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Abstract
In this paper, the (3+1)-dimensional Kadomtsev-Petviashvili equation is investigated. Two kinds of periodic breather solitary

wave and rogue wave solutions are obtained by using the two-wave method and the homoclinic breather limit approach with
the aid of Maple. Deflection of rogue wave varying with the seed solution u0 is investigated. c©2017 all rights reserved.
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1. Introduction

Rogue waves are called monster waves or extreme waves in the ocean, which are catastrophic natural
physical phenomena [1, 2, 9]. The study of rogue waves has many important applications in some fields
since they can signal fascinating stories (thunderstorms, earthquakes, and hurricanes). For a quite long
time, rogue waves are thought to be mysterious since they appear from nowhere and disappear without
a trace [2]. Generally speaking, they develop due to the interaction of the nonlinearity and dispersion in
the wave propagation. In fact, rogue waves can be regarded as a special type of solitary waves and have
drawn much attention in some fields of nonlinear science [4, 8, 11, 12]. Recently, Akhmediev et al. [1]
presented explicit forms of the rational solutions to describe them by the deformed Darboux transforma-
tion. Yan [18] and Ma et al. [10] investigated the nonautonomous rogue waves in one-dimensional and
three-dimensional generalized nonlinear Schrödinger equations with variable coefficients by the similarity
transformation and direct ansatz. More recently, Dai et al. [7] discussed their propagation behaviors in a
variable coefficient higher-order nonlinear Schrödinger equation by a similarity transformation connected
with the constant coefficient Hirota equation.

Now we consider the following (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation

uxt + uxxxx + 3(u2)xx − uyy − uzz = 0, (1.1)
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where u is a polynomial in its arguments, u : Rx × Ry × Rz × Rt → R. It is understood that this equation
has been used widely in describing dynamics of solitons and nonlinear waves in the fields of plasmas and
superfluids. As a matter of fact, when u is z-independent, Eq. (1.1) is completely integrable. Therefore,
certain solutions can be derived in various approaches, for instance, the inverse scattering transformation
and Hirota’s bilinear method. When Eq. (1.1) is non-integrable, difficulties become obvious in order to
get exact solutions of the equation. It is worthy to note that Wang and Lou have revealed some special
type exact solutions in their report [13]. Also, after applying a generalized variable-coefficient algebraic
method [3] to the (3+1)-dimensional KP equation, Bai et al. successfully constructed several new families
of exact solutions with interesting potentials for future physical applications. The bilinear Bäcklund
transformation and some new explicit solutions of Eq. (1.1) are also derived in Wu’s recent work [14]. But
to our best knowledge, rational breather solutions to the (3+1)-dimensional Kadomtsev-Petviashvili (KP)
equation (1.1) have not been reported in previous literatures.

In this work, a novel approach of seeking rogue wave solution, the homoclinic breather limit approach
[5, 15], is proposed. By using the homoclinic breather limit approach and two-wave method [6, 16, 17], we
obtain two kinds of breather solitary wave and rogue wave solutions. Furthermore, we also investigate
differently mechanical features of these wave solutions [19, 20].

2. Two kinds of periodic breather solitary wave solutions

In this section, the two kinds of periodic breather solitary wave solutions are constructed by using
two-wave method and extended homoclinic test technique as well as the bilinear method.

Setting ξ = x+ t in Eq. (1.1), we get

uξξ + uξξξξ + 3(u2)ξξ − uyy − uzz = 0. (2.1)

It is easy to see that Eq. (2.1) has a seed solution u0 which is an arbitrary constant.
By using Painlevé test we can assume the solution of Eq. (2.1) as follows

u(ξ,y, z) = u0 + 2(ln f)ξξ, (2.2)

where f(ξ,y, z) is unknown real function. Substituting Eq. (2.2) into Eq. (2.1) we obtain the following
bilinear form

(D4
ξ + (1 + 6u0)D

2
ξ −D

2
y −D

2
z)f · f = 0, (2.3)

where D2
yf · f = 2fyyf− 2f2

y,D4
ξf · f = 2(fξξξξf− 4fξξξfξ + 3f2

ξξ). With regard to Eq. (2.3), using the
homoclinic test technique we can seek the solution in the form

f = e(−w1(ξ−ay)) + δ1 cos(w(ξ+ by+ bz)) + δ2e
(w1(ξ−ay)), (2.4)

where a,b,w,w1, δ1, δ2 are real constants to be determined. Substituting Eq. (2.4) into Eq. (2.3) and
equating all the coefficients of different powers of ew1(ξ−at), e−w1(ξ−at), sin(w(ξ+by+bz)), cos(w(ξ+
by+ bz)) and the constant term to zero, we can obtain a set of algebraic equations for a,b,w,w1, δ1, δ2.
Solving the system with the aid of Maple, we get the following results

