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Abstract
In this paper, our aim is to construct a convergence theorem in Banach spaces via the following Ishikawa recursive algorithm{

xn+1 = (1 −αn)xn +αnTnyn,
yn = (1 −βn)xn +βnTnxn,

where {αn}, {βn} are sequences in [0, 1] and {Tn} is a sequence of nonexpansive mappings. Moreover, we also apply these results
to solve a split feasibility problem. c©2017 All rights reserved.
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1. Introduction and preliminaries

Throughout this paper, we always assume that E is a real Banach space and H is a real Hilbert space,
respectively. Let C and Q (Cn and Qn, n = 0, 1, 2, · · · ) denote the nonempty closed convex subsets of
the Hilbert spaces H1 and H2. Let T be a self-mapping of C. Recall that T is said to be a nonexpansive
mapping, if

‖Tx− Ty‖ 6 ‖x− y‖, ∀x,y ∈ C.

Here F(T) denotes the set of fixed points of T , i.e., F(T) = {x ∈ C : x = Tx}. We use ⇀ (→) to denote weak
(strong) convergence, ωw(xn) = {x : ∃xnk ⇀ x} to denote the w-limit set of {xn}.

On the fixed point problems of the nonexpansive mappings which is an important class of nonlinear
mappings, there are many interesting convergence results during the past decades, see [7, 21, 31] and the
references therein.

Krasnosel’skii [15] and Mann [17] used the following algorithm which is now called the K-M algorithm

xn+1 = (1 −αn)xn +αnTxn, (1.1)

where αn ⊂ [0, 1] and the initial point x0 ∈ C have no restrictions.
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In 1979, Reich [24] proved that the sequence defined by (1.1) converges weakly to q ∈ F(T), if E
is a uniformly convex Banach space with a Fréchet differentiable norm, T : C → C is a nonexpansive
self-mapping with F(T) 6= ∅ and

∑∞
n=0 αn(1 −αn) =∞.

In 2011, Zhang et al. [29] proposed modified Halpern and Ishikawa iteration algorithms for solving
the fixed points of nonexpansive mappings in Banach spaces. For the convergence of modified Halpern
and Ishikawa iterative algorithms, we refer authors to [8, 9, 20, 28] for more details. In 2016, Hieu et
al. [11] introduced three parallel hybrid extragradient methods and obtained the set of fixed points of
nonexpansive mappings in a real Hilbert space.

The split feasibility problem (SFP) is to find a point

x ∈ C, such that Ax ∈ Q, (1.2)

where A : H1 → H2 is a bounded linear operator. Censor and Elfving [5] first introduced the SFP in a
Hilbert space. Recently, SFP which attracts attentions of many researchers, has been widely used in many
applications such as signal processing and other fields, see [3, 4, 10, 14] and the references therein.

It has been proved that if the SFP (1.2) has a solution, it is not hard to find a solution x∗ to (1.2) is
equivalent to a fixed point equation

PC(I− γA
∗(I− PQ)A)x

∗ = x∗. (1.3)

In order to solve the SFP (1.2), Byren [3] proposed the popular CQ algorithm which generates a sequence
{xn} by

xn+1 = PC(xn − γA∗(I− PQ)Axn), n > 0, (1.4)

where γ ∈ (0, 2/λ) with λ being the spectral radius of the operator A∗A.
As we know, the CQ algorithm (1.4) is a special case of the K−M algorithm (1.1) (see [27]). Due to

the fixed point formulation (1.3) of the SFP (1.2), we can apply the K−M algorithm (1.1) to the operator

PC(I− γA
∗(I− PQ)A),

to produce a sequence {xn} given by

xn+1 = (1 −αn)xn +αnPC(xn − γA∗(I− PQ)Axn), n > 0, (1.5)

where γ ∈ (0, 2/λ) and again λ being the special radium of the operator A∗A. Then we can see that
as long as {αn} satisfies condition

∑∞
n=0 αn(1 − αn) = ∞, we have weak convergence of the sequence

{xn} generated by the algorithm (1.5). If possible errors are taken into consideration, then we should
study perturbations of the closed convex sets C and Q. For example, Zhao and Yang [30] considered the
following perturbed algorithm:

xn+1 = (1 −αn)xn +αnPCn(xn − γA∗(I− PQn)Axn),

where {Cn} and {Qn} are sequences of closed convex subsets of H1 and H2, respectively, which converges
to C and Q, respectively, in the sense of Mosco [1]. This is a motivation for the authors to study the
following more general algorithm which generates a sequence {xn} according to the recursive formula

xn+1 = (1 −αn)xn +αnTnxn, (1.6)

where {Tn} is a sequence of nonexpansive mapping in Hilbert space H.
In 2005, under certain conditions, Zhao and Yang [30] studied the convergence of (1.6) in a finite-

dimensional Hilbert space.

