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Abstract

In this paper, we introduce a new iterative scheme for the constrained convex minimization problem and the set of zero
points of the maximal monotone operator problem, based on the projection and contraction methods. The core idea is to build
the corresponding iterative algorithms by constructing reasonable error metric function and profitable direction to assure that
the distance form the iteration points generated by the algorithms to a point of the solution set is strictly monotone decreasing.
Under suitable conditions, new convergence theorems are obtained, which are useful in nonlinear analysis and optimization.
The main advantages of the method presented are its simplicity, robustness, and ability to handle large problems with any
start point. As an application, we apply our algorithm to solve the equilibrium problem, the constrained convex minimization
problem and the split feasibility problem, the split equality problem in Hilbert spaces. c©2017 All rights reserved.

Keywords: Fixed point, constrained convex minimization, maximal monotone operator, resolvent, variational inequality, split
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1. Introduction

Let H be real Hilbert space with the inner product 〈, 〉 and norm || · ||. Throughout the rest of this
paper, I denotes the identity operator on Hilbert space H. If T is an operator on H, Fix(T) denotes the set
of the fixed points of an operator T on H (i.e., Fix(T)={x ∈ H, Tx = x}). Assume f : H→ R is a real-valued
continuously differentiable function, let ∇f denote the gradient of the function f.

Firstly, assume Ω is a nonempty closed convex subset of H, consider the constrained convex mini-
mization problem:

min
x∈Ω

f(x), (1.1)

where f : Ω −→ R is a real-valued convex function. However, we all know that the minimization problem
(1.1) has more than one solution under some conditions, so regularization is needed in finding the unique
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solution of the minimum normal solution of the minimization problem (1.1). Now, we consider the
following regularized minimization problem:

min
x∈Ω

f1(x) =
1
2
||x||2 + f(x). (1.2)

Assume consistency of the constrained convex minimization problem (1.2), and let Γ1 denote the solution
set of (1.2). It is well-known that if f is differentiable, then the gradient-projection method generates a
sequence {xn} by using the following recursive formula:

xn+1 = PΩ[xn − λ∇f(xn)], for n > 1, (1.3)

or in a more general form:
xn+1 = PΩ[xn − λn∇f(xn)], for n > 1, (1.4)

where x1 ∈ Ω is an arbitrary initial point and λ, λn are positive real numbers.
In 2011, Xu [29] proved that if ∇f is Lipschitz continuous and strongly monotone, then the sequence

{xn} generated by (1.3), (1.4) can converge strongly to a minimizer of (1.2). If ∇f is Lipschitzian, then the
schemes (1.2) and (1.3) can still converge weakly under certain assumptions. The algorithms for finding
the approximate solutions of the constrained convex minimization problem has been studied by several
authors, see for example [3, 4, 7, 14, 23, 28] and the references therein. The convergence of the sequence
generated by this method depends largely on the behavior of the gradient of the objective function.

Secondly, consider the problem of zero points of maximal monotone operator, assume A is a set-
valued mapping from H to 2H. A is said to be a monotone operator on H, if 〈x− y,u− v〉 > 0 for all
x,y ∈ H,u ∈ A(x), v ∈ A(y). A monotone operator A on H is said to be maximal, if its graph is not
properly contained in the graph of any other monotone operator on H. The problem of zero points of
maximal monotone operator is

finding x ∈ H, such that 0 ∈ A(x),

where A is a maximal monotone operator on H. Some methods have been proposed to solve the problem
of zero points of maximal monotone operator, for instance, [8, 9, 15, 17, 21, 24, 26].

In this paper, motivated and inspired by the above results, we propose the following constrained
convex minimization and the set of zero points of the maximal monotone operator problem: Assume
f : Ω → R is a real-valued convex function and I+∇f is ν-inverse strongly monotone, A : H −→ 2H is a
maximal monotone operator. Find u∗ ∈ Ω such that

1
2
||u∗||2 + f(u∗) = min

u∈Ω

1
2
||u||2 + f(u), and u∗ ∈ A−1(0). (1.5)

We use Γ to denote the solution set of the problem (1.5) and assume consistency of this problem.
The paper is organized as follows: In Section 2 we collect some elementary concepts and facts which

will be used in the proofs of our main results. In Section 3 we introduce a new projection and contraction
iterative algorithm for the constrained convex minimization and the set of zero points of the maximal
monotone operator problem and obtain the convergence theorem. Finally, in Section 4 we apply the
above algorithm to the equilibrium problem, the constrained convex minimization problem and the split
feasibility problem, the split equality problem in Hilbert spaces.