− δ1(−w
4 − (1 + 6u0)w

2
1 − 2w2b2 +w2

1a
2 + 6w2

1w
2 + (1 + 6u0)w

2 −w4
1) = 0,

16δ2w
4
1 + 2δ2

1w
2b2 + 4δ2

1w
4 − (1 + 6u0)δ

2
1w

2 + 4(1 + 6u0)δ2w
2
1 − 4δ2w

2
1a

2 = 0,

− 2w1δ1w(−2w2 + 2w2
1 + (1 + 6u0) + ba) = 0.

(2.5)

Solving the above Eqs. (2.5) and taking w1 = w yields

w = ±
√

2b2 − a2

2
, δ1 = ±2

√
(2a2 − (1 + 6u0) − 2b2)δ2

4b2 − (1 + 6u0) − a2 , ba = −1 − 6u0, (2.6)

where a,b,w, δ2 are real constants to be determined.
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Substituting Eq. (2.5) and Eq. (2.6) into Eq. (2.4), and choosing u0 6= −1
6 and δ2 > 0, we have

f1(ξ,y, z) = 2
√
δ2 cosh(−w(ξ− ay) −

1
2

ln(δ2)) + h1 cos(w(ξ+ by+ bz)),

f2(ξ,y, z) = 2
√
δ2 cosh(−w(ξ− ay) −

1
2

ln(δ2)) − h1 cos(w(ξ+ by+ bz)),
(2.7)

where h1 = 2
√

(2a2−(1+6u0)−2b2)δ2
4b2−(1+6u0)−a2 ,w = ±

√
2b2−a2

2 ,a,b ∈ R.
Substituting Eq. (2.7) into Eq. (2.2) yields the periodic breather soliton solutions of Eq. (2.2) as follows,

respectively.

u1(ξ,y, z) = u0 +
(m0 − 2m1 sinh(−w(ξ− ay) − 1

2 ln(δ2)) sin(w(ξ+ by+ bz)))

(cosh(−w(ξ− ay) − 1
2 ln(δ2)) +m1 cos(w(ξ+ by+ bz)))2

,

u2(ξ,y, z) = u0 +
2w2(m0 + 2m1 sinh(−w(ξ− ay) − 1

2 ln(δ2)) sin(w(ξ+ by+ bz)))

(cosh(−w(ξ− ay) − 1
2 ln(δ2)) −m1 cos(w(ξ+ by+ bz)))2

,

where m1 =
√

2a2−(1+6u0)−2b2

4b2−(1+6u0)−a2 ,m0 =
3(2b2−a2)

4b2−1−6u0−a2 ,w = ±
√

2b2−a2

2 ,a,b ∈ R.
Substituting ξ = x+ t into u2(ξ,y, z) and letting δ2 = 1, yields the periodic breather soliton solutions

of the (3+1)-D KP equation as follows (see Fig. 1 (a), (b))

u
(1)
2 (x,y, z, t) = u0 +

2w2(m0 − 2m1 sinh(w(x− ay+ t)) sin(w(x+ bz+ by+ t)))
(cosh(w(x− ay+ t)) −m1 cos(w(x+ bz+ by+ t)))2 ,

where m1 =
√
a2−(1+6u0)−4w2

8w2−(1+6u0)+a2 ,m0 = 12w2

8w2−(1+6u0)+a2 .

The solution u
(1)
2 (x,y, z, t) is a periodic breather soliton which has period 2π

w , and the forward-
direction (or backward-direction) wave shows periodic breather feature as trajectory along the straight line
x = ay− t; meanwhile, it takes on soliton feature as trajectory along the straight line x = −(bz+ by+ t)
for (3+1)-D KP equation. Especially, this wave shows both breather and periodic feature to space vari-
able t (see Fig. 1). It is obvious u1(ξ,y, z) and u2(ξ,y, z) have the same structure and behavior with
u
(1)
2 (x,y, z, t).

