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Abstract

The purpose of this paper is to present some existence results for coupled fixed points of generalized contraction type
operators in b-metric spaces endowed with a directed graph. Our results generalize the results obtained by Gnana Bhaskar
and Lakshmikantham in [T. Gnana Bhaskar, V. Lakshmikantham, Nonlinear Anal., 65 (2006), 1379-1393]. Data dependence,
well-posednes and Ulam-Hyres stability of the fixed point problem are also studied. (©2017 All rights reserved.
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1. Preliminaries

In fixed point theory, the importance of study of coupled fixed points is due to their applications to
a wide variety of problems. Gnana Bhaskar and Lakshmikantham [8] gave some existence results for
coupled fixed point for a mixed monotone type mapping in a metric space endowed with partial order,
using a contraction type assumption on the mapping.

The purpose of this paper is to generalize these results using the context of b-metric spaces endowed
with a graph. This new research direction in the theory of fixed points was initiated by Jachymski [11],
and Gwo6zdz-Lukawska and Jachymski [9]. Other results for single-valued and multi-valued operators in
such metric spaces were given by Beg et al. in [1], Vetro and Vetro [19], and Chifu and Petrusel in [5].

Our results also generalize and extend some fixed point and coupled fixed point theorems in partially
ordered complete metric spaces and b-metric spaces given by Harjani and Sadarangani [10], Nieto and
Rodriguez-Lépez [14, 16], Nieto et al. [15], Jleli et al. [13], O’'Regan and Petrusel [17], Ran and Reurings
[18], Gnana Bhaskar and Lakshmikantham [8], and Chifu and Petrusel in [6].

Let us recall now some essential definitions and fundamental results. We begin with the definition of
a b-metric space.

Definition 1.1 ([7]). Let X be a nonempty set and let s > 1 be a given real number. A functional d :
X x X — [0, 00) is said to be a b-metric if the following conditions are satisfied:

*Corresponding author
Email addresses: Cristian.Chifu@tbs.ubbcluj.ro (Cristian Chifu), Gabi.Petrusel@tbs.ubbcluj.ro (Gabriela Petrusel)

doi:10.22436 /jnsa.010.02.29
Received 2016-06-06


http://dx.doi.org/10.22436/jnsa.010.02.29

C. Chifu, G. Petrusel, J. Nonlinear Sci. Appl., 10 (2017), 671-683 672

1. d(x,y) =0if and only if x = y;
2. d(x,y) =d(y,x);
3. d(x,z) < sld(x,y) + d(y, z)],

for all x,y,z € X. In this case the pair (X, d) is called a b-metric space.

Remark 1.2. The class of b-metric spaces is larger than the class of metric spaces since a b-metric space is
a metric space when s = 1. For more details and examples on b-metric spaces, see e.g., [2].

The following example will be useful for our results.

Example 1.3. Let (X, d) be a b-metric space, with constant s > 1, and let Z = X x X. The functional d:ZxZ—
[0, 00), defined by

d ((X;U) 7 (u,v)) =d (X,'LL) +d (U/V) ’
is a b-metric with the same constant s > 1 for all (x,y), (u,v) € Z. Moreover if (X,d) is a complete

b-metric space, then (Z, &) is a complete b-metric space, too.

Definition 1.4. A mapping ¢ : [0,00) — [0, 00) is called a comparison function if it is increasing and
@™ (t) > 0asn — oo foranyt € [0, 00).

We recall the following essential result.
Lemma 1.5 ([4]). If ¢ : [0,00) — [0, 00) is a comparison function, then:
(1) each iterate ©* of @ (where k > 1) is also a comparison function;
(2) « is continuous at 0;

(3) o(t) <tforanyt>0.

Berinde [4] introduced the concept of (c)-comparison function in the following way.
Definition 1.6 ([4]). A function ¢ : [0,00) — [0, 00) is said to be a (c)-comparison function if

(1) ¢ is increasing;
(2) there exist kg € N, a € (0,1) and a convergent series of nonnegative terms ) ;. ; vy such that
©* (1) < a@®(t) + vy for k > kg and any t € [0, o).

