From condition (2), we have

ψ(q(xn+1, xn+2)) = ψ(q(fxn, fxn+1)) 6 ϕ(Mxn,xn+1) −φ(Mxn,xn+1), (2.1)

where

Mxn,xn+1 = max{q(xn, xn+1),q(xn, fxn),q(xn+1, fxn+1),
1
2
[q(xn, fxn+1) − q(xn+1, fxn)]}

= max{q(xn, xn+1),q(xn, xn+1),q(xn+1, xn+2),
1
2
[q(xn, xn+2) − q(xn+1, xn+1)]}

= max{q(xn, xn+1),q(xn+1, xn+2),
1
2
[q(xn, xn+2) − q(xn+1, xn+1)]}.

We face three cases.

Case 1. Mxn,xn+1 = q(xn, xn+1), then from (2.1) we obtain

ψ(q(xn+1, xn+2)) 6 ϕ(q(xn, xn+1)) −φ(q(xn, xn+1)) < ψ(q(xn, xn+1)). (2.2)

Since ψ is nondecreasing, so q(xn+1, xn+2) < q(xn, xn+1) is a contradiction.

Case 2. Mxn,xn+1 = q(xn+1, xn+2), then from (2.1) we obtain

ψ(q(xn+1, xn+2)) 6 ϕ(q(xn+1, xn+2)) −φ(q(xn+1, xn+2)) < ψ(q(xn+1, xn+2)). (2.3)

Since ψ is nondecreasing, so q(xn+1, xn+2) < q(xn+1, xn+2) is a contradiction.
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Case 3. Mxn,xn+1 =
1
2 [q(xn, xn+2) − q(xn+1, xn+1)], then from (2.1) we obtain

ψ(q(xn+1, xn+2)) 6 ϕ(
1
2
[q(xn, xn+2) − q(xn+1, xn+1)]) −φ(

1
2
[q(xn, xn+2) − q(xn+1, xn+1)])

< ψ(
1
2
[q(xn, xn+2) − q(xn+1, xn+1)]).

(2.4)

Since ψ is nondecreasing, so

q(xn+1, xn+2) <
1
2
[q(xn, xn+2) − q(xn+1, xn+1)],

2q(xn+1, xn+2) < q(xn, xn+2) − q(xn+1, xn+1) < q(xn, xn+2) 6 q(xn, xn+1) + q(xn+1, xn+2),
q(xn+1, xn+2) 6 q(xn, xn+1)

is also a contradiction.
As a result of cases 1, 2, and 3, we conclude that {q(xn, xn+1)} is a decreasing sequence. In particular,

there exists r > 0 such that limn→∞ q(xn, xn+1) = r. Assume that r 6= 0. By using the properties of ψ,ϕ,
and φ and taking n→∞ we obtain

- if Mxn,xn+1 = q(xn, xn+1) or q(xn+1, xn+2), then from (2.2) and (2.3), we gain ψ(r) 6 ϕ(r) −φ(r). There-
fore ψ(r) −ϕ(r) +φ(r) 6 0 is a contradiction with condition (2). Then r = 0 and limn→∞ q(xn, xn+1) = 0.

- if Mxn,xn+1 =
1
2 [q(xn, xn+2) − q(xn+1, xn+1)], then from (2.4), we have

ψ(q(xn+1, xn+2)) 6 ϕ(
1
2
[q(xn, xn+2) − q(xn+1, xn+1)]) −φ(

1
2
[q(xn, xn+2) − q(xn+1, xn+1)])

< ψ(
1
2
[q(xn, xn+2) − q(xn+1, xn+1)]).

(2.5)

From (2.5), we get

ψ(q(xn+1, xn+2)) < ψ(
1
2
[q(xn, xn+2) − q(xn+1, xn+1)])

6 ψ(
1
2
[q(xn, xn+1) + q(xn+1, xn+1) + q(xn+1, xn+2) − q(xn+1, xn+1)])

= ψ(
1
2
[q(xn, xn+1) + q(xn+1, xn+2)]).

