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Abstract
We develop a topological degree theory for a class of locally bounded weakly upper semicontinuous set-valued operators of

generalized (S+) type in real reflexive separable Banach spaces, based on the Berkovits-Tienari degree. The method of approach
is to use elliptic super-regularization by means of certain compact embeddings, instead of the Galerkin method. Applying the
degree theory, we tackle an elliptic boundary value problem with discontinuous nonlinearity. c©2017 All rights reserved.
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1. Introduction and preliminaries

Topological degree theory has been widely used in the study of nonlinear equations. Leray and
Schauder [10] introduced a degree theory for compact perturbations of the identity in infinite-dimensional
Banach spaces. Browder [4] constructed a topological degree for operators of class (S+) in reflexive
Banach spaces with the Galerkin method, see also [12, 14, 15]. Berkovits [2] considered an extension of
the classical Leray-Schauder degree for operators of generalized monotone type. Roughly speaking, the
class of operators for the extended degree is essentially obtained by replacing the compact perturbation
by a composition of operators of monotone type.

We consider in a real reflexive Banach space a nonlinear inclusion of the form

h ∈ Fu, (1.1)

where F is a bounded weakly upper semicontinuous set-valued operator of generalized (S+) type.
Berkovits and Tienari [3] developed a topological degree for bounded weakly upper semicontinuous
operators of class (S+) based on the known degree for Leray-Schauder type set-valued operators given in
[7, 11].

In the present paper, the goal is to study a topological degree theory for a wider class of locally
bounded weakly upper semicontinuous set-valued operators of generalized (S+) type in real reflexive
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separable Banach spaces. This may be regarded as a set-valued version of the degree theory for bounded
demicontinuous operators of generalized (S+) type due to Berkovits [2], see also [9]. In order to construct
a new degree, we first observe that a locally bounded operator can be reduced to some bounded operator
on a suitable domain. So we proceed in two steps. Adopting elliptic super-regularization method as
in [2], we can apply the Berkovits-Tienari degree theory to define a topological degree for the bounded
operator case. Taking this observation into account, we then introduce a degree theory for the class of
locally bounded weakly upper semicontinuous operators of generalized (S+) type.

The class of operators considered in (1.1) contains abstract Hammerstein operators of the type F =
I+ ST , where I denotes the identity operator and S, T are of monotone type, for instance, of class (S+)
or quasimonotone. In many applications, the formulation of a boundary value problem gives rise to an
abstract Hammerstein equation. In this aspect, we study an elliptic boundary value problem of the form{

−∆pu+ u ∈ −[g (x,u),g (x,u)], in Ω,
u = 0, on ∂Ω,

(1.2)

where Ω is a bounded domain in RN, ∆p is the p-Laplacian, and g is a possibly discontinuous function
in the second variable. The point is that the celebrated Browder-Minty theorem on monotone operators
plays a decisive role in transforming (1.2) into a Hammerstein equation. This enables us to find a weak
solution of the given problem (1.2) using the degree theory. For related topics, we refer to [3, 8].

The paper is organized as follows. In this Section, we give some definitions and basic facts for certain
classes of operators which will be needed later. In Section 2, we introduce a topological degree theory for
a wider class of locally bounded weakly upper semicontinuous operators of generalized (S+) type in real
reflexive Banach spaces, based on the Berkovits-Tienari degree. Section 3 deals with the solvability of the
elliptic boundary value problem with discontinuous nonlinearity.

Let X be a real Banach space. Given a nonempty subset Ω of X, let Ω and ∂Ω denote the closure and
the boundary of Ω in X, respectively. Let Br(u) denote the open ball in X of radius r > 0 centered at u.

Definition 1.1. Let Y be another real Banach space. A set-valued operator F : Ω ⊂ X→ 2Y is said to be

(1) upper semicontinuous (u.s.c.), if the set F−1(A) = {u ∈ Ω | Fu∩A 6= ∅} is closed in X for each closed
set A in Y;

(2) weakly upper semicontinuous (w.u.s.c.), if F−1(A) is closed in X for each weakly closed set A in Y;

(3) compact, if it is upper semicontinuous and the image of any bounded set is relatively compact;

(4) bounded, if F maps bounded sets into bounded sets;

(5) locally bounded, if for each u ∈ Ω there exists a neighborhood U of u such that the set F(U) =⋃
u∈U Fu is bounded.

Let X be a real reflexive Banach space with dual space X∗. The symbol 〈·, ·〉X denotes the dual paring
between X∗ and X in this order. Identifying the bidual space X∗∗ with X, we sometimes write 〈y, x〉 for
〈x,y〉X∗ for x ∈ X and y ∈ X∗. The symbol→ (⇀) stands for strong (weak) convergence.