The notion of a (c¢)-comparison function was improved as a (b)-comparison function by Berinde [3],
in order to extend some fixed point results to the class of b-metric spaces.

Definition 1.7 ([3]). Let s > 1 be a real number. A mapping ¢ : [0,00) — [0, 00) is called a (b)-comparison
function if the following conditions are fulfilled:

(1) ¢ is monotone increasing;

(2) there exist kg € IN, a € (0,1) and a convergent series of nonnegative terms ) ;. ; vx such that
s leR (1) < as®@¥(t) +vi for k > kg and any t € [0, 00).

It is obvious that the concept of (b)-comparison function reduces to that of (c)-comparison function
when s = 1.
The following lemma has a crucial role in the proof of our main result.

Lemma 1.8 ([2]). If ¢ : [0,00) — [0, 00) is a (b)-comparison function, then we have the following:

(1) the series Y s*@*(t) converges for any t € [0, 00);
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(2) the function Sy, : [0,00) — [0, 00) defined by Sy (t) = > % s¥@*(t), t € [0, 00), is increasing and continuous
at 0.

We note that any (b)-comparison function is a comparison function due to the above lemma.

Let (X, d) be a metric space and A be the diagonal of X x X. Let G be a directed graph, such that the
set V(G) of its vertices coincides with X and A C E(G), where E(G) is the set of the edges of the graph.
Assume also that G has no parallel edges and, thus, one can identify G with the pair (V(G), E(G)).

Throughout the paper we shall say that G with the above mentioned properties satisfies standard
conditions.

Let us denote by G ! the graph obtained from G by reversing the direction of edges. Thus,

E(G ) ={(xy) e XxX:(yx) €EG)].
Let us consider the function F: X x X — X.

Definition 1.9. An element (x,y) € X x X is called coupled fixed point of the mapping F, if F (x,y) = x and
F(y,x) =v.

We shall denote by CFix(F) the set of all coupled fixed points of mapping F, i.e.,
CFix(F) ={(x,y) e Xx X:F(x,y) =x and F(y,x) =y}.
Definition 1.10 ([6]). We say that F: X x X — X is edge preserving if

(x,u) € E(G) and (y,v) € E (Gfl) = (F(x,y),F(w,v)) € E(G)
and

(F(y,x),F(v,u)) € E(GY).

Definition 1.11 ([6]). The operator F: X x X — X is called G-continuous if for all (x,y) € X x X, (x*,y*) €
X x X and for any sequence (ni);c of positive integers, with F™*t (x,y) — x*, F™* (y,x) — y*, as i — oo,
and (F“i (x,y),Fuitl (x,y)) € E(G), (F“i (y,x), Fritl (y,x)) €t (G_l) , we have that

F(F™t (x,y),F™ (y,x)) — F(x*,y*)

F(F™ (y,x), F™ (x,y)) = Fy,x7) 207 %

Definition 1.12 ([6]). Let (X, d) be a b-metric space, with constant s > 1, and G be a directed graph. We say
that the triple (X, d, G) has the property (A1), if for any sequence (xn)nen C X with x, — x, asn — oo,
and (xn,xny1) € E(G), for n € IN, we have that (x,x) € E(G).

Definition 1.13 ([6]). Let (X, d) be a b-metric space, with constant s > 1, and G be a directed graph. We say
that the triple (X, d, G) has the property (A;), if for any sequence (xn)nen C X with xn, — x, asn — oo,
and (xn,Xn41) € E(G™1), for n € N, we have that (x,,,x) € E(G™1).

2. Existence and data dependence results for coupled fixed point problems

Let (X, d) be a b-metric space, with constant s > 1, endowed with a directed graph G satisfying the
standard conditions. We consider the set denoted by (X x X)]E and defined as:

(X xX)F = ={(xy) € XxX:(x,F(xy)) € E(G) and (y,F(y,x)) € E(G1)}.
Proposition 2.1 ([6]). If F: X x X — X is edge preserving, then:

(i) (x,u) € E(G) and (y,v) € E(G_l) implies (F™ (x,y),F* (u,v)) € E(G) and (F* (y,x),F* (v,u)) €
E(G 1)forallneIN
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(i) (x,y) € (XxX)" implies (F* (x,y), F*" (x,y)) € E(G) and (F™ (y,x),F* (y,x)) € E(G™) for all
n e N;
(iii) (x,y) € (X x X)F implies (F™ (x,y),F™ (y,x)) € (X x X)Ffor alln € IN.