Figure 1: (a) The figure of u(1)
2 (x,y, z, t) as a = 4

3 ,u0 = − 1
2 ,w = 0.82, x = z = 0. (b) Plot of contours for u(1)

2 (x,y, z, t) as
a = 4

3 ,u0 = − 1
2 ,w = 0.82, x = z = 0.
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Being similar to the above way, we choose the extended homoclinic test function as follows

f(ξ,y, z) = e(−w1(ξ+az+b1y)) + δ1 cos(w(ξ+ az+ b2y)) + δ2e
(w1(ξ+az+b1y)), (2.8)

where a,b1,b2, δ1, δ2,w,w1 are some free real constants. Substituting Eq. (2.8) into Eq. (2.2), and equat-
ing all the coefficients of different powers of e(w1(ξ+az+b1y)), e(−w1(ξ+az+b1y)), sin(w(ξ + az + b2y)),
cos(w(ξ + az + b2y)) and the constant term to zero, we can obtain a set of algebraic equations for
a,bi, δi,wi(i = 1, 2).

− δ1(−w
2a2 + 6w2

1w
2 + (1 + 6u0)w

2 − (1 + 6u0)w
2
1 −w

2b2
2 +w

2
1a

2 +w2
1b

2
1 −w

4
1 −w

4) = 0,

16δ2w
4
1 − (1 + 6u0)δ

2
1w

2 + δ2
1w

2a2 + δ2
1w

2b2
2 + 4δ2

1w
4 − 4δ2w

2
1a

2

− 4δ2w
2
1b

2
1 + 4(1 + 6u0)δ2w

2
1 = 0,

− 2w1δ1w(−2w2 + 2w2
1 − a

2 + (1 + 6u0) − b1b2) = 0.

Taking w1 = w, and solving the system with the aid of Maple, we get the following results

w =
1
2

√
b2

2 − b
2
1, δ1 = ±2

√
−(2b1 + b2)δ2

b1 + 2b2
, b1b2 = −a2 + 1 + 6u0. (2.9)

Substituting Eq. (2.9) into Eq. (2.8), and taking δ2 > 0,b2 6= b1, we have

f3(ξ, Y, z) = 2
√
δ2 cosh(w(ξ+ az+ b1y) +

1
2

ln(δ2)) + h2 cos(w(ξ+ az+ b2y)),

f4(ξ,y, z) = 2
√
δ2 cosh(w(ξ+ az+ b1y) +

1
2

ln(δ2)) − h2 cos(w(ξ+ az+ b2y)),
(2.10)

where h2 = 2
√

−(2b1+b2)δ2
b1+2b2

,w = 1
2

√
b2

2 − b
2
1,b1,b2 ∈ R. Substituting Eq. (2.10) into Eq. (2.6), and taking

b1 6= 0, yields the periodic breather solutions of Eq. (2.2) as follows, respectively.

u3(ξ,y, z) = u0 +
2w2(m0 + 2m1 sinh(w(ξ+ az+ b1y) +

1
2 ln(δ2)) sin(w(ξ+ az+ b2y)))

(cosh(w(ξ+ az+ b1y) +
1
2 ln(δ2)) +m1 cos(w(ξ+ az+ b2y)))2

,

u4(ξ,y, z) = u0 +
2w2(m0 − 2m1 sinh(w(ξ+ az+ b1y) +

1
2 ln(δ2)) sin(w(ξ+ az+ b2y)))

(cosh(w(ξ+ az+ b1y) +
1
2 ln(δ2)) −m1 cos(w(ξ+ az+ b2y)))2

,

where m0 =
3(b2

1−a
2+1+6u0)

b2
1−2a2+2+12u0

,m1 =

√
−

2b2
1−a

2+1+6u0

b2
1−2a2+2+12u0

,w = 1
2

√
b2

2 − b
2
1,b1,b2 ∈ R.

Substituting ξ = x + t into u4(ξ,y, z) and letting δ2 = 1, yields another periodic breather soliton
solutions of the (3+1)-D KP equation as follows

u
(1)
4 (x,y, z, t) = u0 +

2w2(m0 − 2m1 sinh(w(x+ az+ b1y+ t)) sin(w(x+ az+ b2y+ t)))

(cosh(w(x+ az+ b1y+ t)) −m1 cos(w(x+ az+ b2y+ t)))2 ,

where m0 = 12w2

8w2+a2−(1+6u0)+b
2
1
,m1 =

√
a2+b2

1−(1+6u0)−4w2

8w2−(1+6u0)+a2+b2
1
.