Definition 1.2. A set-valued operator F : Ω ⊂ X→ 2X
∗
\ ∅ is said to be

(1) of class (S+), if for any sequence (un) in Ω and any sequence (wn) in X∗ with wn ∈ Fun such that
un ⇀ u in X and

lim sup
n→∞ 〈wn,un − u〉 6 0,

we have un → u in X;

(2) quasimonotone, if for any sequence (un) in Ω and any sequence (wn) in X∗ with wn ∈ Fun such
that un ⇀ u in X, we have

lim inf
n→∞ 〈wn,un − u〉 > 0.
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Definition 1.3. Let T : Ω1 ⊂ X → X∗ be a bounded operator such that Ω ⊂ Ω1. A set-valued operator
F : Ω ⊂ X→ 2X \ ∅ is said to be:

(1) of class (S+)T , if for any sequence (un) in Ω and any sequence (wn) in X with wn ∈ Fun such that
un ⇀ u in X, Tun ⇀ y in X∗ and

lim sup
n→∞ 〈wn, Tun − y〉 6 0,

we have un → u in X;

(2) T -quasimonotone, written F ∈ (QM)T , if for any sequence (un) in Ω and any sequence (wn) in X
with wn ∈ Fun such that un ⇀ u in X, Tun ⇀ y in X∗, we have

lim inf
n→∞ 〈wn, Tun − y〉 > 0.

Notice that if F : Ω ⊂ X → 2X \ ∅ is locally bounded and of class (S+)T , where Ω is closed in X and
T : Ω→ X∗ is bounded and continuous, then F is T -quasimonotone. Moreover, the collection of operators
of class (S+)T is stable under (QM)T -perturbations. See [9, Lemma 2.1] for the single-valued case.

Throughout this paper, we always assume that all weakly upper semicontinuous set-valued operators
considered have nonempty closed convex values.

We consider the following classes of operators:

F1(Ω) := {F : Ω ⊂ X→ X∗ | F is bounded, continuous and of class (S+)},

FS+(Ω) := {F : Ω ⊂ X→ 2X
∗
| F is bounded, w.u.s.c. and of class (S+)},

FT ,B(Ω) := {F : Ω ⊂ X→ 2X | F is bounded, w.u.s.c. and of class (S+)T },

FT (Ω) := {F : Ω ⊂ X→ 2X | F is locally bounded, w.u.s.c. and of class (S+)T },

for any set Ω ⊂ DF and any bounded operator T : Ω→ X∗, where DF denotes the domain of F.
Let

FS+(X) := {F ∈ FS+(G) | G ∈ O},

FB(X) := {F ∈ FT ,B(G) | G ∈ O, T ∈ F1(G)},

F(X) := {F ∈ FT (G) | G ∈ O, T ∈ F1(G)},

where O denotes the collection of all bounded open sets in X. Here, T ∈ F1(G) is called an essential inner
map to F.

The following result shows that the Hammerstein operator of the type I+ST belongs to the class F(X).
For the single-valued case, we refer to [2, Lemma 2.2] and [9, Lemma 2.3].

Lemma 1.4. Let G be any bounded open set in a real reflexive Banach space X. Suppose that T ∈ F1(G) and
S : DS ⊂ X∗ → 2X is locally bounded and weakly upper semicontinuous such that T(G) ⊂ DS. Then the following
statements hold:

(a) If S is quasimonotone, then I+ ST ∈ FT (G).
(b) If S is of class (S+), then ST ∈ FT (G).

Proof. (a): Set F := I+ ST . Let (uk) be any sequence in G and (wk) be any sequence in X with wk ∈ STuk
such that

uk ⇀ u in X, yk := Tuk ⇀ y in X∗, and lim sup
k→∞ 〈uk +wk,yk − y〉 6 0. (1.3)

Since the sequence (〈Tuk,uk−u〉) is bounded in R, there is a subsequence (uj) of (uk) such that the limit
limj→∞ 〈Tuj,uj − u〉 exists. By the reflexivity of X, we can write it in the form:

lim
j→∞ 〈uj,yj − y〉X∗ = lim

j→∞ 〈Tuj,uj − u〉. (1.4)
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By the quasimonotonicity of S, (1.3) and (1.4), we get

0 6 lim sup
j→∞ 〈wj,yj − y〉

= lim sup
j→∞ 〈uj +wj,yj − y〉− lim

j→∞ 〈uj,yj − y〉
6 − lim

j→∞ 〈Tuj,uj − u〉.
Since T is of class (S+), we have uj → u in X. By the convergence principle in [16, Proposition 10.13],
the entire sequence (uk) converges strongly to u in X. Thus the operator F is of class (S+)T . Since ST is
locally bounded and weakly upper semicontinuous on G, we conclude that F ∈ FT (G).