2. Preliminaries

We now collect some elementary concepts, facts and three impotent inequalities which will play an
important role in projection and contraction methods.

Projections are an important tool for our work in this paper. Let H be real Hilbert space, the projection
PΩ from H onto a nonempty closed convex subset Ω of H is defined by

PΩ(w) = arg min
x∈Ω

||x−w||.
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It is well-known that PΩ(w) is characterized by the inequality

〈w− PΩ(w), x− PΩ(w〉 6 0, ∀x ∈ Ω.

Firstly, we introduce some other sorts of nonlinear operator.

Definition 2.1. Assume T : H −→ H is a nonlinear operator.

(a) T is nonexpansive, if ||Tx− Ty|| 6 ||x− y|| for all x,y ∈ H.

(b) T is averaged (av), if T = (1 −α)I+αS, where α ∈ (0, 1) and S : H −→ H is nonexpansive.

(c) T is ν-inverse strongly monotone (ν-ism), with ν > 0, if ν||Tx − Ty||2 6 〈Tx − Ty, x − y〉, for all
x,y ∈ H.

(d) T is firmly nonexpansive (fne), if ||Tx− Ty||2 6 〈Tx− Ty, x− y〉, for all x,y ∈ H.

The following lemma depicting the relationship between nonexpansive, av and ν-ism.

Lemma 2.2 ([2]). If T : H −→ H is an operator, we have:

(a) T is nonexpansive, if and only if the complement I− T is 1
2 -ism.

(b) T is av, if and only if the complement I− T is ν-ism for some ν > 1
2 .

(c) If T is ν-ism and β > 0, then βT is νβ -ism.

(d) Let T1 and T2 be av operators and suppose that Fix(T1) ∩ Fix(T2) is nonempty. Then Fix(T1) ∩ Fix(T2) =
Fix(T1T2) = Fix(T2T1).

It is well-known that the projection PΩ is av and from [24], if A is a maximal monotone operator and
λ > 0, Jλ = (I+ λA)−1 the resolvent of A for λ > 0 is a single-valued operator and is fne. Furthermore,
A−1(0) = Fix(Jλ).

Secondly, we introduce the following two lemmas, which are well-known demi-closed principle and
Opil’s lemma, respectively.

Lemma 2.3 ([12, 13]). Let X be a Banach space, C be a closed convex subset of X and T : C→ C be a nonexpansive
mapping with Fix(T) 6= ∅. If {xn} is a sequence in C weakly converging to x and if {(I− T)xn} converges strongly
to y, then (I− T)x = y.

Lemma 2.4 ([20]). Let H be a Hilbert space and {wn} a sequence in H such that there exists a nonempty setΩ ⊆ H
satisfying the following items.

(i) For every w ∈ Ω, limn→∞ ‖wn −w‖ exists;

(ii) any weak-cluster point of the sequence {wn} belongs to Ω.

Then, there exists w̃ ∈ Ω such that {wn} weakly converges to w̃.

Besides, the following lemma shows the close relationship between the constrained convex minimiza-
tion problem and the variational inequality problem VI(Ω,∇f).

Lemma 2.5 ([10]). Let f be a convex and differentiable functional and let Ω be a closed convex subset of H. Then
x ∈ Ω is a solution of the constrained convex minimization problem (1.2), if and only if x ∈ Ω satisfies the following
variational inequality problem:

〈(I+∇f)(x), v− x〉 > 0, ∀v ∈ Ω.
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At the end of this section, we will propose three impotent inequalities which will play an important
role in projection and contraction methods.

The following proposition shows that the problem (1.5) is equivalent to a projection equation.

Proposition 2.6. Assume Fix(PΩ)∩ Fix[(1 −β)I+β(−∇fJλ)] 6= ∅ and Fix(−∇f)∩ Fix(Jλ) 6= ∅, then u ∈ H is
a solution of the problem (1.5), if and only if u = PΩ[u−β(u+∇fJλ(u))], for all β ∈ (0, 1

2).

Proof. Assume u = PΩ[u− β(u+∇fJλ(u))], it is easy to see u = PΩ[(1 − β)u+ β(−∇fJλ(u))]. Since PΩ
is av and ∇f and Jλ are all nonexpansive, one can obtain that (1−β)I+β(−∇fJλ) is av. By using Lemma
2.2, we can get that

u ∈ Fix(PΩ)∩ Fix[(1 −β)I+β(−∇fJλ)].

