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Abstract

In this work, we introduce the notion of Menger probabilistic metric type space, on the other hand, we introduce a more
general class of auxiliary functions in contractivity condition, following that, we obtain some multipled common fixed point
theorems for a pair of mappings T: X x X--- x X — Xand A : X — X. As an application, we give out an example to demonstrate

\ﬂ_/

m-times

the validity of the obtained results. (©)2017 all rights reserved.
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1. Introduction

In 1942, Menger [12] initiated the study of PM-spaces and then Sehgal and Bharucha-Reid [16] fol-
lowed Menger’s line of research by using the notion of probabilistic q-contraction. They proved a unique
fixed point result, which is an extension of the celebrated Banach’s contraction principles [2]. Since then,
many scholars have studied the existence of coupled fixed points in Menger spaces [3, 4, 8, 11, 15, 17, 18].
Recently, Choudhury and Das [5] gave a generalized unique fixed point theorem by using an altering
distance function which was originally introduced by Khan et al. [9]. This extension of altering distance
function is called ¢-function, and has been further used in many related literatures [6, 13, 19]. Dutta et al.
[7] defined nonlinear generalized contractive type mapping involving 1-contractive mapping and proved
their theorems for such kind of mapping in the setting of G-complete Menger PM-spaces. Then Kutbi et
al. [10] weakened the notion of {-contractive mapping and established some fixed point theorems in G-
complete Menger PM-spaces. After then, many fixed point results have been obtained by many authors.
In 2015, Abdou et al. [1] introduced Menger PMT-spaces and established corresponding fixed point theo-
rems. Moreover, Hierro and Sen [14] introduced a new auxiliary function and established corresponding
fixed point theorems.

In this paper, motivated by the idea of Menger PMT-spaces and 1-contractive mapping, we establish
some multipled common fixed point theorems for a pair of mappings T: X x X--- x X — Xand A : X = X

m-times
in complete PMT-spaces. Finally, an example is given to support our main results.
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2. Preliminaries

Let R denote the set of reals, R* the nonnegative reals and Z* be the set of all positive integers. A
mapping F : R — R™ is called a distribution function if it is nondecreasing and left continuous with

supF(t) = 1 and tin]{{ F(t) = 0. We will denote by Z the set of all distribution functions, while H will
teR €
always denote the special distribution function defined by

0, t<0,
H(t):{ 1, t>0.

Definition 2.1 ([15]). A binary operation T : [0,1] x [0,1] — [0,1] is called a t-norm if the following
conditions are satisfied:

(1) T(a,b) =T(b,a) and T(a, T(b,c)) =T(T(a,b),c), forall a,b,c € [0,1];
(2) T is continuous;

(B) T(a,1) =aforall a € [0,1];

(4) T(a,b) > T(c,d), whenever a > cand b > d, for a,b,c,d € [0,1].

Form the definition of T, it follows that T(a,b) = min{a, b} for all a,b € [0,1]. The following are three
basic continuous t-norms:

(1) the minimum t-norm, defined by Tap(a, b) = min{a, b};
(2) the product t-norm, defined by Tp(a,b) = ab;
(3) the Lukasiewicz t-norm, defined by Ty (a,b) = max{a+b—1,0}.

These t-norms are related in that way: T < Tp < Tm.

Definition 2.2 ([15]). A Menger probabilistic metric space (briefly, Menger PM-space) is a triplet (X, F, A)
where X is a nonempty set, A is a continuous t-norm and F is a mapping from X x X into 2% such that,
if .y denotes the value of F at the pair (x,y), the following conditions hold:

(PM-1) Fyy(t) = H(t) ifand only if x =y, t > 0;
(PM-2) Fyy(t) = Fyx(t) forallx,y € Xand t > 0;
(PM-3) Fyy(t+s) > A(Fy2(t),F.y(s)) forall x,y,z € Xand t,s > 0.

Definition 2.3 ([1]). A Menger probabilistic metric type space (briefly, Menger PMT-space) is a triplet
(X, F,A) where X is a nonempty set, A is a continuous t-norm and F is a mapping from X x X into 2+
such that, if F, , denotes the value of F at the pair (x,y), the following conditions hold:

(PM-1) Fyqy(t) = H(t) if and only if x =y, t > 0;
(PM-2) Fyy(t) = Fyx(t) forallx,y € Xand t > 0;
(PM-3) Fyy(K(t+s)) > A(Fx2(t),F2y(s)) forall x,y,z € X and t, s > 0 for some constant K > 1.