(b): Let (uk) be any sequence in G and (wk) be any sequence in X with wk ∈ STuk such that

uk ⇀ u in X, yk := Tuk ⇀ y in X∗, and lim sup
k→∞ 〈wk,yk − y〉 6 0.

Since S is of class (S+), it follows that yk → y in X∗. Since limk→∞ 〈Tuk,uk − u〉 = 0 and T is of class
(S+), we have uk → u in X. Consequently, we obtain that ST ∈ FT (G). This completes the proof.

Actually, we see by simple examples in [2, 9] that in a Hilbert space the collection of operators of class
(S+)T is larger than that of class (S+).

Definition 1.5. For a bounded operator T : G ⊂ X → X∗, a homotopy H : [0, 1]×G → 2X is said to be of
class (S+)T , if for any sequence (tk,uk) in [0, 1]×G and any sequence (ak) in X with ak ∈ H(tk,uk) such
that

uk ⇀ u in X, tk → t in [0, 1], Tuk ⇀ y in X∗, and lim sup
k→∞ 〈ak, Tuk − y〉 6 0,

we have uk → u in X.

The following result says that every affine homotopy with a common essential inner map T is of class
(S+)T .

Lemma 1.6. Let G be a bounded open subset of a real reflexive Banach space X and let T : G→ X∗ be bounded and
continuous. If F,S are bounded and of class (S+)T , then an affine homotopy H : [0, 1]×G→ 2X defined by

H(t,u) := (1 − t)Fu+ tSu, for (t,u) ∈ [0, 1]×G,

is of class (S+)T .

Proof. Let (uk) be any sequence in G and (tk) be any sequence in [0, 1] such that

uk ⇀ u in X, tk → t in [0, 1], yk := Tuk ⇀ y in X∗, and lim sup
k→∞ 〈ak,yk − y〉 6 0,

where ak = (1 − tk)vk + tkwk ∈ H(tk,uk), vk ∈ Fuk and wk ∈ Suk. Note that

〈ak,yk − y〉 = (1 − tk)〈vk,yk − y〉+ tk〈wk,yk − y〉.

If t = 1, then it follows from the boundedness of F that

lim sup
k→∞ 〈wk,yk − y〉 = lim sup

k→∞ 〈ak,yk − y〉 6 0,

which implies, in view of S ∈ (S+)T that uk → u in X. If t ∈ [0, 1), then S ∈ (QM)T implies that

(1 − t) lim sup
k→∞ 〈vk,yk − y〉 6 (1 − t) lim sup

k→∞ 〈vk,yk − y〉+ t lim inf 〈wk,yk − y〉

6 lim sup
k→∞ 〈ak,yk − y〉 6 0.

Since F is of class (S+)T , we have uk → u in X. In both cases, we have shown that uk → u in X. This
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completes the proof.

For the construction of our degree, we now observe that a locally bounded homotopy can be reduced to
some bounded homotopy on a suitable domain. This is a more general set-valued version of [9, Theorem
2.6] under some weaker conditions.

Theorem 1.7. Let G be an open set in a real Banach space X and let Y be a real normed space. Suppose that
H : [0, 1]×G → 2Y is a locally bounded homotopy. If S is a nonempty compact set in X with S ⊂ G, then there
exists an open set G0 in X such that

(a) S ⊂ G0 ⊂ G, and
(b) ‖a‖ 6 R, for all (t,u) ∈ [0, 1]×G0 and all a ∈ H(t,u) and for some positive constant R.

Proof. Let S be a nonempty compact set in X with S ⊂ G and let

Dn :=

{
u ∈ X | dist (u,S) <

1
n

}
, for n ∈N.

By the compactness of S, it can be expressed as

Dn =

{
u ∈ X | ‖u− z‖ < 1

n
for some z ∈ S

}
.

Setting Gn := Dn ∩G, it is clear that Gn is open in X and S ⊂ Gn ⊂ G, that is, (a) holds for each Gn. We
now have to verify that at least one of the sets Gn fulfills property (b). If none of the sets Gn satisfies (b),
there are sequences (tn) in [0, 1] and (un) in Gn such that

‖an‖ > n, (1.5)

where an ∈ H(tn,un). According to un ∈ Dn, we can choose a sequence (zn) in S such that ‖un − zn‖ 6
2/n. Since the set S is compact, there exists a subsequence (zk) of (zn) which converges to some z ∈ S.
Hence it follows from the inequality

‖uk − z‖ 6 ‖uk − zk‖+ ‖zk − z‖,

that uk → z in X. We may suppose that tk → t ∈ [0, 1]. Since the homotopy H is locally bounded, the
sequence (ak) is clearly bounded, in contradiction to (1.5). Therefore, at least one of the sets Gn fulfills
(a) and (b), say Gn0 =: G0. This completes the proof.

