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Abstract
In this paper, we prove the Hyers-Ulam-Rassias stability and Hyers-Ulam stability of delay differential equation of the form

y(n) = F(t, {y(i)(t)}n−1
i=0 , {y(i)(t− λ)}n−1

i=0 ),

with Lipschitz condition by using fixed point approach. The results of the paper generalize most of the results concerning the
stability of delay differential equations in the existing literature. c©2017 All rights reserved.
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1. Introduction

The issue of stability of functional equations has appeared in connection with a question that Ulam
asked in 1940: “when an approximate solution of a functional equation can be approximated by one of
exact solutions of the given equation?”(for more details see [23]). Hyers [8], by using direct method,
brilliantly gave a partial answer for the case of the additive Cauchy functional equation for mappings
between Banach spaces. This result was then improved by Aoki [1] and Rassias [21], who weakened the
condition for the bound of the norm of Cauchy difference.

The stability phenomenons proved in [8] and [21] were named Hyers-Ulam and Hyers-Ulam-Rassias
stability due to the high influence of Hyers and Rassias on this area of research. For discussion on
terminology concerning that type of stability we recommend [17].

As far as we know, works by Obloza [18, 19] were among the first contributions dealing with the
Hyers-Ulam stability of differential equations. Since then, Hyers-Ulam stability and Hyers-Ulam-Rassias
stability of various classes of differential equations and differential operators were explored by using a
wide spectrum of approaches; see [2, 4, 5, 9, 10, 12, 14, 16, 24–27] and the references cited there.

Obloza in [19] established the connections between Hyers-Ulam and Lyapunov stability of ordinary
differential equations. Recently, Li and Zada in [15] studied the connections between Hyers-Ulam and uni-
form exponential stability of discrete evolution families of bounded linear operators over Banach spaces.
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Among the differential equations, a delay differential equation (DDE) is a differential equation where
the time derivatives at the current time depend on the solution and possibly its derivatives at previous
times. Delay differential equations differ from ordinary differential equations in that the derivative at any
time depends on the solution (and in the case of neutral equations on the derivative) at prior times.

In recent years, Hyers-Ulam stability and Hyers-Ulam-Rassias stability of delay differential equations
have attracted interest of researchers; see, for instance, [6, 7, 11, 20, 22]. One of the main reasons for this
lies in the fact that, as pointed out by Kuang [13], delay differential equations arise in a number of applied
problems in natural sciences and engineering. For details on applications we recommend the monograph
by Kuang [13]. Note that the results reported in [6, 7, 11, 20, 22] are concerned with stability of several
classes of first-order non-linear and linear delay differential equations. Thereinto, Huang et al. [7] recently
proved the Hyers-Ulam stability for first non-linear delay differential equations on a compact interval. So
far, to the best of our knowledge, Ulam’s type stability results of higher-order non–linear delay ordinary
differential equations have not been studied.

In this paper we propose study of both Hyers-Ulam and Hyers-Ulam-Rassias stability for the higher
order non-linear delay differential equations of the form{

y(n)(t) = F(t, {y(i)(t)}n−1
i=0 , {y(i)(t− λ)}n−1

i=0 ), t ∈ [t0, T ],

y(i)(t) = Υ(i)(t), i = 0, 1, · · · ,n− 1, t ∈ [t0 − λ, t0],
(1.1)

where t0 < T , 0 < λ and Υ : [t0 − λ, t0]→ R is n− 1 times continuously differentiable function.

2. Notations and preliminaries

In this section we introduce notations, definitions, and preliminary facts which are used throughout
this paper.

Throughout the paper Dn[t0 − λ, T ] represents the class of all real-valued functions which are n times
continuously differentiable on [t0 − λ, T ]. The Hyers-Ulam and Hyers-Ulam-Rassias stability for the case
of problem (1.1) can be defined as follows.

