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Abstract

This paper is concerned with a class of boundary value problem of nonlinear fractional differential equation cDαu(t) −
acDβu(t) + f(t,u(t)) = 0. This equation may be regarded as an extension of Bagley-Torvik equations. Some new existence and
uniqueness results are obtained by using standard Banach contraction principle and Krasnoselskii’s fixed point theorem. c©2017
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1. Introduction

Fractional differential equations have gained considerable attention due to their intensive applications
in various fields of science such as physics, mechanics, chemistry, engineering, etc. For details see [8, 11,
14, 15, 18, 19]. There have been a lot of papers devoted to the study of fractional boundary value problems.
See, for example, [2, 4, 5, 9, 12, 13, 17, 20]. For more information to the existence and uniqueness of
nonlinear fractional differential equation we refer the reader to [7, 14, 19] and references therein. For
differential equations with Caputo fractional derivatives see [1, 5, 6, 20].

In this paper we study the existence of solutions for boundary value problem of nonlinear fractional
differential equations (BVP in short) of the form

cDαu(t) − acDβu(t) + f(t,u(t)) = 0, 0 < t < 1, (1.1)

u(0) = u0, u(1) = u1, (1.2)

where cDα and cDβ are Caputo fractional derivatives with 1 < α 6 2 and 1 6 β < α, a ∈ R is a constant
and f : [0, 1]×R→ R is a given function satisfying some assumptions that will be specified later.
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Multi-term fractional differential equations have some concrete applications in many fields. However,
for a general multi-term fractional differential equation almost no results seems to be known. Only some
special cases have been investigated. See, for example, [7, Chapter 8]. In 1984, Bagley and Torvik [3]
formulated the mathematical model of the motion of a thin plate in a Newtonian fluid

Ay ′′(t) +BcD3/2y(t) +Cy(t) = f(t),

which is called Bagley-Torvik equation later. Here A, B, and C are certain constants and f is a given func-
tion. In [13] Kaufmann and Yao studied the boundary value problem (1.1) with zero bounded conditions
involving Riemann-Liouville fractional derivatives, which is a generalization of Bagley-Torvik equation.
Existence results were obtained by various fixed point theorems. In [9], the authors studied this problem
in Banach spaces.

In this paper we consider the boundary value problem (1.1)-(1.2) with the Caputo fractional derivatives
and the boundary values are nonzero. Some sufficient conditions for the existence results are obtained.
Banach contraction principle and Krasnoselskii fixed point theorem are employed to deal with this prob-
lem. Our results can be regarded as an extension of corresponding results of Bagley-Torvik equation and
partially extend the results in [7] and [13].

2. Preliminaries and lemmas

In this section we collect some definitions and results which will be used in this paper. Let us denote
by C([a,b], R) the Banach space of all continuous functions u : [a,b]→ R endowed with supermium norm
‖u‖ = sup{|u(t)|, t ∈ [a,b]}.

Definition 2.1 ([7]). Let α > 0 be a fixed number. The Riemann-Liouville fractional integral of order α > 0
of a function h : [a,b]→ R is defined by

Iαah(t) =
1
Γ(α)

∫t
a

(t− s)α−1h(s)ds, t ∈ [a,b],

provided the right side is point-wisely defined, where Γ(·) denotes the well-known gamma function, i.e.,
Γ(z) =

∫∞
0 e−ttz−1dt.

Definition 2.2 ([7]). Let α > 0 be fixed and n = [α] + 1. The Riemann-Liouville fractional derivative of
order α of h : [a,b]→ R at the point t is defined by

Dαah(t) =
1

Γ(n−α)

dn

dtn

∫t
a

(t− s)n−α−1h(s)ds, t ∈ [a,b],

provided the right side is point-wisely defined, where [α] denotes the integer part of the real number α.

Definition 2.3 ([7]). Let h : [a,b]→ R,α > 0, and n = [α] + 1. The Caputo fractional derivative of order α
of h at the point t is defined by

cDαah(t) =
1

Γ(n−α)

∫t
a

(t− s)n−α−1h(n)(s)ds, t ∈ [a,b],

provided the right side is point-wisely defined. cDαa is also called the Caputo fractional differential
operator.

For simplicity, when a = 0, we denote cDα0 and Iα0 by cDα and Iα, respectively.