Moreover, we show that every weakly upper semicontinuous operator of class (S+)T is proper on
bounded closed sets. See [1, Lemma 2.5] and [9, Lemma 2.7] for related single-valued case.

Lemma 1.8. Let G be a bounded open set in a real reflexive Banach space X and let H : [0, 1]×G→ 2X be a weakly
upper semicontinuous homotopy of class (S+)T , where T : G→ X∗ is bounded. For each compact set A in X,

K := {u ∈ G | H(t,u)∩A 6= ∅ for some t ∈ [0, 1]},

is a compact set in X.

Proof. Let A be a compact set in X. Let (un) be any sequence in K. Then for every n ∈ N we choose
tn ∈ [0, 1] and an ∈ A such that an ∈ H(tn,un). Since the set A is compact, there is a subsequence (ak)
of (an) such that ak → a for some a ∈ A. By the boundedness of the set G and the map T , we may
suppose, without loss of generality, that

uk ⇀ u in X, yk := Tuk ⇀ y in X∗, and tk → t in [0, 1].

Then we have limk→∞ 〈ak,yk − y〉 = 0. Since the homotopy H is of class (S+)T and is weakly upper
semicontinuous with weakly closed convex values, this implies that uk → u ∈ G and a ∈ H(t,u).
Therefore, we have u ∈ K. Consequently, the set K is compact in X. This completes the proof.
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Corollary 1.9. Suppose that F : G→ 2X is a locally bounded weakly upper semicontinuous operator of class (S+)T ,
where G is a bounded open subset of X and T : G → X∗ is bounded. For every h 6∈ F(∂G), there is an open set G0
in X such that F−1(h) ⊂ G0 ⊂ G and F is bounded on G0.

Proof. Suppose that h 6∈ F(∂G). By Lemma 1.8, F−1(h) is a compact subset of X and F−1(h) ⊂ G. Applying
Theorem 1.7 with S = F−1(h), there is an open set G0 in X such that F−1(h) ⊂ G0 ⊂ G and F is bounded
on G0.

2. Degree theory

In this section, (X, ‖ · ‖) will always be an infinite-dimensional real reflexive separable Banach space
which has been renormed so that both X and its dual space X∗ are locally uniformly convex.

In this case, it is known that the duality operator J : X → X∗ is bijective, bounded, continuous and of
class (S+) and such that 〈Ju,u〉 = ‖u‖2 and ‖Ju‖ = ‖u‖ for u ∈ X, see e.g. [17].

We first introduce the Berkovits-Tienari degree theory for the class FS+(X) given in [3] which is based
on the known topological degree for Leray-Schauder type set-valued operators in [7, 11].

Lemma 2.1. Let G be any bounded open subset of X and let F : G → 2X
∗

be a (locally) bounded weakly upper
semicontinuous set-valued operator of class (S+). If h /∈ F(∂G), then the (S+)-degree of F on G over h is defined as
an integer, denoted by dS+(F,G,h) and the degree has the following properties:

(a) (Existence) If dS+(F,G,h) 6= 0, then the inclusion h ∈ Fu has a solution in G.

(b) (Additivity) If G1 and G2 are disjoint open subsets of G such that h /∈ F(G\(G1 ∪G2)), then we have

dS+(F,G,h) = dS+(F,G1,h) + dS+(F,G2,h).

(c) (Homotopy Invariance) Suppose that H : [0, 1]×G→ 2X
∗

is a (locally) bounded weakly upper semicontin-
uous homotopy of class (S+). If h : [0, 1] → X∗ is a continuous curve in X∗ such that h(t) /∈ H(t,u) for all
(t,u) ∈ [0, 1]× ∂G, then the value of dS+(H(t, ·),G,h(t)) is constant for all t ∈ [0, 1].

(d) (Normalization) If h ∈ J(G), then we have dS+(J,G,h) = 1.

Next we construct a topological degree for the class FB(X) with elliptic super-regularization method
as in [2]. The idea is basically a compact embedding theorem due to Browder and Ton [5].

Proposition 2.2. Let Y be a real separable Banach space. Then there exists a separable Hilbert space W and a
compact linear injection φ :W → Y such that φ(W) is dense in Y.

According to Proposition 2.2 with Y = X∗, let φ : W → X∗ be a compact linear injection such that
φ(W) is dense in X∗. We define another operator φ̂ : X→W by setting

(φ̂(v),w)W = 〈v,φ(w)〉, for all w ∈W and v ∈ X, (2.1)

where (·, ·)W denotes the inner product of W. Obviously, φ̂ is also a compact linear injection.
To each F ∈ FT ,B with T ∈ F1, we associate a family of operators defined by

Fλ := T + λφφ̂F, for λ > 0.