That is to say u ∈ Ω and
(1 −β)u+β(−∇fJλ)(u) = u.

So, (−∇fJλ)(u) = u, i.e., u ∈ Fix(−∇fJλ). Since −∇f and Jλ is av, by using Lemma 2.2 again, we have
u ∈ Fix(Jλ).

Hence, u = PΩ[u−β(u+∇f(u))]. According to the property of projection PΩ, one can get

〈u− [u−β(u+∇f(u))], v− u〉 > 0, ∀v ∈ Ω.

That is,
〈β[I+∇f](u), v− u〉 > 0, ∀v ∈ Ω.

Using u ∈ Fix(Jλ) and Lemma 2.5, one can obtain u is a solution of the problem (1.5).
Conversely, assume that u is a solution of the problem (1.5). By assumption, u = Jλ(u) and 〈[I +

∇f](u), v− u〉 > 0, for all v ∈ Ω. Hence,

〈u− [u−β(I+∇fJλ)(u)], v− u〉 > 0, ∀v ∈ Ω, β > 0.

According to the property of projection PΩ, one can get that

u = PΩ[u−β(I+∇fJλ)(u)], ∀β > 0.

Remark 2.7. Let e(u) := u− PΩ[u−β(u+∇fJλ(u))], it follows that to solve the problem (1.5) is equivalent
to find a zero point of the residue function e(u).

Let u∗ ∈ Γ be a solution, we can get that u∗ ∈ FixJλ and u∗ = PΩ[u∗−β(u∗+∇fJλ(u∗))] by Proposition
2.6. It follows that u∗ = PΩ[u∗−β(u∗+∇f(u∗))], that is to say u∗ is a solution of the variational inequality
VI(Ω, I+∇fJλ). Let ũ = PΩ[u− β(u+∇fJλ(u))], by using u∗ = Jλ(u

∗) again, we can obtain the first
inequality:

〈ũ− u∗,β(u∗ +∇fJλ(u∗))〉 > 0. (2.1)

Since u∗ ∈ Ω, ũ = PΩ[u−β(u+∇fJλ(u))], according to the property of the projection PΩ, we get the
second inequality:

〈ũ− u∗,u−β(u+∇fJλ(u)) − ũ〉 > 0, ∀u ∈ H. (2.2)

Under the assumption that −∇f and Jλ are nonexpansive, by Lemma 2.2, β(I+∇fJλ) is 1
2β -ism, we

have the third inequality:

〈ũ− u∗,β(I+∇fJλ)(ũ) −β(I+∇fJλ)(u∗)〉 > 0, ∀u ∈ H. (2.3)

Inequalities (2.1), (2.2), (2.3) play an important role in projection and contraction methods.
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3. Main results

In this section, we first consider how to construct projection and contraction method for constrained
convex minimization and the zero points of maximal monotone operator problem (1.5) and then we get
the weak convergence theorem for the iterative algorithm.

For any β > 0 and a current point uk, ũk is obtained by the projection

ũk = PΩ[uk −β(uk +∇fJλ(uk))] = PΩ[(1 −β)uk +β(−∇fJλ)(uk)].

By Proposition 2.6, the current point uk is a solution, if and only if uk = ũk.

Definition 3.1. A non-negative function ϕ(u, ũ) is called to be an error metric function of the problem
(1.5), if there exists δ > 0 such that

ϕ(u, ũ) > δ||u− ũ||,

and ϕ(u, ũ) = 0, if and only if u = ũ.

Definition 3.2. A vector d(u, ũ) is called a profitable direction respect to the error metric function ϕ(u, ũ),
if

〈u− u∗,d(u, ũ)〉 > ϕ(u, ũ),

for all u∗ belong to the solution set Γ .

Remark 3.3. Assume u∗ ∈ Γ is a solution of problem (1.5), then −d(uk, ũk) is a drop direction of the
function 1

2 ||u − u∗||2 at the point uk. The following iterative scheme for problem (1.5), based on the
projection and contraction methods which assure that the distance form the iteration points generated by
the algorithm to a point of the solution set is strictly monotone decreasing.

Algorithm 3.4. uk+1 = uk −αkd(uk, ũk), where αk =
ϕ(uk,ũk)

||d(uk,ũk)||2
.