Definition 2.2. The mapping F: X x X — X is called (¢, G)-contraction of type (b) if:

(i) Fis edge preserving;
(ii) there exists ¢ : [0,00) — [0, 00) a (b)-comparison function such that

d(F(xy), Flu,v))+d(Fly,x),Flvu)) <e(dxu)+d(y,v),
for all (x,u) € E(G), (y,v) € E(G™1).

Lemma 2.3. Let (X,d) be a b-metric space, with constant s > 1, endowed with a directed graph G and let
F: X x X — Xbea (¢, G)-contraction of type (b). Then,

d(F* (x,y), F* (w,v)) +d (F" (y,x), F* (v,u)) < @™ (d (x,u) +d (y,v)),
forall (x,u) € E(G), (y,v) € E(G1),neN.

Proof. Let (x,u) € E(G), (y,v) € E(G™!). Because F is edge preserving we have
(F(x,y),F(w,v)) € E(G) and (F(y,x),F(v,u)) €E(G).
From Proposition 2.1 (i) it follows that
(F* (x,y),F* (w,v)) € E(G) and (F™(y,x),F" (v,u)) € E(G1).
Since F is a (¢, G)-contraction of type (b), we obtain
d(F (xy), P (w,v) +d (F(y,x),F (vu) = d(F(F(x,y),F(y,x), F(F(w,v), Fv,u)))
+ d(F(F(y,x),F(x,y)), F(F(v,u), F(u,v)))
¢ (d(Fxy), Fluv))+d(F(y,x),Fv,u)))
¢ (¢ (d(xu)+d(y,v)
@*(d (x, 1) +d(y,v).

NN N

Hence, by induction, we reach the conclusion. O

Lemma 2.4. Let (X,d) be a b-metric space, with constant s > 1, endowed with a directed graph G and let
F: X x X — Xbea (@, G)-contraction of type (b). Then, given (x,y) € (X x X)F, there exists r(x,y) = 0 such
that

d(F* (xy), F*" (x,y)) +d (F* (y,x), F** ! (y,x)) < @™ (r(x,y)) foralln € N.

Proof. Let (x,y) € (X x X)F. It follows that (x, F (x,y)) € E(G) and (y,F (y,x)) € E (G 1.
If in Lemma 2.3 we consider u = F (x,y) and v = F (y, x) we shall obtain

d (F™ (x,y), F* (F(x,y), F(y,x))) + d (F* (y,x), F™* (F(y,x), F(x,y)))
<oe™(d(x,F(x,y))+d(yFl(y,x))) forallncN,

which is
d(F* (xy), F* 7 (x,y)) +d (F™ (y,x), F* ™ (y,x)) < ™ (d (%, F(x,y)) +d(y,F(y,x))) foralln € N.
If we consider r(x,y) := d (x,F(x,y)) + d (y,F (y,x)), then
d(F* (xy), F*" (x,y) +d (F* (y,x), F** (y,x)) < @™ (r(x,y)) foralln e N.
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Lemma 2.5. Let (X, d) be a complete b-metric space with constant s > 1, endowed with a directed graph G and let
F: XxX — Xbea (¢, G)-contraction of type (b). Then for each (x,y) € (X x X) , there exist x*(x) € X and
y*(y) € X such that (F™ (x,y)),,cn converges to x*(x) and (F™ (y,x)) c converges to y*(y), as n — oo.

Proof. Let (x,y) € (X x X)F. It follows that (x,F(x,y)) € E(G) and (y,F(y,x)) € E (G71).Let Z=XxX
and consider the b-metric given by Example 1.3, d:ZxZ—10,00), defined by

d((x,y),(w,v) =d(xu) +d(y,v) foral (x,y),(wv) e Z
Consider also, the operator T : Z — Z, defined by
T(x,y) =(F(x,y),F(y,x)) forall (x,y) € Z.