Definition 2.1. The initial value problem (1.1) is said to have the Hyers-Ulam stability on [t0 − λ, T ], if and
only if for every function y ∈ Dn[t0 − λ, T ] and ε > 0 such that{ ∣∣y(n)(t) − F(t, {y(i)(t)}n−1

i=0 , {y(i)(t− λ)}n−1
i=0 )

∣∣ 6 ε, t ∈ [t0, T ],∣∣y(i)(t) −Υ(i)(t)
∣∣ 6 ε, i = 0, 1, · · · ,n− 1, t ∈ [t0 − λ, t0],

there is a function y0 ∈ Dn[t0 − λ, T ] with{
y
(n)
0 (t) = F(t, {y(i)0 (t)}n−1

i=0 , {y(i)0 (t− λ)}n−1
i=0 ), t ∈ [t0, T ],

y
(i)
0 (t) = Υ(i)(t), i = 0, 1, · · · ,n− 1, t ∈ [t0 − λ, t0],

and
|y0(t) − y(t)| < K(ε), ∀ t ∈ [t0 − λ, T ],

where K(ε)→ 0 as ε→ 0.

If the above statement is also true when we replace K(ε) and ε by Φ(t) and `(t), in turn, where
`, Φ : [t0 − λ, T ] → (0,∞) are functions not depending on y and y0 explicitly, then we say that the
corresponding differential equation has the generalized Hyers-Ulam stability (or the Hyers-Ulam-Rassias
stability).

Definition 2.2. A function d : X×X→ [0,∞], where X is any non-empty set, is called generalized metric
on X, if and only if for all x, y, z ∈ X the following hold:
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(p1) d(x,y) = d(y, x);
(p2) d(x,y) = 0, if and only if x = y;
(p3) d(x,y) 6 d(x, z) + d(z,y).

It is noteworthy that the only difference between the ordinary metric and the generalized metric is
that the latter one can attain∞ in its range.

We will use the following theorem in deriving our main results. For proof see [3].

Theorem 2.3. Let (X,d) be a generalized complete metric space and < : X → X be a strictly contractive operator
with the Lipschitz constant M < 1. If there is a nonnegative integer m such that d(<m+1x,<mx) < ∞ for some
x ∈ X, then the following are true:

(a) The sequence {<nx} converges to a fixed point x0 of < in X;
(b) x0 is the unique fixed point of < in

X∗ = {y ∈ X : d(y,<mx) <∞};

(c) if y ∈ X∗, then

d(y, x0) 6
1

1 −M
d(<y,y).

Remark 2.4. The conclusion of this theorem, speaking in general terms, asserts that either all consecutive
pairs of the sequence of successive approximations are infinitely far apart, or the sequence of successive
approximations, with initial element converges to a fixed point of <.

3. Hyers-Ulam-Rassias stability

In this section we investigate the generalized Hyers-Ulam stability of equation (1.1).

Theorem 3.1. Let K,L1,L2,L3, · · · ,L2n are positive constants such that 0 < K
∑2n
i=1 Li < 1. Assume that:

(a) F : [t0, T ]× R2n → R is a continuous bounded function satisfying the Lipschitz condition

∣∣F(t, x1, x3, · · · , x2n) − F(t,y1,y2, · · · ,y2n)
∣∣ < 2n∑

i=1

Li|xi − yi|,

for all t ∈ [t0, T ] and xi, yi ∈ R, where i = 1, 2, 3, · · · , 2n;
(b) there is a continuous function ` : [t0 − λ, T ]→ (0,∞) with∣∣ ∫t

t0

· · ·
∫v3

t0

∫v2

t0

∫v1

t0

`(v)dvdv1dv2dv3 · · ·dvn−1−i
∣∣ < K`(t),

for all t ∈ [t0, T ] and i = 1, 2, · · · ,n.

Then for every function y ∈ Dn[t0 − λ, T ] satisfying{
|y(n)(t) − F(t, {y(i)(t)}n−1

i=0 , {y(i)(t− λ)}n−1
i=0 )| 6 `(t), t ∈ [t0, T ],

|y(i)(t) −Υ(i)(t)| 6 `(t), i = 0, 1, · · · ,n− 1, t ∈ [t0 − λ, t0],

there is a unique function u ∈ Dn[t0 − λ, T ] with{
u(n)(t) = F(t, {u(i)(t)}n−1

i=0 , {u(i)(t− λ)}n−1
i=0 ), t ∈ [t0, T ],

u(i)(t) = Υ(i)(t), i = 0, 1, · · · ,n− 1, t ∈ [t0 − λ, t0],

and
|y(t) − u(t)| 6

K

1 −K
∑2n
i=1 Li

`(t), ∀ t ∈ [t0 − λ, T ].
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Proof. Define a metric on Dn[t0 − λ, T ] by

d(y1,y2) = inf{C ∈ [0,∞] : max
06i6n

|y
(i)
1 (t) − y

(i)
2 (t)| 6 C`(t), ∀ t ∈ [t0 − λ, T ]}.

