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Abstract
By applying critical point theory, the multiplicity of periodic solutions to second-order discrete Hamiltonian systems with
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1. Introduction

Consider the following systems

∆2x(t− 1) +∇G(t, x(t)) = 0, t ∈ Z, (1.1)

where ∆x(t) = x(t + 1) − x(t), ∆2x(t) = ∆(∆x(t)). For any t ∈ Z, G : Z×RN → R is C1 in x, and
G(t+ T , x) = G(t, x) for any x ∈ RN, where T ∈ Z and T > 0.

As far as we known, Guo and Yu [6] obtained the first variational result about T -periodic solutions
for system (1.1). Soon afterwards, applying variational methods, there have been many studies in the
literature consider about periodic solutions to discrete systems [2–6, 9, 11, 14–18].

It is noticed that the existence of one periodic solution to system (1.1) were obtained in [6] in case
∇G(t, x) is bounded. Afterward, in [14, 15], Xue and Tang studied the system (1.1), in which ∇G is
growing sublinearly: there exist δ > 0,η > 0 satisfying

|∇G(t,u)| 6 δ|u|α + η, ∀(t,u) ∈ [1, T ]∩Z×RN, (1.2)

where α ∈ [0, 1). Furthermore, G satisfies:

lim
|u|→∞ |u|−2α

T∑
t=1

G(t,u) = +∞,
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or

lim
|u|→∞ |u|−2α

T∑
t=1

G(t,u) = −∞.

In case ∇G is growing sublinearly or linearly (that is ∇G satisfies (1.2) with α = 1), Tang and Zhang
[11] extended the main results obtained in [6, 14, 15] under more weakened conditions on G:

lim
|u|→∞ |u|−2α

T∑
t=1

G(t,u) < +∞,

or

lim
|u|→∞ |u|−2α

T∑
t=1

G(t,u) > −∞.

Recently, in [16], under ∇G(t,u) satisfies (1.2), G is coercive or resonant and periodic only in a part of
the variables, that is, there exists an integer k ∈ [0,N] such that:

(i) G(t,u) is Tj-periodic in uj, 1 6 j 6 k.
(ii)

|u|−2α
T∑
t=1

G(t,u)→ ±∞ as |u|→∞,u ∈ {0}×RN−k,

by using generalized saddle point theorem [8], Yan et al. considered the multiple periodic solutions for
system (1.1) and got some interesting results.

Motivated by [6, 11, 14–16], especially by [11, 16], one natural question is: What will happen when
∇G is growing linearly and G is coercive or resonant and periodic only in a part of the variables? More
concretely, can we obtain some results similar to that of in [16] with ∇G is growing linearly? It seems one
interesting question. In this paper, we will state them.

Theorem 1.1. Suppose that there exists an integer k ∈ [0,N] such that

(H1) G(t,u) is Tj-periodic in uj, 1 6 j 6 k.
(H2) There exist constants 0 < δ < λ1

4 , η > 0 satisfying

|∇G(t,u)| 6 δ|u|+ η, ∀(t,u) ∈ [1, T ]∩Z×RN,

here λl = 2 − 2 cos lω, ω = 2
T , l ∈ [0, [T/2]]∩Z, [·] is the integral function.

(H3)

lim inf
|u|→∞ |u|−2

T∑
t=1

G(t,u) >
λ[T/2]T

4
+

δ2T

λ[T/2]
+ δT , u ∈ {0}×RN−k.

Then the Hamiltonian system (1.1) possesses k+ 1 periodic solutions.

Theorem 1.2. Suppose that G satisfies (H1), (H2), and

(H4)

lim sup
|u|→∞ |u|−2

T∑
t=1

G(t,u) < −
δT

2
, u ∈ {0}×RN−k.

Then the Hamiltonian system (1.1) possesses k+ 1 periodic solutions.

2. Definitions and lemmas

Let
HT = {x : Z→ RN|x(t+ T) = x(t), ∀t ∈ Z},
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and

〈x,y〉 =
T∑
t=1

(x(t),y(t)), ‖x‖ =

(
T∑
t=1

|x(t)|2

)1/2

, ∀x,y ∈ HT .