For (x,y) and (u,v) € (X x X)F, we have

d(T (oY), T(wv) =d(F(xy),Fwv) +d(Fyx),F,u).
Ifu=F(x,y)and v="F(y,x), then (u,v) € (Xx X)" and T (u,v) = T2 (x,y) . Hence

d(TOoy), T2 (xy) = d(Fx,y), P (x ) +d (Fly,x), F y,x).
By induction we shall obtain
d(T (xy), T (x,y) = d (F* (v y), F T (6 y) +d (F* (y,x), F T (y, %)

From Lemma 2.4, we have

d (T (x,y), T (x,y)) < @™ (r(x,y)) foralln € N.
Now we shall prove that (T™ (x,y)),, <y is @ Cauchy sequence. We have
d (T (%, y), TP (x,y)) <sd (TM (x,y), T (x,y)) +s2d (T (x,y), T2 (x,y))
+osP T (TP 2 (x,y), TP (x, )
+sPd (TP (x,y), TP (x,y))
<se™ (r(xy)) + 2™ (1Y) PP (r(x,y))

+sP ™M (r(x,y))
n+p—1

Zscp y)).

Let Sn =) 1_os 9" (r(x,y)) . Hence we have

~ 1
d(Tn (X/U),Tnﬂ) (X/U)) g Snﬁ (Sn+p 1= — \ gn— 1 ZS

From Lemma 1.8 we have that the series is convergent. In this way, we shall obtain

E(TH(X/U) Tnﬂ)(xy SanS ) =0, asn — oo.

In conclusion the sequence (T™ (x,y)),, ¢ is @ Cauchy sequence.

Since (X, d) is a complete b-metric space, from Example 1.3, we have that (Z, &) is a complete b-metric
space, and hence there exists (x* (x),y* (y)) € X x X such that T™ (x,y) — (x* (x),y* (y)), as n — oo.
This is equivalent to (F™ (x,y),F™ (y,x)) — (x* (x),y* (y)), as n — oo.

Hence, there exist x*(x) € X and y*(y) € X such that (F" (x,y)),,cn and (F™ (y,x)),cn converge to
x*(x) and y*(y), respectively, as n — oo. O
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Now we shall prove the main results of this section.

Theorem 2.6. Let (X, d) be a complete b-metric space with constant s > 1, endowed with a directed graph G and
let F: X x X — X bea (¢, G)-contraction of type (b). Suppose that:

(i) F is G-continuous; or
(ii) the triple (X,d,G) has the properties (A1) and (Az).

In these conditions CFix(F) # @ if and only if (X x X)F + 2.

Proof. Suppose that CFix(F) # @. Let (x*,y*) € CFix(F). We have (x*, F(x*,y*)) = (x*,x*) € A C E(G) and
(y*, Fly*,x*)) = (y*,y*) e ACE(G™).

Hence (x*, F(x*,y*)) € E(G) and (y*,F(y*,x*)) € E(G™!) which means that (x*,y*) € (X x X)F and
thus (X x X)F #+ .

Suppose now that (X><X)]E # . Let (x,y) € (XXX)F. It follows that (x,F(x,y)) € E(G) and
(y,F(y,x)) € E(G™).

Let (ni);cn be a sequence of positive integers. From Proposition 2.1 (ii), we know that

(Fm (x,y),Ferl (X,y)) €E(G)

2.1
(F™ (y, %), P (y, %)) € E(GTY). Y
Moreover from Lemma 2.5, there exist x*(x) € X and y*(y) € X such that
cF™ (x,y) = x*(x),
oy) =20 e 2.2)

F' (y,x) = y*(y),

We shall prove that F(x*,y*) = x* and F(y*,x*) = y*. Suppose that (i) takes place. Since F is G-
continuous we shall obtain that