(2.6)

From (2.5), (2.6), and taking n→∞, we obtain

ψ(r) 6 ψ((
1
2
[ lim
n→∞(q(xn, xn+2) − q(xn+1, xn+1))])) 6 ψ(

1
2
(r+ r))

ψ(r) 6 ψ((
1
2
[ lim
n→∞(q(xn, xn+2) − q(xn+1, xn+1))])) 6 ψ(

1
2
(2r))

ψ(r) 6 ψ((
1
2
[ lim
n→∞(q(xn, xn+2) − q(xn+1, xn+1))])) 6 ψ(r).

Since ψ is nondecreasing, we obtain

1
2
[ lim
n→∞(q(xn, xn+2) − q(xn+1, xn+1))] = r, lim

n→∞(q(xn, xn+2) − q(xn+1, xn+1))] = 2r.

We go back to (2.5), then we gain

ψ(r) 6 ϕ(
1
2
(2r)) −φ(

1
2
(2r)), or ψ(r) 6 ϕ(r) −φ(r).

Therefore ψ(r) −ϕ(r) +φ(r) 6 0 is a contradiction with condition (2) in our theorem. Then r = 0 and
limn→∞ q(xn, xn+1) = 0.



R. Zuhra, M. S. M. Noorani, F. Shaddad, J. Nonlinear Sci. Appl., 10 (2017), 699–712 704

Next, we show that {xn} is Cauchy sequence. That is, if we choose an arbitrary ε > 0 and let δ ∈ (0, ε)
then there is n0 ∈N such that q(xn, xm) < δ, whenever m > n > n0. In contrary,

q(xn, xm) > δ whenever m > n > n0. (2.7)

Furthermore, corresponding to n, we can choosem is the smallest integer withm > n > n0 and satisfying
(2.7). Then

q(xn, xm−1) < δ for all m > n.

Since xn � xm for all m > n, then from condition (2) in our theorem we get

ψ(q(xn, xm)) = ψ(q(fxn−1, fxm−1)) 6 ϕ(Mxn−1,xm−1) −φ(Mxn−1,xm−1), (2.8)

where

Mxn−1,xm−1 = max{q(xn−1, xm−1),q(xn−1, fxn−1),q(xm−1, fxm−1),
1
2
[q(xn−1, fxm−1) − q(xm−1, fxn−1)]}

= max{q(xn−1, xm−1),q(xn−1, xn),q(xm−1, xm),
1
2
[q(xn−1, xm) − q(xm−1, xn)]}.

Now, we have two cases.

- If Mxn−1,xm−1 = q(xn−1, xm−1), then

ψ(q(xn, xm)) 6 ϕ(q(xn−1, xm−1)) −φ(q(xn−1, xm−1)) < ψ(q(xn−1, xm−1)).

Since ψ is nondecreasing, then

q(xn, xm) < q(xn−1, xm−1) 6 q(xn−1, xn) + q(xn, xm−1). (2.9)

From (2.7), (2.9), and by taking n→∞, we obtain

δ 6 lim
n→∞q(xn, xm) < lim

n→∞q(xn−1, xm−1) 6 lim
n→∞q(xn−1, xn) + lim

n→∞q(xn, xm−1) < δ.

Thus,
lim
n→∞q(xn, xm) = δ. (2.10)

Moreover, we rewrite
q(xn−1, xm−1) 6 q(xn−1, xn) + q(xn, xm−1). (2.11)

From (2.9) and (2.11) and by taking n→∞, we gain

δ 6 lim
n→∞q(xn−1, xm−1) 6 lim

n→∞q(xn−1, xn) + lim
n→∞q(xn, xm−1) = 0 + δ.

Thus
lim
n→∞q(xn−1, xm−1) = δ. (2.12)

- If Mxn−1,xm−1 =
1
2 [q(xn−1, xm) − q(xm−1, xn)], then

ψ(q(xn, xm)) 6 ϕ(
1
2
[q(xn−1, xm) − q(xm−1, xn)]) −φ(

1
2
[q(xn−1, xm) − q(xm−1, xn)])

< ψ(
1
2
[q(xn−1, xm) − q(xm−1, xn)]).