Clearly, every Menger PM-space is a Menger PMT-space, but the converse is false, as we can see in the
following example.

Definition 2.4 ([1]). Let (X, F, A) be a PMT-space. For each x € X and A > 0, the strong A-neighborhood of
X is the set
Nyx(A) ={y € X:Fxy(A) >1—=A}

and strong neighborhood system for X is the union J, .\, Nx, where
Ny ={Nx(A) : A > 0}.

The strong neighborhood system for X determines a Hausdorff topology for X.
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Definition 2.5 ([1]). Let (X, F, A) be a PMT-space. Then,

(1) a sequence {xn} in X is said to be convergent to x € X if for every ¢ > 0 and A > 0, there exists a
positive integer Z* such that Fy, x(¢) > 1—A whenevern > Z7;
(2) a sequence {x} in X is called a Cauchy sequence if for every ¢ > 0 and A > 0 there exists a positive
integer Z* such that F, «, (¢) >1—A whenever m,n > Z7;
(3) a Menger PMT-space is said to be complete, if every Cauchy sequence in X is convergent to a point
in X.
Definition 2.6 ([5]). A function ® : R — RT is said to be a ¢-function if it satisfies the following
conditions:
(1) ¢(t)=0if and only if t =0;
(2) ¢(t) is strictly increasing and ¢(t) — oo as t — oo;
(3) o is left continuous in (0,00);
(4) ¢ is continuous at 0.

Definition 2.7 ([5]). Let ¥, be the class of all non-decreasing functions 1} : R™ — R" satisfying:

(1) 1 is nondecreasing;

(2) pis contmuous att=0;

(3) »(0) =

4) if {an} C [ +o00) is a sequence such that {an,} — 0, then Y™ (a,) — 0 (where Pp™ denotes the
nth-iterate of ).

First of all, we show that we do not need to assume that 1\ is continuous at t = 0 for function in ¥y under
the rest of the assumption.

Proposition 2.8 ([14]). Let V : [0, +00) — [0, +00) be a nondecreasing function such that {(0) = 0.
(1) If W is not continuous at t = 0, then there exists eg > 0 for all t > 0.
(2) If U satisfies P™(an) — 0 whenever {an} — 0 as n — oo, then \ is continuous at t = 0.

Definition 2.9 ([19]). Let X be a non-empty set. Let T: X x X--- x X — X and A : X — X be two mappings.
—_——

m-times
A is said to be commutative with T if AT(x,y,---,z) = T(Ax,Ay,--- ,Az) for all x,y,--- ,z € X. A point
u € Xis called a multipled common fixed point of T and A if u = Au=T(u,u,--- ,u).

Definition 2.10 ([14]). We shall denote by ¢ the family of function h : (0, 1] — [0, +o0) satisfying:
(#4) if {an} C (0,1], the an, — 1if and only if, h(an) — 1;

(%) if {an} C (0,1], the a, — 0 if and only if, h(a,) — oo.

Proposition 2.11 ([14]). If f € JZ, then h(1) = 0. Furthermore, h(t) = 0 if and only if, t = 1.

3. Main results

Theorem 3.1 ([19]). Let (X,F,A) be a Menger PMT-space and A be a continuous t-norm. Then the following
statements are equivalent:

(1) the sequence {xn} is a Cauchy sequence;
(2) forall € > 0, there exists M € N such than limn_,o Fx, x,,, (¢) = 1 for all n, m > M.

Proof. (1)=(2). This can be easily seen from Definition 2.5.