Now

d (F(x*,y%),x*) + d (Fly*,x*),y*) <s [d (Fx*5,y*), F T (x,y)) +d (F 7 (x,y), xF)]
+s[d (F(y*,x"‘),F“"+1 (y,x) +d (F* (y,x),y%)].
Using the G-continuity of F and the convergence of (F™(x,y)),,cn, We obtain that d (F(x*,y*),x*) +

d(F(y*,x*),y*) =0,ie, F(x*,y*) =x* and F(y*,x*) =y*.
Thus (x*,y*) is a coupled fixed point of the mapping F, so CFix(F) # @.
Suppose now that (ii) takes place. From (2.1) and (2.2), using properties (A1) and (Az) of the triple

(X, d, G), we shall obtain that
(F* (x,y),x") € E(G), (F"(y,x),y*) €E(G ).

We have
d (F(x*,y*),x*) + d (Fly*,x*),y*) <s[d (F* (x,y )er(F“+1 Y),x%)]
+s d(F“+1(y, x*)) +d (F* 7 (y,x),y%)]
=s |d(F(F"(x,y), F“(y, )) F(x*,y") +d (F* (x,y),x")]

[
(
+s [d(F(F™(y,x), F* (%, b)), Fly*,x*)) + d (F** (y, %), y*)]
<s@ (d(F™ (x,y),x") +d (F* (y,x),y*) +sd (F* (x,y),x¥)
+sd (F*" (y,x),y*) =0, asn — co.
)

Hence d (F(x*,y*),x*) + d (F(y*,x*),y*) = 0, which means that F(x*,y*) = x* and F(y*,x*) = y*. Thus,
(x*,y*) € CFix(F). O]
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Let us suppose now that for every (x,y), (u,v) € X x X, there exists (z, w) € X x X such that
(x,z) € E(G), (y,w) € E(G™Y), (uz)€E(G),(v,w)eE(G). (2.3)

Theorem 2.7. Adding condition (2.3) to the hypotheses of Theorem 2.6 we obtain the uniqueness of the coupled
fixed point of F.

Proof. Let us suppose that there exist (x*,y*), (u*,v*) € X x X two coupled fixed points of F. From (2.3)
we have that there exists (z, w) € X x X such that

(x*,z) € E(G), (y*,w) € E(G™Y), (u%z) € E(G), (v,w)eE(G).
Using Lemma 2.3, we shall have

d(x*, u") +d(y*,v*) = d(F*(x", y*), F* (u*,v") + d(FH (y*, x"), F* (v5,u"))

< sld(F ( y*), F(z,w)) + d(F" (z, W), F™ (u*,v7))]
+s [d(F“(y ,x*),Fn(w,z)) +d(F™*(w, z), F™* (v, u*))]
o™ (d(x*,z) +dy*,w))+ o™ (d(u*, z) + d(vF,w))) — 0, asn — oo.
Hence d(x*,u*) + d(y*,v*) = 0 and thus we obtain that x* = u* and y* = v*. O
Remark 2.8. It is obvious that if (x*,u*) € E(G) and (y*,v*) € E(G™!), then x* = u* and y* = v*.
Theorem 2.9. In the conditions of Theorem 2.6, if (x ) € CFix(F) with (x*,y*) € E(G), then x* =y*.

Proof. Since (x*,y*) € E(G), then (y*,x*) € E(G™1). By the fact that F is a (¢, G)-contraction of type (b),
we have

Zd(X*/U*) = d(F(X*/U*),F(U*/X*) +d (F(y*/X* /F( * ))
< @ (dxy") +dly",x7) = ¢ (2d X*,y*))

From the properties of ¢, we obtain that d(x*,y*) = 0 and thus x* =y*. O

Remark 2.10. It is obvious that if we consider a function f : X — X, f(x) = F(x, x) all these results concerning
the coupled fixed point of the mapping F result in the existence and uniqueness results for the fixed point
of f.

In what follows we shall give a data-dependence result.