Obviously, (HT , 〈·, ·〉) is a Hilbert space (in fact, is finite-dimensional space).
For x ∈ HT , denote

x1 =
1
T

T∑
t=1

|x(t)|, x2(t) = x(t) − x1.

Let {ej|1 6 j 6 N} be the canonical basis of RN, and kj be the unique integer such that

0 6 (x1, ej) − kjTj < Tj for 1 6 j 6 k.

Set
x̃(t) = Px1 +Qx1 + x2(t),

for all x ∈ HT , where

Px1 =

N∑
j=k+1

(x1, ej)ej, Qx1 =

k∑
j=1

((x1, ej) − kjTj)ej.

It is easy to see that there exists µ > 0 such that

|Qx1| < µ. (2.1)

Let I be defined on HT by

I(x) = −
1
2

T∑
t=1

|∆x(t)|2 +

T∑
t=1

G(t, x(t)).

Then

〈I ′(x),y〉 = −

T∑
t=1

(∆x(t),∆y(t)) +
T∑
t=1

(∇G(t, x(t)),y(t)),

for any x,y ∈ HT . According to fact that of in [15], the periodic solutions for system (1.1) are critical
points for the functional I.

Denote

F =


k∑
j=1

ljTjej|lj ∈ Z, 1 6 j 6 k

 .

Let π : HT → HT/F be the canonical surjection (in fact, F is a discrete subgroup of HT ).
In fact, HT/F = U× V , here

U = E+W,

W = H1
T = {x ∈ HT | x1 = 0} ,

E = span{ek+1, . . . , eN},

and
V = span{e1, . . . , ek}/F.

It is easy to see that V and the torus Tk are isomorphic. Let f(π(x)) = I(x), in fact f : U× V → R.

Lemma 2.1 (The generalized saddle point theorem [8]). Let U be a Banach space with a decomposition U =
E+W, where E and W are two subspaces of U with dimW < +∞. Let V be a finite-dimensional, and compact
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C2-manifold without boundary. Let f : U× V → R be a C1-function and satisfy the (P.S.) condition. If there exist
ρ > 0, γ < β satisfy

(a) infx∈E×V f(x) > β;

(b) supx∈S×V f(x) 6 γ,

where S = ∂D, D = {z ∈W| |z| 6 ρ}. Then the functional ϕ has at least cuplength(V) + 1 critical points.

Lemma 2.2 (Theorem 4.12 in [10]). Let ϕ ∈ C1(HT , R) be a G-invariant functional (ϕ(u+ g) = ϕ(u) for every
u ∈ HT and g ∈ F) satisfying the (P.S.)G condition (that is every sequence {xn} of HT such that ϕ(xn) is bounded,
ϕ ′(xn)→ 0 as n→∞, π(xn) has a convergent subsequence). If ϕ is bounded from below and if the dimension k
of the space generated by F is finite, then ϕ has at least k+ 1 critical orbits.

Lemma 2.3. Let
Mr := {x ∈ HT : −∆2x(t− 1) = λrx(t)},

here λr are defined as in condition (H2). Then Mr is a subspace of HT and

(i) Mr ⊥Mi, r 6= i, r, i ∈ [0, [T/2]]∩Z;

(ii) HT = ⊕[T/2]
r=0 Mr.

Lemma 2.4 ([15]). Let
Hr = ⊕ri=0Mi, H⊥r = ⊕[T/2]

i=r+1Mi,

where r ∈ [0, [T/2]]∩Z. Then
T∑
t=1

|∆x(t)|2 6 λr‖x‖2, ∀x ∈ Hr, (2.2)

and
T∑
t=1

|∆x(t)|2 > λr+1‖x‖2, ∀x ∈ H⊥r . (2.3)

3. Proof of theorems

Proof of Theorem 1.1.