(2)=(1). Since A be a continuous t-norm, for every ¢ > 0 and 0 < A < 1, there exists A9 € (0,A], such
that A(1—2Ag,1—2) > 1—A. Let Ay = min{)g, 3}. Then A(1—2A;,1—2;) > 1—A. Hence, from (2), there
exists M € N* and K > 1, such that Fy, . (5%) > 1—2A; and Fy x,.(5%) > 1 —A; for all n,m,1 > M.
Then we have Fy, x, (&) = A(Fx,xm (5 ) Fxixm (5%)) = A(1—=2A;,1—=21) > 1 —A. Thus, {x,} is a Cauchy
sequence. O
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Theorem 3.2. Let (X, F, A) be a complete Menger PMT-space with A as a continuous t-norm. Let

T:XxX--+xX—=X
| —

m-times
and A : X — X be two mappings satisfying the following inequality:

h(Fax,ap(@(t)) +h(Fayaq(@(t))) +-- -+ h(Fazar((1)))
m

foral x,y,---,z € X, p,q---,7r€ X, ce (0,1), ¢ € O, € ¥, t >0, such that Faqap(d(t)) >
0,Fay,Aq(d(t)) >0,--- ,Fazar(d(t)) > 0, where T(X x X--- x X) C A(X), and A is continuous and commu-
tative with T. Then there exists a unique multipled common fixed point of A and T, i.e., there exists uw € X such
thatu=Au=T(u,u, --,u).

h(Frixy,,2),T(p,q, ) (Plct))) < W] 3, (3.1

Proof. Let {xn % 1, {Unt¥_ 1, {znJx_; be m-times sequences in X such that Axn 1 = T(Xn, Yn, - ,2n)
and Ayni1 = T(Yn, -, Zn,Xn), AZns1 = T(zn, Xn, Yn, -+ ). From sup Fay, ax, (t) =1, supFay,ay, (t) =
teR teR

1,--- ,supFaz,az(t) = 1 and the definition of ¢, one can find t > 0 such that FAXO,AXl(d)(%)) >
teR

0, Fay,, Ay1(¢( ))>0,- FAzo,Azl(d)(%)) > (0. From (3.1), we have
t

h(FAxl,AXQ((b(t))) = h(FT (x0,Y0,+,20), T(x1,Yy1,+~ 1)(¢(E)))
3.2
A ) g, (P2 WA e (B2, 2

Similarly, we have
h(F L h(Fazy,Az, : ~+hFax,ax c
(P (b)) (22 (P M pcone (P 4 Wason O g
t t t

e 0(01)) < FAZAS PN Mo (D) M Fagu g, (B £y o

m

Suppose that Po(t) — h(FAXO,Axl(¢(t)))+h(FAy0,Agl(¢(t)))++h(FAzO,A21(¢(t)))/ fI'OIn (32)/ (33)/ and (34) we

m
deduce that FAxl,sz(d)(t)) > 0/ FAyl,Ayz(d)(t)) > O/‘ o /FAzl,Azz(d)(t)) > 0/ and so FAX1,AX2(¢(%)) >
0, Fay Ay (@(2)) >0,- -, Faz Az (0(L)) > 0, then we have

h(Fsz,Ax_o, (d)(‘t))) = h(FT(xl,yl,m ,21), T(x2,4Y2,+,22) (d)(t)))
M(Faxy, Ax, (0())) +M(Fay, Ay, (9(E)) + - +h(Faz, Az ($(¢)))

< = }
< o PPl B(P(E)) o+ b(PolS),
m
= $3{Po( )
Similarly, we have
h{F Ay s (B(1))) < W3{Po( ),

N(FAzy Az (D(t))) < ¢2{P0(
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Reaping the above procedure, we get

R{F Ay A (D(6))) < 0" (Po( 1)) 5

If we change Axg with Ax; in (3.5), then for all n > r we get

c't

Cﬂ]’

N(Fax,, Axp ((e71)) <™ {Pof )}-

Since P™(an) — 0 whenever a, — 0 as n — oo, therefore the above inequality implies that

lim h(Fax, Ax, . (¢(c"t))) =0.

n—oo

In particular, as h € J#, condition (74) implies that

nhngo FAxn AXnt1 (q)(crt)) =1
Now, let ¢ > 0 be given, using the properties of function ¢ we can find r € Z* such that ¢(c"t) < . Then
we have

Hm Fax,Axn, (&) = 1im Fay ax,, (d(c"t)) =1. (3.6)

n—oo n—oo

By using a triangle inequality, we obtain

£ £ £

FAxn Axnip(€) 2 A FAxn,Aan(Kfp),A(FAan,Aan(E)I e ,FApr,l,Axnﬂ,(@))

p-times
Letting n — oo and making use of (3.6), for any integer p, we get

T}gn FAxn,Axnyp(€) =1 for every &> 0.
Hence {Axy} is a Cauchy sequence, similarly, we can obtain {Ayn},---,{Azn} are Cauchy sequences.
Since (X, F, A) is complete, therefore lim,_, o Axn = w, limp 06 AYyn =V, -+, limp 00 Azn = w for some
wv, - ,we X

Now we show that Au=T(u,v,--- ,w).