Theorem 1.1. Let T and Tn be nonexpansive operators in Hilbert space H for k = 0, 1, 2, · · · , Tn → T and
{αn} ⊂ (0, 1) satisfying
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(i)
∑∞
n=0 αn(1 −αn) =∞;

(ii)
∑∞
n=0 αnDρ(Tn, T) <∞ for any given ρ > 0, where Dρ(Tn, T) = sup{‖Tnx− Tx‖ : ‖x‖ 6 ρ}.

Then the sequence {xn} defined by (1.6) converges weakly to a fixed point of T .

Remark 1.2. In [30, page 1794], the lim inf
n→∞ ‖xn−Txn‖ = 0 and a subsequence {xnj} of {xn} weakly converges

to a fixed point z of T do not imply that lim inf
j→∞ ‖xnj − z‖ = 0, unless the space is finite dimensional.

In 2006, Xu [26] extended Zhao and Yang [30] from finite dimensional Hilbert spaces to infinite di-
mensional Banach spaces and they obtained the following result.

Theorem 1.3. Assume that X is a uniformly convex Banach space which has a Fréchet differentiable norm. Let T
be a nonexpansive operator in the Banach space X, F(T) is the set of fixed points and F(T) is nonempty. Let {Tn} be a
sequence of nonexpansive mappings on C. If assumptions (i) and (ii) of Theorem 1.1 are satisfied, then the sequence
{xn} generated by the algorithm (1.6) converges weakly to a fixed point of T .

Recently, Qu et al. [22] and Moudafi [18] studied the split feasibility problem by the relaxed alternating
CQ-algorithm and CQ-like algorithms. In 2014, [6] present weak and strong convergence theorems of
solutions to a split feasibility problem for a family of nonspreading-type mapping in Hilbert spaces.

For each x0 ∈ C, the iteration sequence {xn} is called an Ishikawa iteration scheme, if{
xn+1 = (1 −αn)xn +αnTyn,
yn = (1 −βn)xn +βnTxn.

The Ishikawa iteration scheme was introduced by Ishikawa [12] and he proved that the sequence generated
by this algorithm must converge to a fixed point of a Lipschitzian pseudo-contractive mapping in a convex
compact subset of Hilbert spaces. After that, lots of authors studied the Ishikawa (two-step) iteration
algorithm for solving the zero points of nonlinear operators, the equilibrium problems, the variational
inequalities problems in Hilbert spaces and Banach spaces, see [13, 16, 19, 23] and the references therein.

In this paper, motivated by Zhao and Yang [30], Xu [26] and the above works, we proposed the
following Ishikawa iteration algorithm, given x0 ∈ C{

xn+1 = (1 −αn)xn +αnTnyn,
yn = (1 −βn)xn +βnTnxn,

(1.7)

where 0 6 αn,βn 6 1 and {Tn} is a sequence of nonexpansive mappings. We show that the sequence {xn}

weakly converges to a fixed point of T . We also apply this result to solve the SFP (1.2) via the following
iteration algorithm {

xn+1 = (1 −αn)xn +αnPCn(yn − γA∗(I− PQn)Ayn),
yn = (1 −βn)xn +βnPCn(xn − γA∗(I− PQn)Axn).

(1.8)

We show that {xn} weakly converges to a solution of the SFP (1.2).
The aim of this paper is to present the above Ishikawa algorithm to solve the SFP, these results mainly

improve the exited results in Zhao et al. [30], Xu [26] and Qu et al. [22]. Specifically, we list the following
highlights:

• The results extend and improve the corresponding results from finite dimensional Hilbert spaces to
infinite dimensional Banach spaces.

• The conditions in this paper are much mild. Indeed, we remove the assumptions in [30, Theorem
2.2] that the sequence {Cn} and {Qn} Mosco converge to C and Q, respectively.
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• Our results extend the K-M algorithm to the Ishikawa algorithm.

• Our algorithm is efficient for solving the SFP.