Since ψ is nondecreasing, then

q(xn, xm) <
1
2
[q(xn−1, xm) − q(xm−1, xn)] <

1
2
q(xn−1, xm). (2.13)
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Thus

2q(xn, xm) < q(xn−1, xm) 6 q(xn−1, xn) + q(xn, xm−1) + q(xm−1, xm). (2.14)

Let n→∞ in (2.14), then

2 lim
n→∞q(xn, xm) < lim

n→∞q(xn−1, xm) 6 lim
n→∞q(xn−1, xn) + lim

n→∞q(xn, xm−1) + lim
n→∞q(xm−1, xm),

δ 6 2δ < lim
n→∞q(xn−1, xm) 6 δ,

δ 6 lim
n→∞q(xn−1, xm) 6 δ.

So
lim
n→∞q(xn−1, xm) = δ. (2.15)

From (2.13), we have

2q(xn, xm) < q(xn−1, xm) − q(xm−1, xn) < q(xn−1, xm).

Combining (2.10) and (2.15) and taking n→∞, then

2δ 6 δ− lim
n→∞q(xm−1, xn) 6 δ,

δ 6 δ− lim
n→∞q(xm−1, xn) 6 δ,

0 6 lim
n→∞q(xm−1, xn) 6 0.

Thus
lim
n→∞q(xm−1, xn) = 0. (2.16)

So, by taking into account (2.15), (2.16), and n→∞, we deduce

lim
n→∞(

1
2
[q(xn−1, xm) − q(xm−1, xn)]) =

1
2
(δ− 0) =

1
2
δ. (2.17)

Finally from (2.8), (2.10), (2.12), (2.17), and taking n → ∞, we conclude ψ(δ) 6 ϕ(M) −φ(M), where
M = max {δ, 0, 1

2δ} = δ.
So, ψ(δ) 6 ϕ(δ) −φ(δ) or ψ(δ) −ϕ(δ) +φ(δ) 6 0. This is contradiction since δ > 0. Hence

q(xn, xm) < δ for m > n > n0, n0 ∈N. (2.18)

In particular, we have q(xn0 , xn) < δ and q(xn0 , xm) < δ, whenever m > n > n0. Thus from Lemma 2.4,
we get ds(xn, xm) 6 ε. Hence {xn} is Cauchy sequence in (X,ds). Therefore {xn} is also Cauchy sequence
in (X,d). Since (X,d) is complete then {xn} converges, i.e., there exists x∗ ∈ X such that d(xn, x∗)→ 0.

Now we want to show that q(xn, x∗) → 0. Following (2.18), we can choose an arbitrary ε > 0 such
that q(xn, xm) < ε for m > n > n0, n0 ∈ N. Let us fix n > n0, from Definition 1.4 and for n sufficiently
large

q(xn, x∗) 6 lim inf
m→∞ q(xn, xm) 6 q(xn, xm) + ε < 2ε.

Since ε > 0 is arbitrary, then
q(xn, x∗)→ 0. (2.19)

Now, we show that fx∗ = x∗.
We have q(xn, x∗)→ 0 from (2.19), then xn → x∗ as n→∞. By using condition (3) in our theorem, f

is continuous. That is, fxn → fx∗ as n→∞, then xn → fx∗ as n→∞. So, q(xn, fx∗)→ 0. From Lemma
2.4, for all ε > 0, there exists δ ∈ (0, ε) > 0 such that q(xn, x∗) < δ, q(xn, fx∗) < δ imply ds(x∗, fx∗) 6 ε.
Then ds(x∗, fx∗) = 0, so that fx∗ = x∗. Hence x

∗
is a fixed point of f.



R. Zuhra, M. S. M. Noorani, F. Shaddad, J. Nonlinear Sci. Appl., 10 (2017), 699–712 706

Remark 2.6. We note that one of Mx,y as follows

1
2
[q(x, fy) − q(y, fx)] 6

1
2
[q(x, fy)] 6

(q(x,y) + q(y, fy))
2

6 2(
max[q(x,y),q(y, fy)]

2
)

= max{q(x,y),q(y, fy)}.

Thus, M̄x,y = max{q(x,y),q(x, fx),q(y, fy)}. Furthermore, we obtain the following corollary.

Corollary 2.7. Let (X,d,�) be a complete partially ordered quasi metric space equipped with w-distance q. Let
f : X→ X which has the following conditions:

(1) there exists x0 ∈ X such that x0 � fx0;
(2) there exist a generalized altering distance function ψ, an upper semi-continuous function ϕ : [0,∞)→ [0,∞)

and a lower semi-continuous function φ : [0,∞)→ [0,∞) such that

ψ(q(fx, fy)) 6 ϕ(M̄x,y) −φ(M̄x,y) for x � y,

where M̄x,y = max{q(x,y),q(x, fx),q(y, fy)}, ϕ(0) = φ(0) = 0 and ψ(t) −ϕ(t) +φ(t) > 0 for all t > 0;
(3) f is nondecreasing and continuous.