It is very easy to show (Dn[t0 − λ, T ],d) is metric space. We here only prove that the space is a complete
metric space. For this, let {gk(t)} be a Cauchy sequence in Dn[t0 − λ, T ]. Then for every ε > 0, there can
be found a natural number Nε such that

∀ t ∈ [t0 − λ, T ] and n, m > Nε ⇒ d(gn(t),gm(t)) < ε.

From the definition of the metric we can write

∀ t ∈ [t0 − λ, T ] and n, m > Nε ⇒ max
06i6n

|g
(i)
n (t) − g

(i)
m (t)| < ε`(t).

For every fixe value of t the sequence {g
(i)
k (t)}, for each i = 0, 1, 2, · · · ,n, is a Cauchy sequence in R, but

since R is complete so for each i = 0, 1, 2, · · · ,n, the sequence {g
(i)
k (t)} converges in R. Therefore, for each

i = 0, 1, 2, · · · ,n, there exists Gi(t) ∈ Dn[t0 − λ, T ] such that

lim
k→∞g(i)k (t) = Gi(t).

Since `(t) is bounded on [t0 − λ, T ] and {g
(i)
k (t)} converges uniformly to Gi(t) for each i = 0, 1, 2, · · · ,n, so

Gi(t), i = 0, 1, 2, · · · ,n, is continuous and

G ′i(t) = Gi+1(t),

which shows that Gi(t) is n times continuously differential and hence (Dn[t0 − λ, T ],d) is complete.
Next, define an operator < : Dn[t0 − λ, T ]→ Dn[t0 − λ, T ] by

(<f)(t) =



∫t
t0

· · ·
[ ∫v3

t0

[ ∫v2

t0

[ ∫v1

t0

F(t, {y(i)0 (v)}n−1
i=0 , {y(i)0 (v− λ)}n−1

i=0 )dv

+Υ(n−1)(t0)
]
dv1 +Υ

(n−2)(t0)
]
dv2

+Υ(n−3)(t0)
]
dv3 +Υ

(n−4)(t0) · · · ,dvn−1 +Υ(t0), t ∈ [t0, T ],

Υ(t), t ∈ [t0 − λ, t0].

Since F(t, {y(i)0 (v)}n−1
i=0 , {y(i)0 (v − λ)}n−1

i=0 ) and Υ(t) are continuous on [t0, T ] and [t0 − λ, t0] respectively,
therefore, < is well-defined.

Next we show that the operator is strictly contractive. For this, for any y1, y2 ∈ X let d(y1,y2) = Cy1y2 ,
i.e.,

|y
(i)
1 (t) − y

(i)
2 (t)| 6 Cy1y2`(t),

for all t ∈ [t0 − λ, T ] and i = 0, 1, 2, · · · ,n. Now

|(<y1)
(j)(t) − (<y2)

(j)(t)| =

∣∣∣∣ ∫t
t0

· · ·
∫v3

t0

∫v2

t0

∫v1

t0

[
F(t, {y(i)1 (v)}n−1

i=0 , {y(i)1 (v− λ)}n−1
i=0 )

− F(t, {y(i)2 (v)}n−1
i=0 , {y(i)2 (v− λ)}n−1

i=0 )
]
dvdv1dv2dv3 · · ·dvn−1−j

∣∣∣∣
6

∣∣∣∣ ∫t
t0

· · ·
∫v3

t0

∫v2

t0

∫v1

t0

[n−1∑
i=0

Li+1|y
(i)
1 (t) − y

(i)
2 (t)|
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+

n−1∑
i=0

Ln+i+1|y
(i)
1 (t− λ) − y

(i)
2 (t− λ)|

]
dvdv1dv2dv3 · · ·dvn−1−j

∣∣∣∣
6 Cy1y2

∣∣∣∣ 2n∑
i=1

Li

∫t
t0

· · ·
∫v3

t0

∫v2

t0

∫v1

t0

`(t)dvdv1dv2dv3 · · ·dvn−1−j

∣∣∣∣
6 K

2n∑
i=1

LiCy1y2`(t)

6 K
2n∑
i=1

Lid(y1,y2),

for all t ∈ [t0, T ] and j = 0, 1, 2, · · · ,n. Also |(<y1)
(j)(t) − (<y2)

(j)(t)| = 0 for all t ∈ [t0 − λ, t0].
Since we have assumed that 0 < K

∑2n
i=1 Li < 1, therefore the operator is strictly contractive. Moreover,

it follows that for any y0 ∈ X there exists C, 0 6 C <∞, such that

max
06i6n

|(<y0)
(i)(t) − y

(i)
0 (t)| 6 C`(t), t ∈ [t0 − λ, T ].