Lemma 2.4 ([7]). Let α > 0 and m = [α] + 1. Then the solutions to the equation cDαu(t) = 0 is given by

u(t) = c0 + c1t+ c2t
2 + · · ·+ cm−1t

m−1,
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where ci ∈ R, i = 0, 1, 2, · · · ,m− 1 are some constants. If further assume that u ∈ Cm([0,b]; R), then

IαcDαu(t) = u(t) + c0 + c1t+ c2t
2 + · · ·+ cm−1t

m−1,

for some constants ci ∈ R, i = 0, 1, 2, · · · ,m− 1.

To study the existence of the boundary value problem (1.1)-(1.2), we need to transform the fractional
differential equation into an integral equation. We first study the linear version of the problem (1.1)-(1.2).

Lemma 2.5. Suppose that a 6= Γ(α−β+ 2), and h ∈ C([0, 1], R) be given. Then the solution u ∈ C([0, 1], R) of
the fractional differential equation

cDαu(t) − acDβu(t) + h(t) = 0, 1 < α < 2, (2.1)

with the boundary value conditions
u(0) = u0, u(1) = u1, (2.2)

satisfies the integral function

u(t) = p(t) +

∫ 1

0
G1(t, s)u(s)ds−

∫ 1

0
G2(t, s)h(s)ds,

where

p(t) =
Γ(α−β+ 2)

[
Γ(α−β+ 1)(u1 − u0) + au0

][
Γ(α−β+ 2) − a

]
Γ(α−β+ 1)

t

+
Γ(α−β+ 1)(u0 − u1)a− a

2u0[
Γ(α−β+ 2) − a

]
Γ(α−β+ 1)

tα−β+1

−
au0

Γ(α−β+ 1)
tα−β + u0,

G1(t, s) =
a

Γ(α−β)


atα−β+1−Γ(α−β+2)t

Γ(α−β+2)−a (1 − s)α−β−1 0 6 s < t 6 1,

+(t− s)α−β−1,
atα−β+1−Γ(α−β+2)t

Γ(α−β+2)−a (1 − s)α−β−1, 0 6 t < s 6 1,

and

G2(t, s) =
1
Γ(α)


atα−β+1−Γ(α−β+2)t

Γ(α−β+2)−a (1 − s)α−1 0 6 s < t 6 1,

+(t− s)α−1,
atα−β+1−Γ(α−β+2)t

Γ(α−β+2)−a (1 − s)α−1, 0 6 t < s 6 1.

Proof. Since 1 < α 6 2, by Lemma 2.4,

IαcDαu(t) = u(t) + c1 + c2t,

for some constants c1 and c2 and t ∈ [0, 1]. Applying the operator Iα to both side of (2.1), one obtains that

IαcDαu(t) = aIαcDβu(t) − Iαh(t),

for t ∈ [0, 1]. Due to the property of fractional integral and Lemma 2.4,

IαcDβu(t) = Iα−β
(
IβcDβu(t)

)
= Iα−β

(
u(t) + c1 + c2t

)
= Iα−βu(t) +

c1t
α−β

Γ(α−β+ 1)
+

c2t
α−β+1

Γ(α−β+ 2)
.
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So we have

u(t) + c1 + c2t = aI
α−βu(t) +

ac1t
α−β

Γ(α−β+ 1)
+
ac2t

α−β+1

Γ(α−β+ 2)
− Iαh(t), (2.3)

for t ∈ [0, 1]. Then using the boundary value condition (2.2) we get that c1 = −u0 and

c2 =
Γ(α−β+ 2)

[
u0 − u1 + aI

α−βu(1) − Iαh(1)
]

Γ(α−β+ 2) − a

−
Γ(α−β+ 2)au0[

Γ(α−β+ 2) − a
]
Γ(α−β+ 1)

.

Substituting the value of c1 and c2 into (2.3), we obtain the desired result, and the lemma is thus proved.