Thereinto, d(uk, ũk) and ϕ(uk, ũk) is constructed as follows:
Adding (2.1), (2.2) and (2.3), we obtain

〈ũ− u∗,u− ũ−β[(I+∇fJλ)(u) − (I+∇fJλ)(ũ)]〉 > 0, ∀u ∈ H.

Let
d(u, ũ) = u− ũ−β[(I+∇fJλ)(u) − (I+∇fJλ)(ũ)],

and
ϕ(u, ũ) = 〈u− ũ,d(u, ũ)〉.

It follows that for all u ∈ H,
〈u− u∗,d(u, ũ)〉 > ϕ(u, ũ).

Since β(I+∇fJλ) is 1
2β -ism, one can get

1
2β

||β(I+∇fJλ)(u1) −β(I+∇fJλ)(u2)||
2 6 〈β(I+∇fJλ)(u1) −β(I+∇fJλ)(u2),u1 − u2〉,

hence
||β(I+∇fJλ)(u1) −β(I+∇fJλ)(u2)|| 6 2β||u1 − u2||.

It follows that

ϕ(u, ũ) = 〈u− ũ,d(u, ũ)〉
= ||u− ũ||2 − 〈u− ũ,β(I+∇fJλ)(u) −β(I+∇fJλ)(ũ)〉
> (1 − 2β)||u− ũ||2.
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That is to say, ϕ(u, ũ) is an error metric function of the problem (1.5) and d(u, ũ) is a profitable
direction respect to the error metric function ϕ(u, ũ).

Next, we prove that the sequence generated by Algorithm 3.4 converges weakly to a point of the
solution set Γ of problem (1.5).

Theorem 3.5. Let H be a real Hilbert space and letΩ be a nonempty closed convex subset of H. Let A be a maximal
monotone operator on H such that the domain of A is included in Ω. Let Jλ = (I+ λA)−1be the resolvent of A for
λ > 0. Let f be a real-valued convex function of Ω into R and I+∇f is ν-inverse strongly monotone. Assume that
the solution set Γ of the problem (1.5) is consistent. Let the sequence {uk} be generated by Algorithm 3.4, i.e.,

uk+1 = uk −αkd(uk, ũk),

where
ũk = PΩ[uk −β(I+∇fJλ)(uk)],

d(uk, ũk) = uk − ũk −β[(I+∇fJλ)(uk) − (I+∇fJλ)(ũk)],
and

ϕ(uk, ũk) = 〈uk − ũk,d(uk, ũk)〉, αk =
ϕ(uk, ũk)

||d(uk, ũk)||2
, β ∈ (0,

1
2
).

Then the sequence {uk} converges weakly to a point of the solution set Γ of problem (1.5).

Proof. Assume that u∗ ∈ Γ , one can get

||uk+1 − u
∗||2 = ||uk − u

∗ −αkd(uk, ũk)||2

= 〈uk − u∗ −αkd(uk, ũk),uk − u∗ −αkd(uk, ũk)〉
= ||uk − u

∗||2 − 2〈uk − u∗,αkd(uk, ũk)〉+α2
k||d(uk, ũk)||2

6 ||uk − u
∗||2 −αkϕ(uk, ũk)

= ||uk − u
∗||2 −α2

k||d(uk, ũk)||2

= ||uk − u
∗||2 − ||uk+1 − uk||

2.

Hence, ||uk+1 − u
∗|| is a decreasing sequence, limk→∞ ||uk − u

∗|| exists and

Σ∞
k=0||uk+1 − uk||

2 6 ||u0 − u
∗||2.

On the other hand,

||uk+1 − u
∗||2 6 ||uk − u

∗||2 −αkϕ(uk, ũk)

6 ||uk − u
∗||2 −αk(1 − 2β)||uk − ũk||2,

and

2ϕ(uk, ũk) − ||d(uk, ũk)||2 = 〈d(uk, ũk), 2(uk − ũk) − d(uk, ũk)〉
= ||uk − ũk||

2 − ||β(I+∇fJλ)(uk) −β(I+∇fJλ)(ũk)||2

> ||uk − ũk||
2 − 4β2||uk − ũk||

2 > 0.

That is to say αk > 1
2 .

One can get
lim
k→∞ ||uk − ũk|| = 0.