Since F(t, {y(i)(t)}n−1
i=0 , {y(i)(t− λ)}n−1

i=1 ) and y(j)0 (t), j = 0, 1, 2, · · · ,n, are bounded on [t0 − λ, T ] and also
mint∈[t0−λ,T ] `(t) > 0, so we have

d((<y0)(t),y0(t)) <∞.

From Theorem 2.3, we deduce that the sequence {<nx} converges to a fixed point u in X. Thus,

(<u)(t) = u(t),

for all t ∈ [t0 − λ, T ]. Consequently u(t) is the solution to (1.1).
Next we show that u(t) is the unique such element in X. For this we will show that

{y ∈ X : d(u,y) <∞} = X.

Since for every y ∈ X, y(i)(t) is bounded on [t0 − λ, T ] and mint∈[t0−λ,T ] `(t) > 0, so there can be found a
constant C such that 0 < C <∞ and

|y(i)(t) − u(i)(t)| 6 C`(t),

for all t ∈ [t0 − λ, T ] and i = 0, 1, 2, · · · ,n, which implies d(y,u) < ∞, for all y ∈ X. Hence, {y ∈ X :
d(y,u) <∞} = X and therefore u is unique in X. Now we derive from the assumptions that

−`(t) 6 y(n)(t) − F(t, {y(i)(t)}n−1
i=0 , {y(i)(t− λ)}n−1

i=0 ) 6 `(t), t ∈ [t0, T ],

and
|y(i)(t) −Υ(i)(t)| 6 `(t), i = 0, 1, · · · ,n− 1, t ∈ [t0 − λ, t0].

Integrating n times each term in the first inequality from t0 to t, with adding and subtracting Υ(n−i)(t)
with each i-th time integration we get the following

|y(t) − (<y)(t)| 6 K`(t) +
n−1∑
i=1

∫t
t0

· · ·
∫v3

t0

∫v2

t0

∫v1

t0

|Υ(n−i)(t0) − y
(n−i)(t0)|dv0dv1dv2dv3 · · ·dvn−1−i

+ |Υ(t0) − y(t0)|,

for all t ∈ [t0 − λ, T ]. Using the second inequality above we have

|y(t) − (<y)(t)| 6 (nK+ 1)`(t), t ∈ [t0 − λ, T ].
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Therefore,
d(y(t), (<y)(t)) 6 (nK+ 1).

From Theorem 2.3 it follows that

d(y,u) 6
1

1 −K
∑2n
i=1 Li

d((<y)(t),y(t)) 6
nK+ 1

1 −K
∑2n
i=1 Li

.

This completes the proof.

4. Hyers-Ulam stability

In the following theorem, we state without a proof the Hyers-Ulam stability of (1.1) on [t0 − λ, T ]. The
proof can be done with the same steps as that of the theorem above, but with a slight change in the metric,
i.e., the proof needs the metric defined below

d(y1,y2) = inf{C ∈ [0,∞] : max
06i6n

|y
(i)
1 (t) − y

(i)
2 (t)| 6 C, ∀ t ∈ [t0 − λ, T ]}.

Theorem 4.1. Let L be the length of the interval [t0, T ] and L1,L2,L3, · · · ,L2n be positive constants such that
0 < Lm

∑2n
i=1 Li < 1, for all m = 0, 1, 2, · · · ,n. Let F : [t0, T ]× R2n → R be a continuous bounded function with

the Lipschitz condition:

|F(t, x1, x3, · · · , x2n) − F(t,y1,y2, · · · ,y2n)| <

2n∑
i=1

Li|xi − yi|,

for all t ∈ [t0, T ] and xi, yi ∈ R, where i = 1, 2, 3, · · · , 2n. Then equation (1.1) has Hyers-Ulam stability on
[t0 − λ, T ].
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