Then each Fλ is bounded, upper semicontinuous and of class (S+).
In fact, when constructing a new degree for F ∈ FT , we have a great difficulty in applying the above

(S+)-degree of Fλ directly. In view of Theorem 1.7, we proceed in two steps, as we will see below.
We give a fundamental result needed for the construction of a degree and its properties, see [2, Lemma

4.2] for the single-valued case.
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Lemma 2.3. Let G be any bounded open set in X and A be any closed subset of G. Suppose that F ∈ FT ,B(G),
where T ∈ F1(G). If h /∈ F(A), then there exists a positive number λ0 such that hλ /∈ Fλ(A) for all λ > λ0, where
hλ = λφφ̂h.

Proof. Let A be a closed subset of G such that h /∈ F(A). Suppose to the contrary that there are sequences
(λn) in (0,∞) and (un) in A with λn →∞ such that hλn ∈ Fλn(un), for all n ∈N, that is,

Tun + λnφφ̂(vn − h) = 0, (2.2)

where vn ∈ Fun. Passing to subsequences if necessary, we may suppose that

un ⇀ u in X, and vn ⇀ v in X, and yn := Tun ⇀ y in X∗. (2.3)

Then it follows from (2.2) and the strong continuity of the operator φ that

φφ̂vn → φφ̂h = φφ̂v,

which implies v = h, by the injectivity of φφ̂. Hence it follows from (2.1), (2.2) and (2.3) that

lim sup
n→∞ 〈vn,yn − y〉 = lim sup

n→∞ 〈vn − h,yn〉

= lim sup
n→∞ 〈vn − h,−λnφφ̂(vn − h)〉

= lim sup
n→∞

[
−λn‖φ̂(vn − h)‖2

W

]
6 0.

Since F is of class (S+)T and weakly upper semicontinuous, we have un → u ∈ A and h ∈ Fu, which
contradicts the hypothesis that h /∈ F(A). This completes the proof.

Corollary 2.4. Suppose that G is a bounded open set in X and F ∈ FT ,B(G), where T ∈ F1(G). If h /∈ F(∂G),
there is a positive number λ0 such that hλ /∈ Fλ(∂G) for all λ > λ0 and the value of dS+(Fλ,G,hλ) is constant for
all λ > λ0.

Proof. According to Lemma 2.3 with A = ∂G, we can choose a positive number λ0 such that hλ /∈ Fλ(∂G)
for all λ > λ0. For the second part, let λ1, λ2 be arbitrary in [λ0,∞) such that λ1 < λ2. Then Fλ, λ ∈ [λ1, λ2],
defines a bounded upper semicontinuous homotopy of class (S+) such that hλ /∈ Fλ(∂G) for all λ ∈ [λ1, λ2].
It follows from Lemma 2.1 (c) that

dS+(Fλ1 ,G,hλ1) = dS+(Fλ2 ,G,hλ2).

Since λ1, λ2 were arbitrarily chosen in [λ0,∞), we conclude that the value of dS+(Fλ,G,hλ) is constant for
all λ > λ0. This completes the proof.

In view of Corollary 2.4, we can now define a topological degree for the class FB(X).

Definition 2.5. Let F ∈ FT ,B(G), where G is a bounded open set in X and T ∈ F1(G). If h 6∈ F(∂G), then
we define a topological degree dB by

dB(F,G,h) := lim
λ→∞ dS+(Fλ,G,hλ),

where Fλ = T + λφφ̂F and hλ = λφφ̂h.

Actually, the value of dB(F,G,h) is independent of the essential inner map T chosen. In the single-
valued case it was proved in [2, Corollary 6.2].

We need the following fact for establishing the homotopy invariance of the degree dB.
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Lemma 2.6. Let G be a bounded open set in X. Suppose that H : [0, 1]×G → 2X is a bounded weakly upper
semicontinuous affine homotopy of class (S+)T with a common essential inner map T ∈ F1(G) and that h : [0, 1]→
X is a continuous curve in X such that h(t) /∈ Ht(∂G) for all t ∈ [0, 1]. Then there exists a positive number λ0
such that

hλ(t) /∈ (Ht)λ(∂G), for all t ∈ [0, 1] and all λ > λ0,

where Ht = H(t, ·), (Ht)λ = T + λφφ̂Ht and hλ(t) = λφφ̂h(t).

Proof. The proof can be done in a similar way to that of Lemma 2.3.

The degree function dB defined above has the usual basic properties.

Theorem 2.7. Let G be any bounded open set in X and suppose that F ∈ FT ,B(G), where T ∈ F1(G). Then the
following properties are satisfied:

(a) (Existence) If dB(F,G,h) 6= 0, then the inclusion h ∈ Fu has a solution in G.
(b) (Additivity) If G1 and G2 are disjoint open subsets of G such that h /∈ F(G \ (G1 ∪G2)), then we

have
dB(F,G,h) = dB(F,G1,h) + dB(F,G2,h).