Hence if ukn ⇀ û, then limn→∞ ||ukn − ˜ukn || = 0, by Lemma 2.3, û ∈ Γ . In addition, for any u∗ ∈ Γ ,
limk→∞ ||uk − u

∗|| exists, by using Lemma 2.4, we can get uk converges weakly to a point of the solution
set Γ of problem (1.5).
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4. Applications

In this section, we will give some applications which are useful in nonlinear analysis and optimization.
Firstly, recall the equilibrium problem, assume Ω is a nonempty closed convex subset of real Hilbert

spaces H, F : Ω×Ω −→ R is a bifunction of Ω×Ω into R the set of real numbers. The equilibrium
problem (EP) is to find z ∈ Ω such that

F(z,y) > 0, ∀y ∈ Ω. (4.1)

Lots of problems in physics, optimizations and economics can be reduced to find a solution of the EP. For
more details we refer the reader to [6, 11, 18, 25]. For solving the EP, let us assume that F satisfies the
following conditions:

(i) for all x ∈ Ω, F(x, x) = 0;

(ii) for all x,y ∈ Ω, F(x,y) + F(y, x) 6 0;

(iii) for any x,y, z ∈ Ω, limt→0 F(tz+ (1 − t)x,y) 6 F(x,y);

(iv) for any x ∈ Ω, y 7→ F(x,y) is convex and lower semi-continuous.

We use Γ2 to denote the solution set of EP and assume consistency of EP so that Γ2 is nonempty. The
following proposition was given by Combettes and Hirstoaga [6].

Proposition 4.1. Assume a bifunction F : Ω×Ω −→ R satisfies (i)-(iv). For λ > 0, x ∈ H, define mapping
Jλ : H −→ Ω as below:

Jλ(x) = {z ∈ Ω, F(z,y) +
1
λ
〈y− z, z− x〉 > 0, ∀y ∈ Ω}.

Then, we have:

Jλ is single-valued,Jλ is fne;Fix(Jλ) = Γ2and Γ2 the solution set of EP is closed and convex.

Using Theorem 3.5, we have the following result:

Theorem 4.2. Let H be a real Hilbert space and let Ω be a nonempty closed convex subset of H. F : Ω×Ω −→ R

is a bifunction of Ω×Ω into R satisfies (i)-(iv). Let Jλ be defined as in Proposition 4.1, f be a real-valued convex
function of Ω into R, and the gradient be av. Assume Γ1

⋂
Γ2 6= ∅. For an arbitrary point u0 ∈ H the sequence {uk}

is generated by the iterative algorithm
uk+1 = uk −αkd(uk, ũk),

where
ũk = PΩ[uk −β(I+∇fJλ)(uk)],

d(uk, ũk) = uk − ũk −β[(I+∇fJλ)(uk) − (I+∇fJλ)(ũk)],

and
ϕ(uk, ũk) = 〈uk − ũk,d(uk, ũk)〉, αk =

ϕ(uk, ũk)
||d(uk, ũk)||2

, β ∈ (0,
1
2
).

Then the sequence {uk} converges weakly to a point of the set Γ1
⋂
Γ2 which is a solution of the regularized mini-

mization problem (1.2) and the EP (4.1).

Secondly, recall the split feasibility and split equality problem. In 1994, Censor and Elfving [5] intro-
duced the split feasibility problem (SFP). Let C and Q be nonempty closed convex subset of real Hilbert
spaces H1 and H2, respectively, and let A : H1 → H2 be a bounded linear operator. Recall that the split
feasibility problem (SFP) is to find a point u satisfying the property:

u ∈ C, Au ∈ Q,
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if such point exists. Ever since its introduction, SFP attracted many authors’ attention due to its applica-
tions in signal processing [5]. Various algorithms have been invented to solve it (see [1, 2, 19, 27, 29–31]).

Recently, Moudafi [16] proposed a new split equality problem (SEP): Let H1,H2,H3 be real Hilbert
spaces, C ⊆ H1,Q ⊆ H2 be two nonempty closed convex sets and let A : H1 → H3,B : H2 → H3 be two
bounded linear operators. Find x ∈ C,y ∈ Q satisfying

Ax = By.

When B = I, SEP reduces to the well-known SFP. We use Γ3 to denote the solution set of SEP and assume
consistency of SEP so that Γ3 is nonempty closed and convex.

In the paper [16], Moudafi gave the alternating CQ-algorithm and relaxed alternating CQ-algorithm
iterative algorithm for solving the split equality problem. In the paper [22], we used the well-known
Tychonov regularization and got some algorithms converging strongly to the minimum-norm solution of
the SEP.

Let Ω = C×Q in H = H1 ×H2, define G : H → H3 by G = [A,−B], then G∗G : H → H has the matrix
form

G∗G =

[
A∗A −A∗B
−B∗A B∗B

]
.