It is easy to see that G2 is continuous, and therefore bounded on [0, 1]× [0, 1], while G1 is unbounded
since α−β− 1 < 0. However,

∫1
0 G1(t, s)ds is uniformly bounded for t ∈ [0, 1]. This is because∫ 1

0

∣∣∣G1(t, s)
∣∣∣ds 6 |a|

[
Γ(α−β+ 2)t+ |a|tα−β+1

]
Γ(α−β)

∣∣Γ(α−β+ 2) − a
∣∣ ∫ 1

0
(1 − s)α−β−1ds

+
|a|

Γ(α−β)

∫t
0
(t− s)α−β−1ds

6
|a|

Γ(α−β+ 1)

([Γ(α−β+ 2) + |a|
]∣∣Γ(α−β+ 2) − a
∣∣ + 1

)
,

for all t ∈ [0, 1]. So we denote by

M1 = max
06t61

∫ 1

0

∣∣∣G1(t, s)
∣∣∣ds,

and

M2 = max
06t61

∫ 1

0

∣∣∣G2(t, s)
∣∣∣ds.

Since p is a polynomial type function, it is obviously continuous and bounded on the interval [0, 1]. Let

M3 = max
06t61

∣∣p(t)∣∣.
Theorem 2.6 (Krasnoselskii’s fixed point theorem [16]). Let M be a closed, bounded, convex and nonempty
subset of a Banach space X. Let A, B be the operators such that

(i) Ax+By ∈M whenever x,y ∈M;

(ii) A is compact and continuous;

(iii) B is a contraction mapping.

Then there exists z ∈M such that z = Az+Bz.

Theorem 2.7 (Leray-Schauder alternative [10]). Let X be a Banach space, C ⊂ X be a closed , convex subset of
X, U an open subset of C and 0 ∈ U. Suppose that T : U→ C is a continuous, compact (that is, T(U) is a relatively
compact subset of C) map. Then either

(i) T has a fixed point in U, or

(ii) there is a u ∈ ∂U and λ ∈ (0, 1) with u = λT(u).
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3. Existence results

In this section, we study the existence of solutions to BVP (1.1)-(1.2). We begin with the definition of
solutions to this problem.

Definition 3.1. A continuous function u : [0, 1]→ R is said to be a solution to (1.1)-(1.2), if u satisfies

u(t) = p(t) +

∫ 1

0
G1(t, s)u(s)ds−

∫ 1

0
G2(t, s)f(s,u(s))ds,

for t ∈ [0, 1].

For the forthcoming analysis, we need the following hypotheses.

(H1) f : [0, 1]×R→ R is continuous.

(H2) There exists a constant k > 0 such that

|f(t,u) − f(t, v)| 6 k|u− v|,

for all u, v ∈ R and t ∈ [0, 1].

(H3) There exists a continuous function µ : [0, 1]→ R+ such that

|f(t,u)| 6 µ(t),

for all (t,u) ∈ [0, 1]×R.

(H4) There exist functions φ ∈ C([0, 1], R+) and ψ : R→ R+ nondecreasing such that

|f(t,u)| 6 φ(t)ψ(|u|),

for each (t,u) ∈ [0, 1]×R.

We first prove an existence result in the case that f satisfies the Lipschitz condition.

Theorem 3.2. Suppose that the condition (H1) and (H2) are satisfied. If

M1 + kM2 < 1, (3.1)

then the BVP (1.1)-(1.2) has a unique solution in C([0, 1], R).

Proof. Define an operator T : C([0, 1], R)→ C([0, 1], R) by

Tu(t) = p(t) +

∫ 1

0
G1(t, s)u(s)ds−

∫ 1

0
G2(t, s)f(s,u(s))ds,

for u ∈ C([0, 1], R) and t ∈ [0, 1]. Then T is well-defined and u ∈ C([0, 1], R) is a solution to the BVP
(1.1)-(1.2), if and only if u is a fixed point of T . We prove that T has a unique fixed point by Banach
contraction principle. In fact, take u, v ∈ C([0, 1], R) arbitrary. Then due to (H2), we have

∣∣Tu(t) − Tv(t)∣∣ 6 ∫ 1

0

∣∣G1(t, s)
∣∣|u(s) − v(s)|ds

+

∫ 1

0

∣∣G2(t, s)
∣∣|f(s,u(s)) − f(s, v(s))|ds

6 ‖u− v‖
∫ 1

0

∣∣G1(t, s)
∣∣ds+ k ∫ 1

0

∣∣G2(t, s)
∣∣|u(s) − v(s)|ds

6
(
M1 + kM2

)
‖u− v‖,
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for t ∈ [0, 1], and hence
‖Tu− Tv‖ 6

(
M1 + kM2

)
‖u− v‖.

The assumption (3.1) shows that T is a contraction. By Banach contraction principle, T has a unique fixed
point in C([0, 1], R), which is the unique solution to the BVP (1.1)-(1.2).