In order to get our main results, we need the following preliminaries.

Definition 1.4. An operator S : H→ H is called an averaged operator, if it can be shown as the following
combining form:

S = (1 −α)I+αT ,

where I is the identity operator and T : H→ H is a nonexpansive operator and α ∈ (0, 1).

As an special case, if α = 1/2, the projections are averaged operators.

Definition 1.5. If T is an operator with domain D(T) and range R(T) in H.

(i) T is called monotone, if
〈x− y, Tx− Ty〉 > 0, ∀x,y ∈ D(T).

(ii) For a real number ν > 0, T is called to be ν-inverse strongly monotone (ν-ism) (or co-coercive), if it
satisfies the following inequality

〈x− y, Tx− Ty〉 > ν‖Tx− Ty‖2.

So, we can easily get the following conclusions.

(i) If T is nonexpansive, then I− T is monotone and a projection PK is 1-ism.

(ii) T is averaged⇔ the complement I− T is ν-ism for some ν > 1
2 .

The following lemma is trivial.

Lemma 1.6. Let {µn} and {νn} be nonnegative sequences satisfying
∑∞
n=0 µn < ∞ and νn+1 6 νn + µn,

n = 0, 1, · · · . Then {νn} is a convergent sequence.

2. Main results

Theorem 2.1. Let E be a real uniformly convex Banach space, C be a nonempty closed convex subset of E and
T : C → C be nonexpansive mapping and {Tn} be a sequence of nonexpansive mappings on C. Let {xn} be defined
in (1.7), where 0 6 αn,βn 6 1 satisfy the following conditions:

(i)
∑∞
n=0 αn(1 −αn) =∞,

∑∞
n=0 αnβn <∞, lim

n→∞βn = 0;

(ii)
∑∞
n=0 αnDρ(Tn, T) <∞, for every ρ > 0, where

Dρ(Tn, T) = sup{‖Tnx− Tx‖ : ‖x‖ 6 ρ}.

Then {xn} converges weakly to a fixed point P of T

Proof. First we show that {xn} is bounded.
Take z ∈ F(T), it follows that

‖xn+1 − z‖ 6 (1 −αn)‖xn − z‖+αn‖Tnyn − Tnz‖+αn‖Tnz− Tz‖
6 (1 −αn)‖xn − z‖+αn‖yn − z‖+αn‖Tnz− Tz‖.

(2.1)

Similarly, we have

‖yn − z‖ 6 (1 −βn)‖xn − z‖+βn‖Tnxn − Tnz‖+βn‖Tnz− Tz‖
6 ‖xn − z‖+βn‖Tnz− Tz‖.

(2.2)
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It follows from (2.1) and (2.2) that

‖xn+1 − z‖ 6 ‖xn − z‖+αn(1 +βn)‖Tnz− Tz‖
6 ‖xn − z‖+ 2αnD‖z‖(Tn, T).

By condition (ii), we see that lim
n→∞ ‖xn − z‖ exists. Hence, {xn} is bounded, so {Tnxn} and {Txn} are

bounded, too.
Next, we claim that, ‖xn − Txn‖ → 0 as n→∞.
Let ρ = sup{‖xn‖, ‖Tnxn‖ : n > 0} <∞ and let r = ρ+ ‖z‖+ 2 sup{αnDρ(Tn, T)}.
Now since E is uniformly convex, there exists a continuous strictly convex function ϕ with ϕ(0) = 0

by [25]. Hence, we have

‖λx+ (1 − λ)y‖2 6 λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)ϕ(‖x− y‖), (2.3)

for all x,y ∈ E such that ‖x‖ 6 r and ‖y‖ 6 r and for all λ ∈ [0, 1]. In particular, setting en = Tnyn − Tyn
(note that ‖en‖ 6 Dρ(Tn, T)) and a constant M1 so that, M1 > sup{2‖xn − z‖+ αn‖en‖ : n > 0}. By (2.3)
and condition (i), we have.

‖xn+1 − z‖2 = ‖(1 −αn)(xn − z+αnen) +αn(Tyn − z+αnen)‖2

6 (1 −αn)‖xn − z+αnen‖2 +αn‖Tyn − z+αnen‖2

−αn(1 −αn)ϕ(‖xn − Tyn‖)
6 (1 −αn)(‖xn − z‖2 + 2αn‖xn − z‖‖en‖+α2

n‖en‖2)

+αn(‖Tyn − z‖2 + 2αn‖en‖‖Tyn − z‖+α2
n‖en‖2)

−αn(1 −αn)ϕ(‖xn − Tyn‖)
6 ‖xn − z‖2 +M1αnDρ(Tn, T) −αn(1 −αn)ϕ(‖xn − Tyn‖).