(c) (Homotopy invariance) Suppose that H : [0, 1]×G→ X is a bounded weakly upper semicontinuous
affine homotopy of class (S+)T with the common essential inner map T and that h : [0, 1] → X is a
continuous curve in X such that h(t) /∈ H(t,∂G), for all t ∈ [0, 1]. Then the value of dB(H(t, ·),G,h(t))
is constant for all t ∈ [0, 1].

(d) (Normalization) For any h ∈ G, we have dB(I,G,h) = +1.

Proof.

(a): If h /∈ Fu for all u ∈ G, Lemma 2.3 implies that there exists a positive number λ0 such that hλ /∈ Fλ(G)
for all λ > λ0. It follows from Lemma 2.1 (a) that dS+(Fλ,G,hλ) = 0 for all λ > λ0. By Definition 2.5, we
have dB(F,G,h) = 0.

(b): Applying Lemma 2.3 with A = G\(G1 ∪G2), we find a positive number λ0 such that

hλ /∈ Fλ(G\(G1 ∪G2)), for all λ > λ0.

By Lemma 2.1 (b), we have

dS+ (Fλ,G,hλ) = dS+ (Fλ,G1,hλ) + dS+ (Fλ,G2,hλ), for all λ > λ0,

which implies
dB(F,G,h) = dB(F,G1,h) + dB(F,G2,h).

(c): In view of Lemma 2.6, we can choose a positive number λ0 such that

hλ(t) /∈ (Ht)λ(∂G), for all t ∈ [0, 1] and all λ > λ0.

Let λ ∈ (λ0,∞) be arbitrary but fixed. Then H̃ : [0, 1]×G→ 2X
∗

given by

H̃(t,u) := (Ht)λ(u), for (t,u) ∈ [0, 1]×G

is a bounded upper semicontinuous homotopy of class (S+) such that

hλ(t) /∈ H̃(t,u), for all (t,u) ∈ [0, 1]× ∂G.

Hence it follows from Lemma 2.1 (c) that dS+((Ht)λ,G,hλ(t)) is constant for all t ∈ [0, 1]. For any
t1, t2 ∈ [0, 1], we have by Definition 2.5 that

dB(H(t1, ·),G,h(t1)) = lim
λ→∞ dS+((Ht1)λ,G,hλ(t1))

= lim
λ→∞ dS+((Ht2)λ,G,hλ(t2))

= dB(H(t2, ·),G,h(t2)).
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(d): Since the duality operators J : X → X∗ and J−1 : X∗ → X are bounded, continuous and of class (S+),
Lemma 1.4 (b) implies that the identity operator I = J−1 ◦ J belongs to FJ(G). Let h be any element of G.
Choose a positive number R with ‖h‖ < R such that

dB(I,G,h) = dB(I,BR(0),h).

It is clear that Iu 6= th, for all t ∈ [0, 1] and u ∈ ∂BR(0). Taking h(t) = th, for t ∈ [0, 1], we obtain from
part (c) that

dB(I,BR(0),h) = dB(I,BR(0), 0).

By Definition 2.5, we have
dB(I,BR(0), 0) = lim

λ→∞ dS+(Iλ,BR(0), 0),

where Iλ = J+ λφφ̂I. For sufficiently large λ, we have

Ju+ tλφφ̂u 6= 0, for all (t,u) ∈ [0, 1]× ∂BR(0),

and hence by Lemma 2.1 (c)
dS+(Iλ,BR(0), 0) = dS+(J,BR(0), 0) = 1.

Therefore we conclude that dB(I,G,h) = 1. This completes the proof.

Lemma 2.8. Let F ∈ FT (G), where G is a bounded open set in X and T ∈ F1(G). Suppose that for i = 1, 2, Gi is
an open subset of G such that F−1(h) ⊂ Gi ⊂ G and F is bounded on Gi. Then we have

dB(F,G1,h) = dB(F,G2,h).

Proof. For i = 1, 2, since F ∈ FT ,B(Gi) and h 6∈ F(∂Gi), the degree dB(F,Gi,h) is defined and F−1(h) ⊂
G1 ∩G2 ⊂ Gi implies h 6∈ F(Gi \ (G1 ∩G2)). Then it follows from Theorem 2.7 (b) that

dB(F,G1,h) = dB(F,G1 ∩G2,h) = dB(F,G2,h).

We are now in a position to define a topological degree for the class F(X) as an extension of the degree
dB for FB(X).

Definition 2.9. Let
M = { (F,G,h) |G ∈ O, T ∈ F1(G), F ∈ FT (G), h 6∈ F(∂G) }.

Then we define a degree function d : M→ Z as follows:

d(F,G,h) := dB(F|G0
,G0,h),

where G0 is any open subset of G such that F−1(h) ⊂ G0 and F is bounded on G0, according to Corollary
1.9. Here, F|G0

denotes the restriction of F to G0.