Next we consider the case that f is uniformly bounded w.r.t. the second variable and prove an existence
result by employing the Krasnoselskii’s fixed point theorem.

Theorem 3.3. Suppose that (H1) and (H3) are satisfied. If M1 < 1, then the BVP (1.1)-(1.2) has at least one
solution in C([0, 1], R).

Proof. We define operators E and S from C([0, 1], R) into itself by

Eu(t) =

∫ 1

0
G1(t, s)u(s)ds+ p(t),

and

Su(t) = −

∫ 1

0
G2(t, s)f(s,u(s))ds,

for u ∈ C([0, 1], R) and t ∈ [0, 1]. It is easy to verify that E and S are continuous on C([0, 1], R) by
Lebesgue’s dominated convergence theorem.

Let ‖µ‖ = max06t61
∣∣µ(t)∣∣. Since M1 < 1, we can take r > 0 large enough such that

M1 +
M2‖µ‖+M3

r
< 1.

Then we have
rM1 +M2‖µ‖+M3 < r.

Set Br = {u ∈ C([0, 1], R) : ‖u‖ 6 r}. Then Br is a nonempty bounded closed convex subset in C([0, 1], R).
For any u, v ∈ Br and t ∈ [0, 1], we have

∣∣Eu(t)∣∣ 6 ∫ 1

0

∣∣G1(t, s)
∣∣|u(s)|ds+ |p(t)|

6 r
∫ 1

0

∣∣G1(t, s)
∣∣ds+M3 6 rM1 +M3,

∣∣Sv(t)∣∣ 6 ∫ 1

0

∣∣G2(t, s)
∣∣|f(s, v(s))|ds

6
∫ 1

0

∣∣G2(t, s)
∣∣|µ(s)|ds 6M2‖µ‖.

So
∣∣Eu(t) + Sv(t)∣∣ 6 ∣∣Eu(t)∣∣+ ∣∣Su(t)∣∣ 6M1r+M2‖µ‖+M3, and hence∥∥Eu+ Sv

∥∥ 6 rM1 +M2‖µ‖+M3 < r, (3.2)

which implies that Eu+ Sv ∈ Br.
On the other hand,

∣∣Eu(t) − Ev(t)∣∣ 6 ∫ 1

0
G1(t, s)|u(s) − v(s)|ds

6
∫ 1

0
G1(t, s)‖u− v‖ds 6M1‖u− v‖,
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for all u, v ∈ C([0, 1], R) and t ∈ [0, 1]. This shows that∥∥Eu− Ev
∥∥ 6M1‖u− v‖,

for all u, v ∈ C([0, 1], R), i.e., E is a contraction since M1 < 1.
Now we prove that S is a compact operator. Take any bounded subset B ⊂ C([0, 1], R). Then there

is a constant r0 > 0 such that ‖u‖ 6 r0 for all u ∈ B. Similar to the proof of the inequality (3.2) we can
prove that SB is bounded. We now prove that SB is also equicontinuous. In fact, take t1, t2 ∈ [0, 1] with
0 6 t1 < t2 6 1 and u ∈ B arbitrary, we have∣∣Su(t2) − Su(t1)

∣∣ = ∣∣ ∫ 1

0
G2(t2, s)f(s,u(s))ds−

∫ 1

0
G2(t1, s)f(s,u(s))ds

∣∣
6

1
Γ(α)

∣∣ ∫ 1

0

at
α−β+1
2 − Γ(α−β+ 2)t2

Γ(α−β+ 2) − a
(1 − s)α−1f(s,u(s))ds

−

∫ 1

0

at
α−β+1
1 − Γ(α−β+ 2)t1

Γ(α−β+ 2) − a
(1 − s)α−1f(s,u(s))ds

∣∣
+

1
Γ(α)

∣∣ ∫t2

0
(t2 − s)

α−1f(s,u(s))ds

−

∫t1

0
(t1 − s)

α−1f(s,u(s))ds
∣∣

6
Γ(α−β+ 2)|t2 − t1|+ |a||t

α−β+1
2 − tα−β+1

1 |

Γ(α)
∣∣Γ(α−β+ 2) − a

∣∣ ∫ 1

0
(1 − s)α−1∣∣f(s,u(s))∣∣ds

+
1
Γ(α)