Theorem 2.11 (data dependence). Let (X, d) be a complete b-metric space with constant s > 1, endowed with
a directed graph G and let Fi : X x X — X,i € {1,2} be two mappings. Assume that the following conditions are
satisfied:

(i) F1isa (@, G)-contraction of type (b);
(ii) Fq is G-continuous;

or

(ii*
(iii
(iv

) the triple (X,d,G) has the properties (A1) and (Az);

) for every (x,y), (u,v) € X x X, there exists (z,w) € X x X such (2.3) holds;
) CFix (F,) # &;

(v) there exists 1 > 0 such that

d(Fl (X/U),FZ (X/U)) < mn, V(X/U) S X x X.
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In these conditions, if (x*,y*) denotes the unique coupled fixed point of Fy, then

d(x",x)+d(y*,y) <sup{t e Ry[t—se(t) <2sn},
vV (x,Y) € CFix (F2) and (x*,%X) € E(G), (y*,y) € E(G ).

Proof. Let (x*,y*) € X x X be the unique coupled fixed point of F;. It follows that

X* = Fl (X*/U*) ’

Yy =F(y"x").
Since CFix (F,) # @, let (x,7) € CFix (F,) with (x*,%) € E(G), (y*,J)E(G!). Let Z = X x X and consider
the functional d : Z x Z — [0, co) defined by

a((x,y), (w,v)) =d(x,u)+d(y,v) forall (x,y),(u,v) e Z

We have
d((x*y"), (®%Y) =d((F (x*,y"),F1 (y",x"), (F2 (%, 9), F2 (5, %))
=d(F (x*,y"),F2(x,9)) + d (F1 (y*,x"), F2 (Y, %))
<sld(F (x5 y"),F1(x,9)) +d (R (7,13) F2 (%, 9))]
+sld(F1 (y*,x"), F1(y,%)) + d (F1 (y,%x), F2 (y,%))]
<s@ (d(x", %) +d(y",y)) +2sn.

Hence d (x*,%X) + d (y*,y) < sup{t € Ry|t—s@(t) <2sn},V(x*,y*) € CFix(F;) and (X,y) € CFix (F).
O

Remark 2.12. In the light of the recent approach in [12], it is an open question to give similar results in the
context of K-metric spaces.

3. Well-posedness and Ulam-Hyers stability

Let F: X x X = X. Consider now the following coupled fixed point problem

{x:H&w,

P1
Y= F(UIX)/ ( )

Definition 3.1. Let (X, d) be a complete b-metric space with constant s > 1. By definition, the coupled
fixed point problem (P1) is said to be well-posed if:

(i) CFix (F) ={(x*,y*)};
(i) for any sequence (xn,Yn)nen in X x X for which d (xn, F (xn,yn)) — 0 and respectively d(yn, F(yn,
Xn)) — 0 as n — oo, we have that x,, — x* and y, — y*, asn — oo.

Theorem 3.2. Suppose that the operator F : X x X — X verifies all hypotheses of Theorem 2.7 and for any sequence
(Xn,Yn)nen i X x X having property that d (xn,F (xn,yn)) — 0 and respectively d (yn, F (yn,xn)) — 0 as
n — oo, we have (xn,x*) € E(G) and (yn,y*) € E( ) If the mapping P : [0,00) — R, P(t) =t —se(t),
is such that P(t) > 0,Vt € Ry and P(0) = 0 implies that t = O, then the coupled fixed point problem (P1) is
well-posed.

Proof. By Theorem 2.7, it follows that the coupled fixed point problem (P1) has a unique solution (x*,y*),
i.e., CFix (F) ={(x*,y*)}.
Let (xn, Yn)nen € X x X be a sequence which verifies the following properties:
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(@) d(xn,F(xn,yn)) — 0 and respectively d (Yn, F (yn, xn)) = 0as n — oo;
(b) (xn,x*) € E(G) and (yn,y*) € E(G).

Let Z = X x X and consider the functional d: Z x Z — [0, 00) defined by

a((x,y), (w,v))=d(x,u)+d(y,v) forall (x,y),(w,v) e Z
We have

d((xn,yn), (x*,y*) = d ((xn,yn), (F(x*,y*), F(y*,x*)))
< sd (X, Yn), (F (X, yn), F(Yn, xXn)))
+5d ((F (%r,yn), F(yn, xn)), (F (x5, 4%), F(y*, %))
< 5d ((xn,Yn), (F (xn,yn ) F(yn,n))) 459 (@ (00n,yn), (65, 97)) ).