Since A is continuous, we have limy_, o AAX, = Au, limp o AAYy, = Av, - im0 AAZ, =
Aw. Then the commutative of A with T implies that AAx, 11 = T(Axn,AYn, -+ ,Azn). From (3.1) we
obtain

hFAAx 1, T, w) (@) = h(Fraxn, Ayn, - Aza), T(wv,-w) (@)
<1b{h(FAAxn,Au(cp(zm+h(FAAynAv(¢(;)))+~-~+h(FAAZn,AW(¢($)))}
~X m .

Letting n — oo, since P (0) = 0, we have limp oo AAXy = T(w,v,---,w), from the above inequality, we
get Au=T(u,v,---,w). Similarly, we have Av =T(u,v,--- ,w),--- ,Aw=T(w,v,--- ,w).
Next we show Au = u. From (3.1), we have

))
cb(:;m+-~+h(FAZO,Aw(¢(;)))} (3.7)

h(FAxl,Au(d)(t))) = h(FT(AXO,AyO,-~~,AZO) T(w,v,- ( (t

)
{h(FAXO,Auw( )))+h(FAyo A

<

m
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h(Fag an(6(1))) < 0 {h(FAyO,AVw(zm+--.+h(FAzo,AW(¢(;)))+h(FAxU,Au(¢(;)))}, .8

m

h(FAzl,Aw(d)(t))) <V {h(FAzo,Aw(d)(z))) + h(FAxo,Au(d)(%))) + h(FAyo,Av(d)(%))) + } . (3'9)

m

R(Faxgau($(£))+h(Faggav (d(£))+-+h(Fazan(d(t)
m

Suppose that Qo(t) = ). Combining (3.7), (3.8), and (3.9)

we obtain

t t .. t
h(Famn(6())) < {h(FAxl,Au(cb(cm+h(FAy1,AV(¢(C)))+ +h(FAzl,Aw(¢(c)))}

CR

@{ Y(Qo(5)) +W(Qo(H)) + - +¥(Qo( L)) }

—$(Qo( )}

Similarly, we have

B(Fay,av (1) < Qo 5],

)

h(FAzyaw($(t))) < Qo

Repeating the above procedure, we obtain

R(FAv, A (6(1)) < 9P Qo(- )

Since P™(an) — 0 whenever a,, — 0 as n — oo, we have limn_,o, Axn = Au, which implies that
Au=u=T(uv, - ,w), similarly, we have Av=v=T(w,v,--- ,w),--- , Aw=w=T(u,v,--- ,w).
Finally, we show u =v = --- = w. Without loss of generality, we denote u =e;,v =1ep,--- , W = ey,
then Ae; = e; = T(ej,er,e3,- - ,em—1,em),Aes = e; = T(ep, €3, -, em_1,€m,€1), "+, Aem = ém =
T(em,e1, €2 €3,- ,em_1).
First, we prove that Fe, ¢, (¢(s)) > 0 for all s > 0. By the definition of ¢, we have ¢(x) — 0asn — co.
Since sup Fe,e,(dP(5)) =1, sup Fe,es(d(R)) =1,--+, sup Fe, e, (P(F)) =1, we deduce that there

nez+ nez+ nez+
exists n € Z* such that Fe, ¢, (d(5t)) > 0,Feyes(P(F)) >0, Fe, e, (0(5r)) > 0. Using (3.1), we obtain
s
h(Feper (b))

S
= Fr(ereremrem) Tler em s emen (Pl 77)))

N(Fepe, (P(55))) +h(Fepes (P(F))) + -+ hlFe, 1 en(P(TF))) +(Fep e (P(ZF)))

<Y 2
m
which implies that Fe, e, (¢(==7)) > 0, similarly, we have Fe, e, (¢( 7)) >0, Fe,, el(d)( 1)) > 0. By
reaping a similar reasoning n times we deduce that Fe, ¢, (P (s)) > 0, Fe, e, (P (s )) >0,---,Fe, e (d(s)) >0
for all s > 0.