Step 1. We will assert the (P.S.) condition holds.
Assume that {π(xn)} is a (P.S.) sequence of f, i.e., I(xn) is bounded, I ′(xn) → 0. Combing (H3) with

λ1 > 4δ, we have that

lim inf
|u|→∞ |u|−2

T∑
t=1

G(t,u) >
4δ2Tλ[T/2]

λ2
1

+
δ2T

λ[T/2]
+

16δ3T

λ2
1

. (3.1)

By (H2) and (3.1), one has that∣∣∣∣∣
T∑
t=1

(G(t, x̃(t)) −G(t,Px1))

∣∣∣∣∣ 6
T∑
t=1

|G(t, x̃(t)) −G(t,Px1)|

6
T∑
t=1

∣∣∣∣∣
∫1

0
(∇G(t,Px1 + s(Qx1 + x2(t))),Qx1 + x2(t))ds

∣∣∣∣∣
6

T∑
t=1

∫1

0
|(∇G(t,Px1 + s(Qx1 + x2(t))),Qx1 + x2(t))|ds
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6
T∑
t=1

∫1

0
|∇G(t,Px1 + s(Qx1 + x2(t)))||Qx1 + x2(t)|ds

6
T∑
t=1

∫1

0
(δ|Px1 + s(Qx1 + x2(t))|+ η)|Qx1 + x2(t)|ds

6
T∑
t=1

δ(|Px1|+ |Qx1 + x2(t)|)|Qx1 + x2(t)|+

T∑
t=1

η|Qx1 + x2(t)|

6 δµT |Px1|+

T∑
t=1

δ|Px1||x2(t)|+

T∑
t=1

4δ(|Qx1|
2 + |x2(t)|

2)

+

T∑
t=1

η(|Qx1|+ |x2(t)|) (3.2)

6 δµT |Px1|+

T∑
t=1

δ|Px1||x2(t)|+ 4δµ2T + 4δ
T∑
t=1

|x2(t)|
2

+ ηµT +

T∑
t=1

η|x2(t)|

6 δµT |Px1|+
δ2T

λ[T/2]
|Px1|

2 +
λ[T/2]

2
‖x2‖2 + 4δµ2T + 4δ‖x2‖2

+ ηµT + η
√
T‖x2‖.

In the same way, we get∣∣∣∣∣
T∑
t=1

(∇G(t, x̃(t)), x2(t))

∣∣∣∣∣ =
∣∣∣∣∣
T∑
t=1

(∇G(t,Px1 +Qx1 + x2(t)), x2(t))

∣∣∣∣∣
6

T∑
t=1

|∇G(t,Px1 +Qx1 + x2(t))||x2(t)|

6
T∑
t=1

(δ|Px1 +Qx1 + x2(t)|+ η)|x2(t)|

6
T∑
t=1

δ|Px1||x2(t)|+ δµ
√
T‖x2‖+ δ

T∑
t=1

|x2(t)|
2 + η

√
T‖x2‖

6
λ1

2
‖x2‖2 +

δ2T

λ1
|Px1|

2 + δ‖x2‖2 + (δµ+ η)
√
T‖x2‖.

(3.3)

Since the fact x1n ∈ H0 and x2n ∈ H⊥0 , by (2.3), one has that
T∑
t=1

(∆xn(t),∆x2n(t)) =

T∑
t=1

(∆x2n(t),∆x2n(t)) =

T∑
t=1

|∆x2n(t)|
2 > λ1‖x2n‖2. (3.4)

By I(xn) is bounded, I ′(xn)→ 0 and (3.3), for n large enough, one gets
T∑
t=1

(∆xn(t),∆x2n(t)) = −〈I ′(xn), x2n〉+
T∑
t=1

(∇G(t, xn(t)), x2n(t))

= −〈I ′(xn), x2n〉+
T∑
t=1

(∇G(t, x̃n(t)), x2n(t))

6 ‖x2n‖+
λ1

2
‖x2n‖2 +

δ2T

λ1
|Px1n|

2 + δ‖x2n‖2 + (δµ+ η)
√
T‖x2n‖.

(3.5)
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Combing (3.4) with (3.5), one has that

(
λ1

2
− δ)‖x2n‖2 − ((δµ+ η)

√
T + 1)‖x2n‖ 6

δ2T

λ1
|Px1n|

2.