It follows that

αn(1 −αn)ϕ(‖xn − Tyn‖) 6 ‖xn − z‖2 − ‖xn+1 − z‖2 +M1αnDρ(Tn, T). (2.4)

Since lim
n→∞ ‖xn − z‖ exists, condition (i) and (2.4) imply that

∞∑
n=1

αn(1 −αn)ϕ(‖xn − Tyn‖) <∞,

which further implies that lim inf
n→∞ ϕ(‖xn − Tyn‖) = 0. Hence,

lim inf
n→∞ ‖xn − Tyn‖) = 0.

It follows from (1.7) that
‖xn − yn‖ = βn‖xn − Tnxn‖ → 0.

Then
lim inf
n→∞ ‖xn − Txn‖ = 0. (2.5)

Since {xn} and {Tnxn} are bounded, there exists a constant M2 satisfying 2‖Tnxn − xn‖ 6M2. Hence, we
have

‖xn+1 − Txn+1‖ = ‖(1 −αn)xn +αnTnyn − Txn+1‖
= ‖(1 −αn)xn +αnTnyn − Txn + Txn − Txn+1‖
6 (1 −αn)‖xn − Txn‖+αn‖Tnyn − Txn‖
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+ ‖xn+1 − xn‖
= (1 −αn)‖xn − Txn‖+αn‖Tnyn − Txn‖
+αn‖xn − Tnyn‖

6 (1 −αn)‖xn − Txn‖+αn‖Tnyn − Txn‖
+αn‖xn − Txn‖+αn‖Txn − Tnyn‖

= ‖xn − Txn‖+ 2αn‖Tnyn − Txn‖
6 ‖xn − Txn‖+ 2αn‖Tnyn − Tyn‖+ 2αn‖yn − xn‖
6 ‖xn − Txn‖+ 2αnDρ(Tn, T) + 2αnβn‖Tnxn − xn‖
6 ‖xn − Txn‖+ 2αnDρ(Tn, T) +αnβnM2.

Since
∑∞
n=1 αnDρ(T , Tn) <∞,

∑∞
n=1 αnβnM2 <∞, by Lemma 1.6, we obtain

lim
n→∞ ‖xn − Txn‖ exists.

This together with (2.5) implies that

lim
n→∞ ‖xn − Txn‖ = 0.

The demiclosedness principle for nonexpansive mappings (see [2]) implies that

ωw(xn) ⊂ F(T).

To prove that {xn} is weakly convergent to a fixed point of T , it now suffices to prove that ωw(xn)
consists of exactly one point.

Indeed, there are x, x̃ ∈ ωw(xn) (xni ⇀ x, xmj
⇀ x̃). Note that lim

n→∞ ‖xn − x‖ and lim
n→∞ ‖xn − x̃‖

exist. If x̃ 6= x, then

lim
n→∞ ‖xn − x̃‖2 = lim

j→∞ ‖(xmj
− x) + (x− x̃)‖2

= lim
j→∞ ‖xmj

− x‖2 + ‖x− x̃‖2

> lim
i→∞ ‖xni − x‖2

= lim
i→∞ ‖(xni − x̃) + (x̃− x)‖2

= lim
i→∞ ‖xni − x̃‖2 + ‖x̃− x‖2

> lim
i→∞ ‖xni − x̃‖2

= lim
n
‖xn − x̃‖2.

This is a contradiction. The proof is completed.

Corollary 2.2. Let C be a closed convex subset of a Hilbert space H. Assume that T : C → C is a nonexpansive
mapping such that F(T) 6= ∅. Assume also that {Tn} is a sequence of nonexpansive mappings on C. Let the sequence
{xn} be defined by (1.7), where 0 6 αn,βn 6 1 satisfying the following conditions:

(i)
∑∞
n=0 αn(1 −αn) =∞,

∑∞
n=0 αnβn <∞, lim

n→∞βn = 0;

(ii)
∑∞
n=0 αnDρ(Tn, T) <∞, for every ρ > 0, where

Dρ(Tn, T) = sup{‖Tnx− Tx‖ : ‖x‖ 6 ρ}.