Second, we show that Fe, e, (¢(s)) = 1. In fact, for every s > 0, we have Fe, ¢, ($p(Z5)) > 0 for all
1<i<nandforalln € Z*. Then by using (3.1), we get

h(Fe1,€2 ((I)(S))) = h(FT(€1,€2,~“ ,em_l,em),T(€2,~-~ ,em_l,em,el) (d)(s))
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(Feer (9(2))) +h(Feyes(P(2))) +--- +h(Fe, en(P(2))) +h(Fe, e ($(2)))

h
<Y
m
h(Fez,e3(¢(5))) = h(FT(ez,e3,-~~,em,el),T(eg,e4,-v-,el,ez) (d)(s))
<¢{h(Fe2,e3(¢(§)))+h(Fe3,e4(¢(§)))+~~+h(Fem,e1(d>(§)))+h(Fe1,e2(¢(§)))

m

h(Fen,el(d)(s))) = h(FT(em,el,m,em,2,em,1),T(el,e2,m,em,l,em) (‘b(s))
<¢{h(Fem,e1(¢(§)))+h(Fe1,e2(¢(§)))+'-'+h(Fem_2,em,1(¢(§)))+h(Fem,1,em(<|>(§)))
h m

R (Fep ey ((5))) 4R (Feyeq (d(8)))++h(Fe, jem ((8)))+R(Fepe, (b (s
m

Suppose that E(s) = m,then E(s) < W{E(2)}

By n-iterations we get

R(Feyex (6(8)) S WEC) SWHE(S)) < o SYME():

Thus, since P™(an) — 0 whenever a,, = 0 as n — oo, we get Fe, ¢, ($(s)) = 1. It follows that Fe, e, (t) =
H(t) for all t > 0. In fact, if t is not in range of ¢, since ¢ is continuous at 0, there exists s > 0
such that ¢(s) < t. This implies that Fe,e,(t) > Fe,e,(d(s)) = 1, then e; = ep. Similarly, we have
ey =e€3,--,em =ep,ie,u=v=---=w. Thus, u € X is the unique multipled common fixed point of A
and T.

Taking m = 1 in Theorem 3.2, then T : X — X, A : X — X, Ax = x for all x € X. It is obvious that
T(X) € A(X). A is continuous and commutative with T, which also satisfy the conditions in Theorem 3.1,
then we have the following consequence. O

Corollary 3.3. Let (X, F, A) be a complete Menger space with A as a continuous t-norm. Let T : X — X satisfy the
following inequality:
h(Fry, 1y (d(ct))) < W(h(Fyy (1)),

forallx,y € X,c € (0,1), d € ®, ¢ € ¥y, t >0, such that F (p(t)) > 0. Then T has a unique fixed point such
that u = Au = Tu.

Taking A = I (I is the identity mapping) in Theorem 3.2, we obtain the following corollary.
Corollary 3.4. Let (X, F, A) be a complete Menger PMT-space and A be a continuous t-norm. Let

T: XxX---xX—X
—_—
m-times
and A : X — X be two mappings satisfying the following inequality:

(Fxp ($(t))) + h(Fy,q(dp(t))) +--- + h(F-r ($(t)))
m

h
h(FT(X,y,~~~,z),T(p,q,-~~,r) (d)(Ct))) <Y },

forallx,y,---,z,p,q,---,r€X,ce(0,1), d € O, € ¥y, t > 0. Let T be continuous and commutative. Then
there exists a unique multipled common fixed point of T.

From the proof of Theorem 3.2, we can similarly prove the following result.

Theorem 3.5. Let (X, F, A) be a complete Menger PMT-space with A as a continuous t-norm. Let

T: XxX---xX=X
—_

m-times
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and A : X — X be two mappings satisfying the following inequality:
hFr(xy,2),T(p,q,r) (P(et))) < b{min{h(Fax,ap (G(1))), h(Fayaq(d(t))), - MFaz A (G(E)))]

forallx,y,---,z,p,q,---,7€X,c€(0,1), ¢ € O, P € ¥, t >0, such that Faq ap(P(t)) >0,Fay,aq(d(t)) >

0,Fazar(d(t)) > 0, where T(X x X--- x X) C A(X), and A is continuous and commutative with T. Then
there exists a unique multipled common fixed point of A and T, i.e., there exists w € X such that u = Au =

T('LL,'LL, T /u)-
Taking A = I (I is the identity mapping) in Theorem 3.5, we obtain the following corollary.