Then f has a fixed point.

If we set ϕ = ψ and φ is a generalized altering distance function in Theorem 2.5, we obtain general-
ization of the results of Imdad and Rouzkard [12] in the following corollary.

Corollary 2.8. Let (X,d,�) be a complete partially ordered quasi metric space equipped with w-distance q. Let f
be a self-mapping on X which has the following conditions:

(1) there exists x0 ∈ X such that x0 � fx0;
(2) there exist two generalized altering distance functions ψ,φ, such that

ψ(q(fx, fy)) 6 ψ(Mx,y) −φ(Mx,y), for all x � y,

whereMx,y = max{q(x,y),q(x, fx),q(y, fy), 1
2 [q(x, fy)−q(y, fx)]}, φ(0) = 0 and φ(t) > 0, for all t >

0;
(3) f is nondecreasing and continuous.

Then f has a fixed point.

Remark 2.9. We do not use the condition (4)-(b) and uniqueness from Theorem 1.3 to Theorem 2.5 because
there are two points of Mx,y that do not satisfy the properties of w-distance in the proof. However, if we
replace Mx,y with q(x,y) in condition (2) then we obtain the following theorem.

Theorem 2.10. Let (X,d,�) be a complete partially ordered quasi metric space equipped with w-distance q. Let f
be a self-mapping on X which has the following conditions:

(1) there exists x0 ∈ X such that x0 � fx0;
(2) there exist a generalized altering distance function ψ, an upper semi-continuous function ϕ : [0,∞)→ [0,∞)

and a lower semi-continuous function φ : [0,∞)→ [0,∞) such that

ψ(q(fx, fy)) 6 ϕ(q(x,y)) −φ(q(x,y)) for all x � y,

where ϕ(0) = φ(0) = 0 and ψ(t) −ϕ(t) +φ(t) > 0 for all t > 0;
(3) f is nondecreasing;
(4) (a) either f is continuous or

(b) if xn → x∗, then xn � x∗.
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Then f has a fixed point. Moreover, if for each x,y ∈ X there exists z ∈ X which is comparable to x and y then the
fixed point is unique.

Proof. Following the proof of Theorem 2.5 for the case, Mx,y = q(x,y), we only need to check that if
condition (4)-(b) holds, then fx∗ = x∗. From (4)-(b) and by using condition (2), we gain

ψ(q(xn+1, fx∗)) = ψ(q(fxn, fx∗)) 6 ϕ(q(xn, x∗)) −φ(q(xn, x∗)).

Taking limit as n→∞, then

lim
n→∞ψ(q(xn+1, fx∗)) 6 lim

n→∞ϕ(q(xn, x∗)) − lim
n→∞φ(q(xn, x∗)),

ψ( lim
n→∞q(xn+1, fx∗)) 6 ϕ( lim

n→∞ supq(xn, x∗)) −φ( lim
n→∞ infq(xn, x∗))

= ϕ( lim
n→∞q(xn, x∗)) −φ( lim

n→∞q(xn, x∗))

= ϕ(0) −φ(0) = 0.

Since ψ is a generalized altering distance function, then limn→∞ q(xn+1, fx∗) = 0. So limn→∞ q(xn, fx∗) =
0. From Lemma 2.4, if q(xn, x∗)→ 0 and q(xn, fx∗)→ 0, then ds(x∗, fx∗)→ 0. Hence x∗ = fx∗.

Now, we prove the uniqueness of the fixed point. Assume that f has another fixed point y∗. From the
assumption in theorem, there exists z ∈ X such that x∗ � z and y∗ � z. If z = x∗ or z = y∗, it is trivial. We
assume z 6= x∗ and z 6= y∗. Put z0 = z and choose z1 ∈ X such that z1 = fz0. Then we have z0 � x∗. We
gain that fz0 � fx∗ or z1 � x∗ by using condition (3) in the theorem. Continuing this process inductively,
we get zn � x∗, for definiteness we suppose zn 6= x∗ for all n ∈ N. Similarly, we obtain zn � y∗ and
zn 6= y∗ for all n ∈N.