The solution u(1)
4 (x,y, z, t) is also a periodic breather soliton. It is generated by the interaction between

the soliton of variable X = w(x+ az+ b1y+ t) and the periodic wave of variable Y = w(x+ az+ b2y+ t)
(see Fig. 2 (a), (b)). It is obvious that u3(ξ,y, z) and u4(ξ,y, z) have the same structure and behavior of
with u(1)

4 (x,y, z, t).
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Figure 2: (a) The figure of u(1)
4 (x,y, z, t) as a = 1,u0 = − 1

2 ,b1 = 1.3,w = 0.9, δ2 = 1, x = z = 0. (b) Plot of contours for

u
(1)
4 (x,y, z, t) as a = 1,u0 = − 1

2 ,b1 = 1.3,w = 0.9, δ2 = 1, x = z = 0.

3. Rogue waves solutions

In this section, let the period of periodic wave go to infinity in homoclinic breather wave solution
u
(1)
2 (x,y, z, t) and u(1)

4 (x,y, z, t), we can obtain a rational breather-wave solutions of (3+1)-D Kadomtsev-
Petviashvili equation, respectively, and they are just the rogue wave solutions.

Now we consider a limit behavior of u(1)
2 as the period 2π

w of periodic wave cos(w(x+ bz+ by+ t))
goes to infinity, i.e., w→ 0. By computing, we obtain the following result

Urogue wave = u0 +
16( 6

a2−1−6u0
− (x− ay+ t)(x−

(1+6u0)y
a −

(1+6u0)z
a + t))

((x− ay+ t)2 + (x−
(1+6u0)y

a −
(1+6u0)z

a + t)2 + 12
a2−1−6u0

)2
,

here m1 → 1, a2 > 1 + 6u0, and 2b2 = a2 as w→ 0.
Urogue wave contains two waves with different velocities and directions. It is easy to see that Urogue wave

is a rational solution of Eq. (1.1). Moreover, we can show that Urogue wave is also a breather-type solution.
In fact, U→ u0 for fixed x as y = z = c and t→∞. So, U is not only a rational breather solution but also
a rogue wave solution which has two to three times amplitude higher than its surrounding waves and
generally forms in a short time (see Fig. 3). It is a new discovery that the rogue wave solutions can come
from the breather solitary wave solution for Eq. (1.1). One may think that whether the energy collection
and superposition of breather solitary wave in many periods lead to a rogue wave or not.

Similarly, we consider a limit behavior of u(1)
4 as the period 2π

w of periodic wave cos(w(x+ az+ b2y+
t)) goes to infinity, i.e., w → 0. By computing, we obtain the rational breather wave solution of (3+1)-
dimensional KP equation, and it is just a rogue wave solution as follows (see Fig. 4)

Urogue wave = u0 +
8( 12
a2−1−6u0+b

2
1
− 2(x+ az+ b1y+ t)(x+ az−

(a2−1−6u0)y
b1

+ t))

( 12
a2−1−6u0+b

2
1
+ (x+ az+ b1y+ t)2 + (x+ az−

(a2−1−6u0)y
b1

+ t)2)2
,

here m1 → 1, a2 + b2
1 > 1 + 6u0, and b2 = −b1 as w→ 0.
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Figure 3: (a) The figure of U1
rogue wave as a = 2.1,u0 = −1.2, x = z = 0. (b) Plot of contours for U1

rogue wave as a = 2.1,u0 =
−1.2, x = z = 0.

Figure 4: (a) The figure of U1
rogue wave as a = 1,b1 = 1.8,u0 = − 1

2 , x = z = 0. (b) Plot of contours for U1
rogue wave as a = 1,b1 =

1.8,u0 = − 1
2 , x = z = 0.

4. Conclusion

In the current work, we proposed a new method for seeking rogue wave, the homoclinic breather
limit approach. Applying this approach to the (3+1)-dimensional Kadomtsev-Petviashvili equation, we
obtained two kinds of breather solitary and rational breather solutions. Furthermore, rational breather
solution obtained here is just a rogue wave solution of the (3+1)-dimensional KP equation. This result
shows that the homoclinic breather limit approach combined with some other techniques is effective and
promising for constructing rogue wave solution of nonlinear evolution equations.
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