Corollary 3.6. Let (X, F, A) be a complete PMT-space with A as a continuous t-norm. Let

T: XxX---x X=X
H—/
m-times
and A : X — X be two mappings satisfying the following inequality:
hFrixy,2),Tp,qq ) (@lct)) < blmin{h(Fyp (d(1)), h(Fy,q(d(1))), - -+ h(Fz(d(1))},
forallx,y,---,z,p,q,---,r€X,ce€(0,1), p € D, e V¥, t>0 and T is continuous and commutative. Then
there exists a unique multipled common fixed point of T.

Theorem 3.7. Let (X,F,A) be a complete Menger PMT-space with A as a continuous t-norm and A < Ap. Let
T: XxX---xX — Xand A : X — X be two mappings satisfying the following inequality:
—_——

m-times

hFr (20, T(p,q, ) (Plet))) < b { “{/A(h(FAx,Ap(d)(t))),A(h(FAy,Aq(d>(t))), e ;h(FAZ,Ar(d)(t)))))}
forallx,y, --,zp,q,---,7r€X cec(0,1), b€ D P ecW¥W,t>0,suchthat Faqap(P(t))>0,Fayaq(d(t))>
0,--- ,Fazar(d(t)) > 0, where T(X x X--- x X) C A(X), and A is continuous and commutative with T. Then
there exists a unique multipled common fixed point of A and T, i.e., w € X such that u = Au=T(u,u,--- ,u)

Proof. Since A < A, we get

NFrixy, - 2),T(p,q, ) (Plct))) { VA(h(FAX,Ap(d)(t)))rA(h(FAy,Aq(d)(t)))/‘ - ,h(FAz,Ar(dD(t)))))}

<P
< Ib{ VM (Faxap(@(t))h(Fayaq(d(t))), - rh(FAz,Ar(d)(t)))}
<1I){h(FAX,Ap(d)(t)))+h(FAy,Aq(¢(t)))+"'+h(FAz,Ar(d)(t)))}.

m
Then we can complete the proof by Theorem 3.2.

4. An application

Example 4.1. Let X = [0,1], h(x) = % —1, and d be the usual metric on X. Define T: X x X--- x X — X as

m-times
T(x1,%2,++ ,Xm) = XXt Xm A L X 3 X as Ax =

X
e 5 and

F t) = t+d(x,y)’ ¢
) {O/ o
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for all x1,x2, -+ ,xm, %,y € X where T(X x X--- x X) C A(X). Then (X,F,A) is a complete Menger PMT-
space with A is a continuous t-norm. Define d) €D, eV¥by d(t) = % nd P(t) = % forallt > 0. And
c= 2. We obtain

1
N(Fr(xy ... 1)) = -
(Fricy - 27 a0 n(0let) FT (x1x2,0+ 6 ), T (g1, ym) (P (C1))

_ |T(X11X2/ Tt /Xm) _T(y‘l/yZ/ T /Um)|

P(ct)
6l(x1+x2+ - +xm)— (Y1 +y2+---+ym)l
- 5mt

and

" { h(Fax,ap(@(t)) +h(Fayaq(@(t))) +-- -+ h(Fazar((1))) }

m

1 1 1
(o ey V(e UVt + (anemy — U

=1
m
_ {|AX1_Ayl|+|AX2_AUZ|+'"+|Axm_Aym|}
=1
mao(t)
9x1 —y1l +Ix2 —ya| + -+ + [xm — ym\)

4mt

It is obvious that

h(Fax,ap(@(t))) + h(Fayaq($(t))) +- -+ h(Fazar($(t))) } _
m

h(FT(X,y,~~,z),T(p,q,-~~,r) (d)(Ct))) <y {

Thus all the conditions of Theorem 3.5 are satisfied. Therefore, 0 is the unique multipled common fixed
point of A and T.
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