Hence

d((xn,yn), (x*,y*)) —s@ (5((xn,yn), (X*,y*))) < sd ((xn,Yn), (F(xn,yn), F(Yn, xn))) .

Since the mapping VP : [0,00) = R, P(t) = t —s¢(t), is such that P(t) > 0,Vt € R4 and P(0) =
implies that t = 0, then, letting n — oo, we get that (xn, yn) — (x*,y*). O

In what follows we shall give an Ulam-Hyers stability result for the coupled fixed point problem (P1).

Definition 3.3. Let (X, d) be a complete b-metric space with constant s > 1, and let d be any b-metric on
Z = X x X generated by d. By definition, the coupled fixed point problem (P1) is said to be Ulam-Hyers
stable if there exists { : Ry — R, increasing, continuous in 0 with {(0) = 0, such that for each ¢ € R*.
and for each solution (u*,v*) € X x X of the inequality d ((x,y),(F(x,y),F(y,x))) < ¢, there exists a
solution (x*,y*) € X x X of the coupled fixed point problem (P1) such that

d((x*y"), (w5 v7)) < (e).

Theorem 3.4. Assume that all the hypotheses of Theorem 2.7 take place. If the mapping v : [0,00) — R, y(t) =
t —s@(t) is such that y(t) > 0,vt € Ry and y(0) = 0 implies that t = O, then the coupled fixed point problem
(P1) is Ulam-Hyers stable.

Proof. By Theorem 2.7 we get that CFix (F) = {(x*,y*)}. Let ¢ > 0 and let (u*,v*) € X x X such that d
((uw*,v*), (F(u*,v*),F(v*,u*))) < eand (x*,u*) € E(G), (y*,v*) € E(G1).
Let Z = X x X and consider the functional d : Z x Z — [0, co) defined by

d((x,y),(wv))=d(x,u)+d(y,v) forall (x,y),(u,v) € Z
We have
d((us,v), (x%y") = d((w,v), (Fx*,y*), Fy*,x))
< sd ((u',v), (F (', v*), F (v, u™))) sd ((F (u*,v*), F(v',u"), (F(x*,y"), Fy",x")))

< se+s@ (a((u v* ))

Hence B
d ((u®,v*),( ) —s@ (d ,y*))) < se.
Thus we obtain that B
d ((u",v*), (x",y") < (e),
where
P (&) :=sup{t € Ry[t—s@ (t) < se}.
Since the mapping v : [0,00) = R, y(t) = t —s@(t) is such that y(t) > 0,Vt € R, and y(0) = 0 implies
that t = 0, then the coupled fixed point problem (P1) is Ulam-Hyers stable. O
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4. Applications

In what follows we shall give an application for Theorem 2.6. Let us consider the following problem:

,x(t)), te[0,1]. (4.1)

1
; te o, (42)
J

where

The purpose of this section is to give existence and uniqueness results for the solution of the system
(4.2) using Theorem 2.6.
Let us consider X := C([0, 1], R™) endowed with the following b-metric with s =2

_ . 2
d(x,y)—trg[g?{] (x(t) =y ().

Consider also the graph G defined by the partial order relation, i.e.,
x,yeX,x<y<x(t) <y(t) forany t € [0,1].

Since (X, <) is a lattice, we get that (X, G) has the property (2.3). Hence (X, d) is a complete b-metric space
endowed with a directed graph G.

If we consider E(G) = {(x,y) € X x X:x <y}, then the diagonal A of X x X is included in E(G). On
the other hand E(G™!) = {(x,y) € X x X :y < x}. Moreover (X, ||-|, G) has the properties (A1) and (A3).
In this case (X x X)F = {(x,y) e XxX:x<F(x,y) and F(y,x) < y}.