Next, we show that {q(zn, x∗)} is a decreasing sequence. Suppose to the contrary that {q(zn, x∗)} is a
nondecreasing sequence. From condition (2), we have

ψ(q(zn, x∗)) = ψ(q(fzn−1, fx∗)) 6 ϕ(q(zn−1, x∗)) −φ(q(zn−1, x∗)) 6 ψ(q(zn−1, x∗)).

Since ψ is a nondecreasing, so (q(zn, x∗)) 6 (q(zn−1, x∗)) is a contradiction. Thus, {q(zn, x∗)} is a decreas-
ing sequence. That is, there exists l > 0 such that q(zn, x∗) → l. Now, assume that l 6= 0. By using the
properties of ψ,ϕ, φ, and taking n→∞, we gain ψ(l) 6 ϕ(l) −φ(l). Therefore ψ(l) −ϕ(l) +φ(l) 6 0 is
a contradiction with condition (2). Then l = 0 and q(zn, x∗)→ 0.

Similarly, we can deduce that q(zn,y∗) → 0. From Lemma 2.4, if q(zn, x∗) → 0 and q(zn,y∗) → 0,
then ds(x∗,y∗)→ 0. Thus x∗ = y∗. Hence, the fixed point of f is unique.

Remark 2.11. If we set q = d for (X,d) is complete metric space, we gain three results for Theorem 2.10.
The results are Shaddad et al. [22] and Rhoades et al. [19] by setting ψ as identity mapping, and Harjani
and Sadarangani [10] by setting ϕ = ψ and φ as a generalized altering distance function. The other
important result is if we consider ϕ = ψ = I (the identity mapping) and φ(t) = (1−α)t, for all t ∈ [0,∞),
and α ∈ [0, 1), then this theorem is the classical Banach fixed point theorem.

Inspired by the results of Su [28], we obtain the following corollary with relieve φ and set q = d.

Corollary 2.12. Let (X,d,�) be a complete partially ordered quasi metric space. Let f be a self-mapping on X which
has the following conditions:

(1) there exists x0 ∈ X such that x0 � fx0;
(2) there exist a generalized altering distance function ψ, and an upper semi-continuous function ϕ : [0,∞) →

[0,∞) such that
ψ(d(fx, fy)) 6 ϕ(d(x,y)) for all x � y,

where φ(0) = 0 and ψ(t) > ϕ(t) for all t > 0;
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(3) f is nondecreasing;
(4) (a) either f is continuous or

(b) if xn → x∗, then xn � x∗.
Then f has a fixed point. Moreover, if for each x,y ∈ X there exists z ∈ X which is comparable to x and y then the
fixed point is unique.

Remark 2.13. The result of Gordji et al. [7] is a special case of Corollary 2.12 by setting ψ = I (the identity
mapping) and special function ϕ = β(d(x,y)) whenever β : [0,∞)→ [0, 1) in complete metric space.

Now, we present an example to illustrate the obtained result given by Theorem 2.5.

Example 2.14. Let X = {0}∪ { 1
3n : n > 1}, where (X,d,6) is complete partially ordered quasi metric space

with a metric d and usual order 6. Consider w-distance q : X× X → [0,∞) defined by q(x,y) = y. Let
a generalized altering distance function ψ(t) = 1

3t, an upper semi-continuous function ϕ(t) = 1
9t and a

lower semi-continuous function φ(t) = 1
27t. Clearly, ϕ(0) = φ(0) = 0 and ψ(t) −ϕ(t) +φ(t) > 0 for all

t > 0.
Now, assume that f : X→ X by fx = x

81 , for all x ∈ X. If there is x0 = 0 ∈ X, then x0 = 0 = 0
81 = f(0) =

fx0. It is easy to show that f is nondecreasing and continuous. Furthermore, we show that f satisfies
condition (2). If y = 0, then condition (2) holds. Suppose that y = 1

3m for any m, then we have

Mx,y = max{q(x,
1

3m
),q(x, fx),q(

1
3m

, f(
1

3m
)),

1
2
[q(x, f(

1
3m

)) − q(
1

3m
, fx)]}

= max{
1

3m
, fx, f(

1
3m

),
1
2
[f(

1
3m

) − fx]}

= max{
1

3m
,
x

81
,

1
81(3m)

,
1
2
[

1
81(3m)

−
x

81
]}.