Therefore, there exists C1 such that

δ2T

λ1
|Px1n|

2 >
λ1

4
‖x2n‖2 +C1, (3.6)

for all large n, where

C1 = min
s∈[0,+∞)

{
(
λ1

4
− δ)s2 − ((δµ+ η)

√
T + 1)s

}
.

Since λ1 > 4δ, −∞ < C1 < 0, it follows from (3.6) that

‖x2n‖2 6
4δ2T

λ2
1

|Px1n|
2 −

4C1

λ1
. (3.7)

Then

‖x2n‖ 6
2δ
√
T

λ1
|Px1n|+C2, (3.8)

where 0 < C2 < +∞.
So by the boundedness of I(xn), (2.2), (3.2), (3.7), and (3.8), we have that

C3 > I(xn) = I(x̃n) = −
1
2

T∑
t=1

|∆x̃n(t)|
2 +

T∑
t=1

G(t, x̃n(t))

= −
1
2

T∑
t=1

|∆x̃n(t)|
2 +

T∑
t=1

[G(t, x̃n(t)) −G(t,Px1n)] +

T∑
t=1

G(t,Px1n)

> −
1
2
λ[T/2]‖x2n‖2 − δµT |Px1n|−

δ2T

λ[T/2]
|Px1n|

2 −
λ[T/2]

2
‖x2n‖2

− 4δµ2T − 4δ‖x2n‖2 − ηµT − η
√
T‖x2n‖+

T∑
t=1

F(t,Px1n)

> −λ[T/2]

(
4δ2T

λ2
1

|Px1n|
2 −

4C1

λ1

)
−

δ2T

λ[T/2]
|Px1n|

2 − δµT |Px1n|− 4δµ2T − ηµT

− 4δ
(

4δ2T

λ2
1

|Px1n|
2 −

4C1

λ1

)
− η
√
T

(
2δ
√
T

λ1
|Px1n|+C2

)
+

T∑
t=1

F(t,Px1n)

> |Px1n|
2

(
|Px1n|

−2
T∑
t=1

F(t,Px1n) −
4δ2Tλ[T/2]

λ2
1

−
δ2T

λ[T/2]
−

16δ3T

λ2
1

)
−C4|Px1n|−C5,

(3.9)

for n sufficient large, where C4 > 0,C5 > 0 are constants.
It follows from (3.9) and (3.1) that |Px1n| is bounded. Then by (3.8), we obtain ‖x2n‖ is bounded, so

{x̃n} is also bounded. Observe that π(xn) = π(x̃n) and HT is a finite-dimensional space, then we obtain
the result that f satisfies the (P.S.) condition.

Step 2. To prove that (a) and (b) of Lemma 2.1 are satisfied.



D.-B. Wang, M. Guo, J. Nonlinear Sci. Appl., 10 (2017), 410–418 416

Since π(x) ∈ E× V , x = Px1 +Qx1, from (H3), we get

f(π(x)) =

T∑
t=1

G(t,Px1 +Qx1)→∞
uniformly for π(Qx1) ∈ V as |Px1|→∞. So, there exists a constant β satisfying infπ(x)∈E×V f(π(x)) > β.

By (H2), ∃ C6 > 0 satisfying

|G(t,u)| 6 |

∫ 1

0
(∇G(t, su),u)ds|+G(t, 0) 6

∫ 1

0
|∇G(t, su)||u|ds+G(t, 0) 6

δ

2
|u|2 + η|u|+C6, (3.10)

for all t ∈ [1, T ]∩Z,u ∈ RN.
Since π(x) ∈W × V , x = Qx1 + x2. Hence, by (2.3), (2.1), and (3.10), one has that

f(π(x)) = I(x) = I(Qx1 + x2) = −
1
2

T∑
t=1

|∆x2(t)|
2 +

T∑
t=1

G(t,Qx1 + x2(t))

6 −
1
2
λ1‖x2‖2 +

T∑
t=1

δ

2
|Qx1 + x2(t)|

2 +

T∑
t=1

η|Qx1 + x2(t)|+C6T

6 −
1
2
λ1‖x2‖2 + 2δ

T∑
t=1

(|Qx1|
2 + |x2(t)|

2) +

T∑
t=1

η|Qx1|+

T∑
t=1

η|x2(t)|+C6T

6 −
1
2
λ1‖x2‖2 + 2δµ2T + 2δ‖x2‖2 + ηµT + η

√
T‖x2‖+C6T

6 (−
1
2
λ1 + 2δ)‖x2‖2 +C7‖x2‖+C8,

where C7 > 0,C8 > 0 are constants. Note that λ1 > 4δ, take ‖x2‖ sufficient large such that

sup
π(x)∈S×V

f(π(x)) 6 γ < β.