∫t1

0

∣∣(t2 − s)
α−1 − (t1 − s)

α−1∣∣∣∣f(s,u(s))∣∣ds
+

1
Γ(α)

∫t2

t1

(t2 − s)
α−1∣∣f(s,u(s))∣∣ds

6
Γ(α−β+ 2)|t2 − t1|+ |a||t

α−β+1
2 − tα−β+1

1 |

Γ(α+ 1)
∣∣Γ(α−β+ 2) − a

∣∣ ‖µ‖

+
1

Γ(α+ 1)
[(
tα2 − tα1

)
+ 2
(
t2 − t1

)α]‖µ‖.
It is easy to see that

∣∣Su(t2) − Su(t1)
∣∣ → 0 as t2 − t1 → 0 and the convergence is independent to u ∈ B.

This means that SB is equicontinuous. So SB is compact in C([0, 1], R), by Ascoli-Arzela theorem, for each
bounded subset B ⊂ C([0, 1], R), i.e., S is compact. Now we apply Krasnoselskii’s fixed point theorem
(Theorem 2.6) to the operators E and S to get that there exists at least a u ∈ Br such that u = Eu+ Su,
which is a solution to the BVP (1.1)-(1.2) and the proof is completed.

Theorem 3.4. Suppose that (H1) and (H4) are satisfied. If

M1 +M2‖φ‖ lim sup
r→∞

ψ(r)

r
< 1, (3.3)

then the BVP (1.1)-(1.2) has at least one solution on [0, 1].

Proof. We first observe that the operator T : C([0, 1], R) → C([0, 1], R) is continuous. We now prove that
T is a compact operator. For any bounded subset W ∈ C([0, 1], R) there is a positive number ρ such that
W ⊂ Bρ = {u ∈ C([0, 1], R) : ‖u‖ 6 ρ}. Then Bρ is a closed convex and bounded subset in C([0, 1], R). For
each u ∈ Bρ, we have∣∣Tu(t)∣∣ 6 ∫ 1

0

∣∣G1(t, s)
∣∣|u(s)|ds+ ∫ 1

0

∣∣G2(t, s)
∣∣|f(s,u(s))|ds+ |p(t)|
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6
∫ 1

0

∣∣G1(t, s)
∣∣‖u‖ds+ ∫ 1

0

∣∣G2(t, s)
∣∣φ(s)ψ(‖u‖)ds+M3

6M1‖u‖+M2‖φ‖ψ(‖u‖) +M3

6M1ρ+M2‖φ‖ψ(ρ) +M3,

and hence ‖Tu‖ 6M1ρ+M2‖φ‖ψ(ρ) +M3. This means that TBρ is uniformly bounded. Now let u ∈ Bρ
arbitrary and t1, t2 ∈ [0, 1] with t1 < t2. Then we have

∣∣Tu(t2) − Tu(t1)
∣∣ 6 ∣∣∣∣ ∫ 1

0
(G1(t2, s) −G1(t1, s))u(s)ds

∣∣∣∣
+

∣∣∣∣ ∫ 1

0
(G2(t2, s) −G2(t1, s))f(s,u(s))ds

∣∣∣∣+ ∣∣∣∣p(t2) − p(t1)

∣∣∣∣
6

|a|
∣∣a(tα−β+1

2 − tα−β+1
1 ) + Γ(α−β+ 2)(t1 − t2)

∣∣
Γ(α−β)|Γ(α−β+ 2) − a|

∫ 1

0
(1 − s)α−β−1|u(s)|ds

+
|a|

Γ(α−β)

∣∣∣∣ ∫t2

0
(t2 − s)

α−β−1u(s)ds−

∫t1

0
(t1 − s)

α−β−1u(s)ds

∣∣∣∣
+

∣∣a(tα−β+1
2 − tα−β+1

1 ) + Γ(α−β+ 2)(t1 − t2)
∣∣

Γ(α)|Γ(α−β+ 2) − a|

∫ 1

0
(1 − s)α−1|f(s,u(s))|ds

+
1
Γ(α)

∣∣∣∣ ∫t2

0
(t2 − s)

α−1f(s,u(s))ds−
∫t1

0
(t1 − s)

α−1f(s,u(s)ds
∣∣∣∣

+
∣∣p(t2) − p(t1)

∣∣
=: I1 + I2 + I3 + I4 + I5.