Now, we have two cases.

(1). Suppose x = 0, then

Mx,y = max{
1

3m
,

0
81

,
1

81(3m)
,

1
2
[

1
81(3m)

−
0
81

]} = max{
1

3m
,

1
81(3m)

,
1
2
[

1
81(3m)

]} =
1

3m
.

Hence

ψ(q(fx, fy)) = ψ(q(
x

81
,
y

81
)) = ψ(

y

81
) =

y

81.3
=
y

35 =
1

35(3m)
=

1
35+m

6
2

33+m
=

1
32+m

−
1

33+m
=

1
32(3m)

−
1

33(3m)

=
1
9

.
1

3m
−

1
27

.
1

3m

= ϕ(
1

3m
) −φ(

1
3m

)

= ϕ(Mx,y) −φ(Mx,y).

(2). Suppose x = 1
3s . We obtain two cases.

- If s > m, then

Mx,y = max{
1

3m
,
x

81
,

1
81(3m)

,
1
2
[

1
81(3m)

−
x

81
]}

= max{
1

3m
,

1
81(3s)

,
1

81(3m)
,

1
2
[

1
81(3m)

−
1

81(3s)
]}

=
1

3m
.

Hence we also get the same results with case 1.
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- If s < m, then

Mx,y = max{
1

3m
,
x

81
,

1
81(3m)

,
1
2
[

1
81(3m)

−
x

81
]}

= max{
1

3m
,

1
81(3s)

,
1

81(3m)
,

1
2
[

1
81(3m)

−
1

81(3s)
]}

=
1

81(3s)
=

1
34+s

.

Hence

ψ(q(fx, fy)) = ψ(q(
x

81
,
y

81
)) = ψ(

y

81
) =

y

81.3
=
y

35 =
1

35(3m)
=

1
35+m

6
2

37+s
=

2
33+4+s

=
1

32.34+s
−

1
33.34+s

=
1
9

.
1

34+s
−

1
27

.
1

34+s

= ϕ(
1

34+s
) −φ(

1
34+s

)

= ϕ(Mx,y) −φ(Mx,y).

So, condition (2) in our theorem holds. Thus, all the conditions are satisfied. Moreover we obtain
limn→∞ f(xn) = limn→∞ x

81n = 0.

3. Common fixed point theorems

In this section, we prove the common fixed point theorem. An element x ∈ X is called a common fixed
point of mappings f : X → X and g : X → X if x = gx = fx. In 1976, Jungck [13] proved the interesting
generalization of contraction mapping principle as follows.

Theorem 3.1. Let X be a complete metric space. Let g be a continuous self-map on X and f be any self-map on X
that commutes with g. Further, let f and g satisfy f(X) ⊆ g(X) and there exists a constant λ ∈ (0, 1) such that for
every x,y ∈ X

d(fx, fy) 6 λ d(gx,gy).

Then f and g have a unique common fixed point.

Recently, Haghi et al. [9] introduced a very useful lemma which we need in our work.

Lemma 3.2 ([9]). Let X be a nonempty set and f : X→ X be a function. Then there exists a subset E ⊆ X such that
f(E) = f(X) and f : E→ X is one-to-one.

Ciric et al. [5] introduced the following definition which will be needed in the proof of our result.

Definition 3.3 ([5]). Suppose (X,�) is a partially ordered set and f,g : X→ X. f is g-nondecreasing if for
all x,y ∈ X, gx � gy implies fx � fy.

Then, from the previous results to fixed point, we will extend for a common fixed point as the way of
Shatanawi and Postolache [27]. Now, we are ready to mention our theorem.