By all above, the linking conditions (a) and (b) are satisfied. By Lemma 2.1, the system (1.1) possesses
k+ 1 periodic solutions.

Proof of Theorem 1.2. Assume that {π(xn)} is a (P.S.) sequence of f, i.e., I(xn) is bounded, I ′(xn)→ 0.
For λ1 > 4δ, we have that

lim sup
|u|→∞ |u|−2

T∑
t=1

G(t,u) < −
2δ2T

λ1
.

Same as (3.2), we get∣∣∣∣∣
T∑
t=1

(G(t, x̃(t)) −G(t,Px1))

∣∣∣∣∣ 6 δµT |Px1|+
2δ2T

λ1
|Px1|

2 +
λ1

4
‖x2‖2 + 4δµ2T

+ 4δ‖x2‖2 + ηµT + η
√
T‖x2‖.

(3.11)

For x ∈ HT , we setψ(x) = −I(x). It is clear thatψ(x) is aG-invariant functional, that isψ(x+g) = ψ(x),
for all g ∈ F, x ∈ HT . For all x ∈ HT , by (3.11), one has that

ψ(x) = ψ(x̃) =
1
2

T∑
t=1

|∆x2(t)|
2 −

T∑
t=1

G(t, x̃(t))
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=
1
2

T∑
t=1

|∆x2(t)|
2 −

T∑
t=1

[G(t, x̃(t)) −G(t,Px1)] −

T∑
t=1

G(t,Px1)

>
1
2
λ1‖x2‖2 − δµT |Px1|−

2δ2T

λ1
|Px1|

2 −
λ1

4
‖x2‖2

− 4δµ2T − 4δ‖x2‖2 − ηµT − η
√
T‖x2‖−

T∑
t=1

G(t,Px1) (3.12)

= (
1
4
λ1 − 4δ)‖x2‖2 − η

√
T‖x2‖− δµT |Px1|

− 4δµ2T − ηµT − |Px1|
2

(
|Px1|

−2
T∑
t=1

G(t,Px1) +
2δ2T

λ1

)
.

So, ψ is bounded from below.
For I(xn) is bounded, I ′(xn)→ 0, there exists C9 satisfies ψ(xn) 6 C9. By (3.12), we have that

C9 > ψ(xn) = ψ(x̃n) > (
1
4
λ1 − 4δ)‖x2n‖2 − η

√
T‖x2n‖

− |Px1n|
2

(
|Px1n|

−2
T∑
t=1

G(t,Px1n) +
2δ2T

λ1

)
−C10|Px1n|−C11,

(3.13)

where C10, C11 are some positive constants.
Combing (H4) with (3.13), we conclude that |Px1n| and ‖x2n‖ are bounded, so {x̃n} is also bounded.

Since HT is finite-dimensional and {x̃n} ∈ HT , so {x̃n} contains a convergent subsequence. By π(xn) =
π(x̃n), then π(xn) has a convergent subsequence, that is the functional ψ satisfies the (P.S.) condition.

Hence, all assumptions of Lemma 2.2 are held. Then, by Lemma 2.2 we have that the system (1.1)
possesses k+ 1 geometrically distinct periodic solutions in HT .

4. Conclusion

From the main conclusion, that is, Theorem 1.1 and Theorem 1.2, our results complete and extend
some results that of in [11, 16]. In the last, we would like to point out that based on the results reported in
[1, 7, 12, 13] on fractional calculus and time scales we will study some interesting problems, for example,
the fractional Hamiltonian system on time scales.
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