Theorem 4.1. Consider the system (4.1). Suppose:

(1) T:00,1] x R™ x R™ — IR™ is continuous;
(ii) forall x,y,u,v € R™ with x < u,v <y we have f(t,x,y) < f(t,u,v) forall t € [0,1];
(iii) there exists @ : [0,00) — [0,00) a (b)-comparison function and «, 3 € (0, 00), with max{w, B} < 1, such
that

(f(t,x,y) —f(t,u,v))2 <o (cx(x—u)z +B(y —v)2) foreach t € [0,1],x,y,u,ve R",x <u,v<y;

(iv) there exists (xg,Yo) € X x X such that

xo(t) < | K(t,8) f(s,xo(s),yo(s))ds,
tc(0,1].

yo(t) = | K(t,8) f(s,yo(s),xo(s))ds,

Ce—m—m— m O——
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Then, there exists a unique solution of the integral system (4.2).

Proof. Let F: X x X = X, (x,y) — F(x,y), where
1
F(x,y)(t) = JK (t,s) f(s,x(s),y(s))ds, t € [0,1]. 4.3)
0

In this way, the system (4.2) can be written as

X = F(Xry)/

It can be seen from (4.4), that a solution of this system is a coupled fixed point of the mapping F.
We shall verify if the conditions of Theorem 2.6 are fulfilled.
Let x,y,u,v € X such that x < u and v < y. Using (ii), we have

K (t,s) f(s,u(s),v(s))ds = F(u,v)(t) for each t € [0,1],

K (t,s) f(s,y(s),x(s))ds = F(y,x)(t) for each t € [0,1].

Hence, if x < u and v < y, then F(x,y) < F(u,v) and F(v,u) < F(y,x), which according to the
definition of E(G), it shows that F is edge preserving. On the other hand, by Cauchy-Buniakovski-Schwarz
inequality, we have

2

M1
(F(x,y)(t) — F(w,v)(1))* < JK (t,s) (f(s,x(s),y(s)) — f(s,u(S),V(S)))dSI

L0
1

1
< | K2 (t,s)ds J (f(s,x(s),y(s)) — f(s,u(s),v(s)))2 ds for each t € [0,1].
0 0

We have ) . .
JKZ (t,s)ds = JSst +Jt2ds =2 <1 — §t> < % foreacht € [0,1].
0 0 t
Hence
) 1
(F(x,y) (1) — F(u,v)(1))* < 3 J (f(s,x(s),y(s)) — (s, u(s),v(s)))* ds
0
) 1
<5 | Bt —w @R gy (s) - vis s
0

< -¢ (ad(x,u) + Bd (y,v))

W= Wl

< 5@ (max{ea, B} (d (x,u)+d(y,v))).
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Hence 1
d (F(x,y), Flu,v)) < 5(5 (max{e, B}(d (x,u) +d (y,v))),x <u,v<y. (4.5)
In a similar way, we obtain
d (F(y,x), F(v,u)) < %6 (max{e, B} (d (x,u) +d(y,v))), x <u,v<y. (4.6)
By (4.5) and (4.6) we have
d (F(x,y), Flw,v)) + d (F(y,x), F(v,u)) < %(T) (max{c«, B} (d (x,u) +d(y,v))),x <w,v<y.

Let us consider the function ¢ : [0,00) — [0,00), @ (t) = %(Np (kt),0 < k <1, which is a (b)-comparison
function. Then, we have

d (F(x,y), Flu,v)) +d (F(y,x),F(v,u)) < @ (d(x,u) +d(y,v)),x <uv<y.

Thus we have that Fis a (¢, G)-contraction of type (b). Condition (iv) from Theorem 4.1 shows that there
exists (xg,Yo) € X x X such that xo < F(xo,yo) and F(yo, xo) < yo which implies that (X x X)]E #+ .

On the other hand, because of (i) and of the fact that (X, ||-||, G) has the properties (A1) and (Az) we
have that either (i) or (ii) from Theorem 2.6 is fulfilled.

In this way, we have that F : X x X — X, defined by (4.3), verifies the conditions of Theorems 2.6
and 2.7. Thus, there exists (x*,y*) € X x X which is a coupled fixed point of the mapping F and, as a
consequence, a solution of the problem (4.1). O
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