From the hypotheses (H1) and (H4) we can get that

I1 6
|a|
∣∣a(tα−β+1

2 − tα−β+1
1 ) + Γ(α−β+ 2)(t1 − t2)

∣∣
Γ(α−β)|Γ(α−β+ 2) − a|

∣∣‖u‖ ∫ 1

0
(1 − s)α−β−1ds

6
ρ|a|
∣∣a(tα−β+1

2 − tα−β+1
1 ) + Γ(α−β+ 2)(t1 − t2)

∣∣
Γ(α−β+ 1)|Γ(α−β+ 2) − a|

,

I2 6
|a|

Γ(α−β)

[ ∫t1

0

∣∣(t2 − s)
α−β−1 − (t1 − s)

α−β−1∣∣|u(s)|ds
+

∫t2

t1

∣∣(t2 − s)
α−β−1∣∣|u(s)|ds]

6
|a|‖u‖
Γ(α−β)

[ ∫t1

0

∣∣(t2 − s)
α−β−1 − (t1 − s)

α−β−1∣∣ds
+

∫t2

t1

(t2 − s)
α−β−1ds

]
6

|a|ρ

Γ(α−β+ 1)

[∣∣tα−β2 − tα−β1

∣∣+ 2
(
t2 − t1

)α−β],
I3 6

∣∣a(tα−β+1
2 − tα−β+1

1 ) + Γ(α−β+ 2)(t1 − t2)
∣∣

Γ(α)|Γ(α−β+ 2) − a|

∫ 1

0
(1 − s)α−1ds‖φ‖ψ(‖u‖)

6
‖φ‖ψ(ρ)

∣∣a(tα−β+1
2 − tα−β+1

1 ) + Γ(α−β+ 2)(t1 − t2)
∣∣

Γ(α+ 1)|Γ(α−β+ 2) − a|
.
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Similar to I2, we have

I4 6
1
Γ(α)

[ ∫t1

0

[
(t2 − s)

α−1 − (t1 − s)
α−1ds

]
φ(s)ψ(‖u‖)

+

∫t2

t1

(t2 − s)
α−1φ(s)ψ(‖u‖)ds

]
6

1
Γ(α)

[ ∫t1

0

[
(t2 − s)

α−1 − (t1 − s)
α−1ds

]
‖φ‖ψ(ρ)

+

∫t2

t1

(t2 − s)
α−1ds‖φ‖ψ(ρ)

]
6
‖φ‖ψ(ρ)
Γ(α+ 1)

[∣∣tα2 − tα1
∣∣+ 2

(
t2 − t1

)α].

Obviously the right sides of the above inequality tends to zero as t2 − t1 → 0, and

lim
t2−t1→0

I5 = lim
t2−t1→0

∣∣p(t2) − p(t1)
∣∣ = 0,

since p is a polynomial like function. It follows that

lim
t2−t1→0

∣∣Tu(t2) − Tu(t1)
∣∣ = 0,

and the convergence is independent on u ∈ Bρ, i.e., TBρ is equicontinuous. By the Arzela-Ascoli the-
orem we know that TBρ is compact. Therefore, the operator T : C([0, 1], R) → C([0, 1], R) is completely
continuous.

Now, from the condition (3.3), there is a positive number N such that

M1N+M2‖φ‖φ(N) +M3 < N.

Let U = {u ∈ C([0, 1], R) : ‖u‖ < N}. Then T : U → C([0, 1], R) is completely continuous. Suppose that
there exist λ ∈ (0, 1) and u ∈ U such that u = λTu, then for any t ∈ [0, 1],∣∣u(t)∣∣ = ∣∣λTu(t)∣∣ 6 ∣∣Tu(t)∣∣

6
∣∣p(t)∣∣+ ∣∣ ∫ 1

0
G1(t, s)u(s)ds

∣∣+ ∣∣ ∫ 1

0
G2(t, s)f(s,u(s)ds

∣∣
6M1‖u‖+M2‖φ‖ψ(‖u‖) +M3,

and hence
N = ‖u‖ 6M1‖u‖+M2‖φ‖ψ(‖u‖) +M3 < N,

a contradiction. Therefore, for any u ∈ U and λ ∈ (0, 1), u 6= λTu. By the Leray Schauder alternative, we
deduce that T has at least a fixed point u ∈ U, which is a solution to the BVP (1.1)-(1.2), and the proof is
completed.
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