Theorem 3.4. Let (X,d,�) be a partially ordered quasi metric space equipped with w-distance q. Suppose g be a
continuous self-map on X and f be any self-map on X that commutes with g. Further, let f and g satisfy f(X) ⊆ g(X)
and g(X) is complete subspace of X which has the following conditions:

(1) there exists gx0 ∈ g(X) such that gx0 � fx0;
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(2) there exist a generalized altering distance function ψ, an upper semi-continuous function ϕ : [0,∞)→ [0,∞),
and a lower semi-continuous function φ : [0,∞)→ [0,∞) such that

ψ(q(fx, fy)) 6 ϕ(mx,y) −φ(mx,y) for all x � y,

where mx,y = max{q(gx,gy),q(gx, fx),q(gy, fy), 1
2 [q(gx, fy) − q(gy, fx)]}, ϕ(0) = φ(0) = 0, and ψ(t) −

ϕ(t) +φ(t) > 0 for all t > 0;
(3) f is g-nondecreasing and continuous.

Then f and g have a common fixed point.

Proof. By Lemma 3.2, there exists E ⊆ X such that g(E) = g(X) and g : E → X is one-to-one. We define
a continuous mapping G : g(E) → g(X) by G(gx) = fx. Since g is one-to-one on E, G is well-defined.
Now, we show that the function G satisfies all conditions in Theorem 3.4. From the above definition, G is
continuous function. Other conditions will be indicated as follows.

(i) We have gx0 ∈ g(E), then G(gx0) = fx0. From condition (1) gx0 � fx0, we obtain gx0 � G(gx0).

(ii) From the definition of G, for all gx,gy ∈ g(E) we obtain

ψ(q(G(gx),G(gy))) 6 ϕ(mx,y) −φ(mx,y) for all gx � gy,

where mx,y = max{q(gx,gy),q(gx,G(gx)),q(gy,G(gy)), 1
2 [q(gx,G(gy)) − q(gy,G(gx))]}, ϕ(0) =

φ(0) = 0, and ψ(t) −ϕ(t) +φ(t) > 0 for all t > 0.

(iii) From Definition 3.3, if gx � gy implies fx � fy for all x,y ∈ X, so that gx � gy implies G(gx) �
G(gy) for gx,gy ∈ g(E), then G is nondecreasing.

From (i)-(iii) above, we conclude that the function G satisfies all conditions in Theorem 2.5. Since g(E) =
g(X) is complete and using Theorem 2.5, there exists x∗ ∈ X such that gx∗ = G(gx∗) = fx∗. Hence f and
g have a common fixed point.

From Remark 2.6 and setting q = d, ϕ = ψ, we obtain the following corollaries.

Corollary 3.5. Let (X,d,�) be a partially ordered quasi metric space equipped with w-distance q. Suppose g be a
continuous self-map on X and f be any self-map on X that commutes with g. Further, let f and g satisfy f(X) ⊆ g(X)
and g(X) is complete subspace of X which has the following conditions:

(1) there exists gx0 ∈ g(X) such that gx0 � fx0;
(2) there exist a generalized altering distance function ψ, an upper semi-continuous function ϕ : [0,∞)→ [0,∞),

and a lower semi-continuous function φ : [0,∞)→ [0,∞) such that

ψ(q(fx, fy)) 6 ϕ(m̄x,y) −φ(m̄x,y) for all x � y,

where m̄x,y = max{q(gx,gy),q(gx, fx),q(gy, fy)}, ϕ(0) = φ(0) = 0, and ψ(t) −ϕ(t) +φ(t) > 0 for all
t > 0;

(3) f is g-nondecreasing and continuous.

Then f and g have a common fixed point.

Corollary 3.6. Let (X,d,�) be a partially ordered quasi metric space. Suppose g be a continuous self-map on X
and f be any self-map on X that commutes with g. Further, let f and g satisfy f(X) ⊆ g(X) and g(X) is complete
subspace of X which has the following conditions:

(1) there exists gx0 ∈ g(X) such that gx0 � fx0;
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(2) there exist a generalized altering distance function ψ and a lower semi-continuous function φ : [0,∞)→ [0,∞)
such that

ψ(d(fx, fy)) 6 ψ(mx,y) −φ(mx,y) for all x � y,

where mx,y = max{d(gx,gy),d(gx, fx),d(gy, fy), 1
2 [d(gx, fy) − d(gy, fx)]}, φ(0) = 0, and φ(t) > 0 for all

t > 0;
(3) f is g-nondecreasing and continuous.

Then f and g have a common fixed point.

Remark 3.7. The result of Abbas and khan [1] is a special case of our Corollary 3.6 by setting mx,y =
d(gx,gy) in metric space.
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