The original problem can now be reformulated as finding w = (x,y) ∈ Ω with Gw = 0, or more generally,
minimizing the function ||Gw|| over w ∈ Ω. Therefore solving SEP is equivalent to solving the following
minimization problem

min
w∈Ω

f(w) =
1
2
||Gw||2,

which is in general ill-posed. A classical way to deal with such a possibly ill-posed problem is the well-
known Tychonov regularization:

min
w∈Ω

fα(w) =
α

2
||Gw||2 +

1
2
||w||2.

We can get that fα is strictly convex, coercive and differentiable with gradient

∇fα(w) = (I+αG∗G)w.

Remark 4.3. If 0 < α < 1
||G||2

, then αG∗G is an av operator. In fact, for all x,y ∈ H,

||(I−αG∗G)x− (I−αG∗G)y||2 = ||x− y||2 +α2||G∗G(x− y)||2 − 2α||G(x− y)||2

6 ||x− y||2 −α||G(x− y)||2

= 〈(I−αG∗G)(x− y), x− y〉.

That is to say I−αG∗G is fne. So, αG∗G is av operator.
The structure of the error metric function and the profitable direction are as follows:

ũk = PΩ[uk −β(I+αG
∗G)(uk)] = PΩ[(1 −β)uk −αβG

∗Guk],

d(uk, ũk) = uk − ũk −β[(I+αG∗G)(uk) − (I+αG∗G)(ũk)]

= (1 −β)(uk − ũk) −αβG
∗G(uk − ũk),

and

ϕ(uk, ũk) = 〈uk − ũk,d(uk, ũk)〉
= (1 −β)||uk − ũk||

2 −αβ||G(uk − ũk)||
2,

αk =
ϕ(uk, ũk)

||d(uk, ũk)||2
=

(1 −β)||uk − ũk||
2 −αβ||G(uk − ũk)||

2

(1 −β)2||uk − ũk||2 −α2β2||G∗G(uk − ũk)||2 − 2αβ(1 −β)||G(uk − ũk)||2
.

According to Theorem 3.5, we can get the following result.
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Theorem 4.4. For an arbitrary point u0 = (x0,y0) ∈ H = H1 ×H2, the sequence {uk} = {(xk,yk)} is generated
by the iterative algorithm

uk+1 = uk −αk[(1 −β)(uk − ũk) −αβG
∗G(uk − ũk)], (4.2)

where
ũk = PΩ[(1 −β)uk −αβG

∗Guk],β ∈ (0,
1
2
), 0 < α <

1
||G||2

,

αk =
(1 −β)||uk − ũk||

2 −αβ||G(uk − ũk)||
2

(1 −β)2||uk − ũk||2 −α2β2||G∗G(uk − ũk)||2 − 2αβ(1 −β)||G(uk − ũk)||2
.

Then the sequence {uk} converges weakly to the minimum-norm solution of the SEP (4.2).

Remark 4.5. In Theorem 4.4, let G = [A,−I], then the sequence {uk} converges weakly to the minimum-
norm solution of the SFP.

Finally, we consider the SEP and the EP at the same time. Assume that intersection of solution of EP
and SEP is not a empty set. By Theorem 3.5, we have:

Theorem 4.6. Let H1,H2,H3 be real Hilbert spaces, C ⊆ H1,Q ⊆ H2 be two nonempty closed convex sets and let
A : H1 → H3,B : H2 → H3 be two bounded linear operators. Let H = H1 ×H2, Ω = C×Q, F : Ω×Ω −→ R

be a bifunction of Ω×Ω into R satisfying (i)-(iv). Let Jλ be defined as in Proposition 4.1. Assume Γ2
⋂
Γ3, the

intersection of solution of EP and SEP is not an empty set. For an arbitrary point u0 ∈ H, the sequence {uk} is
generated by the iterative algorithm

uk+1 = uk −αkd(uk, ũk),

where

ũk = PΩ[uk −β(I+αG
∗GJλ)(uk)], d(uk, ũk) = uk − ũk −β[(I+αG∗GJλ)(uk) − (I+αG∗GJλ)(ũk)],

and
ϕ(uk, ũk) = 〈uk − ũk,d(uk, ũk)〉, αk =

ϕ(uk, ũk)
||d(uk, ũk)||2

, β ∈ (0,
1
2
), 0 < α <

1
||G||2

.

Then the sequence {uk} converges weakly to a point of the set Γ2
⋂
Γ3.
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