Then {xn} converges weakly to a fixed point of T .
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Remark 2.3. Theorem 2.1 extends Theorem 2.1 of Zhao and Yang [30] from finite dimensional Hilbert
spaces to infinite dimensional Banach spaces. Corollary 2.2 extends Theorem 2.1 of Zhao and Yang [30]
from the K-M algorithm to the Ishikawa algorithm.

Below we show the applications of algorithm (1.7) to the split feasibility problem.
We now apply Corollary 2.2 to the SFP (1.2).
Recall that ρ-distance between two closed convex subsets E1 and E2 of a Hilbert space H is defined by

dρ(E1,E2) = sup
‖x‖6ρ

‖PE1x− PE2x‖.

Theorem 2.4. Assume that the sequence {xn} is generated by the perturbed averaging CQ algorithm (1.8), the
sequences {αn}, {βn} ∈ [0, 1] satisfy the conditions:

(i)
∑∞
n=0 αn(1 −αn) =∞,

∑∞
n=0 αnβn <∞, lim

n→∞βn = 0;

(ii)
∑∞
n=0 αndρ(Cn,C) <∞ and

∑∞
n=0 αndρ(Qn,Q) <∞, ∀ρ > 0.

Then {xn} converges weakly to a solution of the SFP (1.2).

Proof. Set T = PC(I−γA
∗(I− PQ)A) and Tn = PCn(I−γA

∗(I− PQn)A). Then T and Tn are nonexpansive
with γ < 2

‖A‖2 . Indeed, write
U = A∗(I− PQ)A,

and
S = PC(I− γU.

Since PQ and I− PQ are 1-ism, we calculate

〈x− y,Ux−Uy〉 = 〈x− y,A∗(I− PQ)Ax−A∗(I− PQ)Ay〉
= 〈Ax−Ay, (I− PQ)Ax− (I− PQ)Ay〉
> ‖(I− PQ)Ax− (I− PQ)Ay‖2

>
1
‖A‖2 ‖Ux−Uy‖

2.

Hence, U is 1
‖A‖2 -inverse strongly monotone, which implies that γU is 1

γ‖A‖2 -ism, which in turn implies

that I− γU is averaged for ‖A‖2γ < 2, i.e. γ < 2
‖A‖2 .

Hence, we get that S = PC(I− γU) is averaged. Then S = PC(I− γU) is nonexpansive, so are Sn =
PCn(I− γUn). Since the SFP (1.2) is consistent, F(T) is nonempty. Note that F(T) is the solution set of the
SFP (1.2). Also the perturbed averaging CQ algorithm (1.8) can be written as{

xn+1 = (1 −αn)xn +αnTnyn,
yn = (1 −βn)xn +βnTnxn.

Given ρ > 0. Letting

ρ̃ = sup{max{‖Ax‖, ‖x− γA∗(I− PQ)Ax‖} : ‖x‖ 6 ρ} <∞,

we compute for x ∈ H, such that ‖x‖ 6 ρ,

‖Tnx− Tx‖ 6 ‖PCn(x− γA
∗(I− PQn)Ax) − PCn(x− γA

∗(I− PQ)Ax)‖
+ PCn(x− γA

∗(I− PQ)Ax) − PC(x− γA
∗(I− PQ)Ax)‖

6 ‖PCn(x− γA
∗(I− PQ)Ax) − PC(x− γA

∗(I− PQ)Ax)‖
+ γ‖A∗(PQAx− PQnAx)‖

6 dρ̃(Cn,C) + γ‖A‖dρ̃(Qn,Q).
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This shows that
Dρ(Tn, T) 6 dρ̃(Cn,C) + γ‖A‖dρ̃(Qn,Q).

It follows from condition (ii) that

∞∑
n=0

αnDρ(Tn, T) 6
∞∑
n=0

αndρ̃(Cn,C) + γ‖A‖
∞∑
n=0

αndρ̃(Qn,Q) <∞.

Now we can apply Corollary 2.2 to conclude that the sequence {xn} defined by the perturbed averaging
CQ algorithm (1.8) converges weakly to a solution of SFP (1.2)

Remark 2.5. Theorem 2.4 extends [30, Theorem 2.2] from the K-M algorithm to the Ishikawa iteration
algorithm and removes the assumption in [30, Theorem 2.2] that the sequences {Cn} and {Qn} Mosco
converge to C and Q, respectively.
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