In view of Lemma 2.8, the degree d does not depend on the choice of the set G0. Especially, if F is
bounded on G, then we may take G0 = G and so d and dB coincide on FT ,B(G).

Finally we present fundamental properties of the degree d for the class F(X).

Theorem 2.10. Suppose that F ∈ FT (G), where G is a bounded open set in X and T ∈ F1(G). Then the degree d
has the following properties:

(a) (Existence) If d (F,G,h) 6= 0, then the inclusion h ∈ Fu has a solution in G.
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(b) (Additivity) If G1 and G2 are two disjoint open subsets of G such that h /∈ F(G \ (G1 ∪G2)), then we
have

d (F,G,h) = d (F,G1,h) + d (F,G2,h).

(c) (Homotopy invariance) Suppose that H : [0, 1]×G→ X is a locally bounded weakly upper semicon-
tinuous affine homotopy of class (S+)T with the common essential inner map T . If h : [0, 1]→ X is a
continuous curve in X such that h(t) /∈ H(t,∂G), for all t ∈ [0, 1], then the value of d (H(t, ·),G,h(t))
is constant, for all t ∈ [0, 1].

(d) (Normalization) For any h ∈ G, we have d (I,G,h) = +1.

Proof. The above four properties follow from the corresponding properties in Theorem 2.7 together with
Definition 2.9 and Theorem 1.7.

3. Application

In this section, we study the Dirichlet boundary value problem related to the p-Laplacian with discon-
tinuous nonlinearity, based on the degree theory in the previous section.

Let Ω be a bounded domain in RN with smooth boundary. Let 2 < p < N and set p ′ := p/(p− 1). We
consider the following nonlinear boundary value problem{

−∆pu+ u ∈ −[g (x,u),g (x,u)], in Ω,
u = 0, on ∂Ω,

(3.1)

where ∆p is the p-Laplacian given by ∆pu = div (|∇u|p−2∇u) and g : Ω×R→ R is a possibly discontin-
uous function in the sense that

g (x, s) = lim inf
η→s

g(x,η) = lim
δ→0+

inf
|η−s|<δ

g(x,η),

g (x, s) = lim sup
η→s

g(x,η) = lim
δ→0+

sup
|η−s|<δ

g(x,η).

Suppose that g : Ω×R→ R is a real-valued function such that

(g1) g and g are superpositionally measurable, that is, g(·,u(·)) and g(·,u(·)) are measurable on Ω for
any measurable function u : Ω→ R;

(g2) g satisfies the growth condition:

|g(x, s)| 6 k0(x) + c|s|
q−1, for almost all x ∈ Ω and all s ∈ R,

where k0 ∈ Lp
′
(Ω), c is a positive constant and 1 < q < p.

Let W1,p
0 (Ω) be the closure of C∞0 (Ω) in the Sobolev space

W1,p(Ω) = {u ∈ Lp(Ω) | |∇u| ∈ Lp(Ω)},

with the norm

‖u‖1,p =

(∫
Ω

|u|pdx+

∫
Ω

|∇u|pdx
) 1
p

.

Due to the Poincaré inequality, the norm ‖ · ‖1,p on W1,p
0 (Ω) is equivalent to the norm ‖ · ‖ given by

‖u‖ =
(∫
Ω

|∇u|pdx
) 1
p

, for u ∈W1,p
0 (Ω). (3.2)
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Note that the Sobolev space W1,p
0 (Ω) is a uniformly convex separable Banach space and the canonical

embedding I :W1,p
0 (Ω) ↪→ Lp(Ω) is compact, see e.g. [17].

We give some properties of the related operators which will be used later. Recall that F : X → X∗

is uniformly monotone, if there exists a strictly increasing continuous function α : [0,∞) → [0,∞) with
α(0) = 0 such that 〈Fu− Fv,u− v〉 > α(‖u− v‖)‖u− v‖, for all u, v ∈ X.

Lemma 3.1. Let X =W1,p
0 (Ω) be the Sobolev space. Then the following statements hold:

(a) The operator F : X→ X∗ setting by

〈Fu, v〉 =
∫
Ω

|∇u|p−2∇u · ∇v dx, for u, v ∈ X,

is bounded, continuous and uniformly monotone.

(b) The operator A : X→ X∗ setting by

〈Au, v〉 =
∫
Ω

uvdx, for u, v ∈ X,

is compact.

(c) Under (g1) and (g2), the set-valued operator N : X→ 2X
∗

setting by

Nu = {z ∈ X∗ | there exists a function w ∈ Lp ′(Ω) such that
g (x,u(x)) 6 w(x) 6 g (x,u(x)) for almost all x ∈ Ω

and 〈z, v〉 =
∫
Ω

wvdx for all v ∈ X},

is bounded, upper semicontinuous, compact and Nu is nonempty, closed and convex for every u ∈ X.

Proof. Since the canonical linear embedding I : X ↪→ Lp(Ω) is compact, it is known in e.g., [13, Theorem
4.19] that the adjoint operator I∗ : Lp

′
(Ω)→ X∗ is compact and moreover, strongly continuous.

(a) It can be found in e.g., [17, Proposition 26.10].

(b) Since the embedding i : Lp(Ω) ↪→ Lp
′
(Ω) is continuous, it follows that A = I∗ ◦ i ◦ I is compact.

(c) The set-valued operator Φ : Lp(Ω)→ 2L
p ′(Ω) given by

Φu = {w ∈ Lp ′(Ω) | g (x,u(x)) 6 w(x) 6 g (x,u(x)) for almost all x ∈ Ω}

is bounded and upper semicontinuous and has weakly precompact convex values, see [6, Theorem
1.1].

Hence N = I∗ ◦Φ ◦ I is obviously bounded, upper semicontinuous and compact.

Definition 3.2. A point u ∈ W1,p
0 (Ω) is said to be a weak solution of (3.1), if there exists a point z ∈ Nu

such that ∫
Ω

|∇u|p−2∇u · ∇v dx+
∫
Ω

uvdx+ 〈z, v〉 = 0 for all v ∈W1,p
0 (Ω).

Now we prove that the given elliptic problem (3.1) has a weak solution. For this, we use the known
Browder-Minty theorem on monotone operators and the degree theory.

Theorem 3.3. Under conditions (g1) and (g2), (3.1) has a weak solution u in W1,p
0 (Ω).
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Proof. Let Y = W
1,p
0 (Ω) be the Sobolev space and let F,A : Y → Y∗ and N : Y → 2Y

∗
be defined as in

Lemma 3.1. Then u ∈ Y is a weak solution of (3.1), if and only if

Fu ∈ −(A+N)u. (3.3)

Notice by Lemma 3.1 that the operator F : Y → Y∗ is bounded, continuous and uniformly monotone
and in particular, coercive and of class (S+) and the operator S := A+N : Y → 2Y

∗
is bounded, upper

semicontinuous and quasimonotone. Now let X = Y∗ and identify X∗ with Y. By the Browder-Minty
theorem on monotone operators in [17, Theorem 26.A], the inverse operator T := F−1 : X→ X∗ is bounded,
continuous and of class (S+), where the last follows from the fact that F is continuous and of class (S+)
and T is bounded. Consequently, (3.3) can be written equivalently as

u = Tv, and v ∈ −STv. (3.4)

To solve (3.4), we will employ the degree theory for F(X). To do this, we first show that the set

B := {v ∈ X | v ∈ −tSTv for some t ∈ [0, 1]},

is bounded in X. Indeed, let v ∈ B, that is, v + ta = 0 for some t ∈ [0, 1], where a ∈ STv. Setting
u := Tv, we write a = Au+ z ∈ Su, where z ∈ Nu, that is, 〈z,u〉 =

∫
Ωwudx, for some w ∈ Lp ′(Ω)

with g (x,u(x)) 6 w(x) 6 g (x,u(x)) for almost all x ∈ Ω. Noting that the embeddings Lp(Ω) ↪→ L2(Ω),
Lp(Ω) ↪→ Lq(Ω) and Y ↪→ Lp(Ω) are continuous, we get by (g2) the estimate

‖Tv‖p = 〈v, Tv〉 = −t〈a, Tv〉 = −t

∫
Ω

(u+w)udx

6 const(‖Tv‖2 + ‖Tv‖q + ‖Tv‖),

where ‖ · ‖ denotes the equivalent norm on Y given by (3.2). Hence it is obvious that

{Tv | v ∈ B} is bounded in Y.

Since the operator S is bounded, it follows from (3.4) that the set B is bounded in X. We can now choose
a positive constant R such that

‖v‖X < R, for all v ∈ B.

This says that
v /∈ −tSTv, for all v ∈ ∂BR(0) and all t ∈ [0, 1].

Lemma 1.4 implies that
I+ ST ∈ FT (BR(0)), and I = FT ∈ FT (BR(0)).

Consider an affine homotopy H : [0, 1]×BR(0)→ 2X given by

H(t, v) := (1 − t)Iv+ t(I+ ST)v, for (t, v) ∈ [0, 1]×BR(0).

Applying Theorem 2.10, we get

d(I+ ST ,BR(0), 0) = d(I,BR(0), 0) = 1,

and hence there exists a point v ∈ BR(0) such that

v ∈ −STv,

which says that u = Tv is a solution of (3.3). We conclude that u is a weak solution of (3.1). This completes
the proof.
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