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Abstract

In this paper, we combine the subgradient extragradient method with the Halpern method for finding a solution of a
variational inequality involving a monotone Lipschitz mapping in Banach spaces. By using the generalized projection operator
and the Lyapunov functional introduced by Alber, we prove a strong convergence theorem. We also consider the problem of
finding a common element of the set of solutions of a variational inequality problem and the set of fixed points of a relatively
nonexpansive mapping. Our results improve some well-known results in Banach spaces or Hilbert spaces. c©2017 all rights
reserved.
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1. Introduction and preliminaries

Let E be a real Banach space with norm ‖ · ‖, and E∗ be the dual of E. 〈x, f〉 denotes the duality pairing
of E and E∗. Suppose that C is a nonempty, closed and convex subset of E. In this paper, we study the
problem of finding a point u ∈ C such that

〈v− u,Au〉 > 0, ∀v ∈ C, (1.1)

where A : E → E∗ is a single-valued mapping. This problem is called the variational inequality problem.
The set of solutions of the variational inequality problem is denoted by VI(C,A). Variational inequal-
ity was firstly introduced by Lions and Stampacchia [15] in 1967. This problem has been intensively
considered due to its various applications in operations research, economic equilibrium and engineering
design. Various iterative method for solving variational inequality (1.1) have been proposed and analyzed
by many authors in Hilbert spaces or Banach spaces when A has monotonicity and Lipschitz continuity
or inverse-strong-monotonicity, (see, for example, [4–8, 10–14, 16, 19–21] and the reference therein). An
operator A of C into E∗ is said to be
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(i) monotone if 〈x− y,Ax−Ay〉 > 0 for all x,y ∈ C;
(ii) α-inverse-strongly-monotone if there exists a positive real number α such that

〈x− y,Ax−Ay〉 > α‖Ax−Ay‖2, ∀x,y ∈ C;

(iii) L-Lipschitz continuous if there exists a constant L > 0 such that

‖Ax−Ay‖ 6 L‖x− y‖, ∀x,y ∈ C.

It is obvious that an α-inverse-strongly-monotone mapping is monotone and 1
α -Lipschitz continuous.

But, the converse is not true.
In order to approximate a solution of the variational inequality (1.1), the inverse-strong-monotonicity

of A was often assumed (see, for example, [8, 10–12, 16, 21]).
In the next, we always let H be a Hilbert space and N be the set of all positive integers.
In order to relax the inverse-strong-monotonicity of A, in a finite dimensional Euclidean space Rn,

Korpelevič [13] introduced the following extragradient method:

x1 = x ∈ C, xn+1 = PC(xn − λA(PC(xn − λAxn))), ∀n ∈N, (1.2)

where A was only supposed to be monotone and Lipschitz continuous. The extragradient method has
received great attention by many authors who developed and improved it in various ways, (see, for
example, [4–7, 14, 19]).

In the extragradient method, two projections onto a closed and convex subset C of H need to be
calculated in each iterate. As mentioned in [7], this may affect the efficiency of the method. Therefore,
Censor et al. in [7] modified the the extragradient method and proposed the following iterative algorithm:

x0 ∈H,
yn = PC(xn − τA(xn)),
Tn = {w ∈H : 〈xn − τA(xn) − yn,w− yn〉 6 0},

xn+1 = PTn(xn − τA(yn)).

(1.3)

Method (1.3) replaces the second projection onto the closed and convex subset C in (1.2) with the one
onto the subgradient half-space Tn. So the method (1.3) is called the subgradient extragradient method.
We note that, the set Tn is a half-space, and hence Algorithm (1.3) is easier to execute than Algorithm
(1.2). Under some mild assumptions, Censor et al. in [7] proved the method (1.3) converges weakly to a
solution of variational inequality (1.1) in a Hilbert space.

In order to obtain the strong convergence, Kraikaew and Saejung in [14] combined the subgradient ex-
tragradient method (1.3) with the Halpern method introduced in [9] and proposed the following iterative
algorithm: 

x0 ∈H,
yn = PC(xn − τA(xn)),
Tn = {w ∈H : 〈xn − τA(xn) − yn,w− yn〉 6 0},

xn+1 = αnx0 + (1 −αn)PTn(xn − τA(yn)),

(1.4)

where {αn} is a sequence in [0, 1] satisfying limn→∞ αn = 0 and
∑∞
n=1 αn = ∞. They proved the method

(1.4) converges strongly to a solution of variational inequality (1.1) in a Hilbert space.
We note that, these above results about extragradient method or subgradient extragradient method

are all confined in Hilbert spaces. However, many important problems related to practical problems are
generally defined in Banach spaces. Hence, it is interesting to propose an iterative algorithm for finding
a solution of variational inequality (1.1) in Banach spaces. For example, in 2008, Iiduka and Takahashi in
[12] proved the following theorem.
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Theorem 1.1. Let E be a 2-uniformly convex, uniformly smooth Banach space whose duality mapping J is weakly
sequentially continuous, and C be a nonempty, closed and convex subset of E. Assume that A is an operator of C
into E∗ that satisfies:

(A1) A is α-inverse-strongly-monotone;
(A2) VI(C,A) 6= ∅;
(A3) ‖Ay‖ 6 ‖Ay−Au‖ for all y ∈ C and u ∈ VI(C,A).

Suppose that x1 = x ∈ C and {xn} is given by

xn+1 = ΠCJ
−1(Jxn − λnAxn), (1.5)

for every n = 1, 2, ..., where {λn} is a sequence of positive numbers. If {λn} is chosen so that λn ∈ [a,b] for some
a,b with 0 < a < b < c1α, then the sequence {xn} converges weakly to some element z ∈ VI(C,A), where c1 is
the 2-uniformly convexity constant of E. Further z = limn→∞ΠVI(C,A)(xn).

We note the following problems:

(P1) The condition (A3) in Theorem 1.1 is not easy to be satisfied.
(P2) Algorithm (1.5) is only restricted to the class of inverse strongly monotone mappings.
(P3) Algorithm (1.5) requires that the Banach space E has the weakly sequentially continuous duality

mapping, which is a quite strong hypothesis.
(P4) The sequence {xn} generated by (1.5) converges weakly but not strongly.

In order to solve the problems (P1)-(P4), Nakajo in [20] proposed the following CQ method:

x1 = x ∈ E,

yn = ΠCJ
−1(Jxn − λnA(xn)),

zn = Tyn,
Cn = {u ∈ C : φ(u, zn) 6 φ(u, xn) −φ(yn, xn) − 2λn〈yn − u,Axn −Ayn〉},
Qn = {u ∈ C : 〈xn − u, Jx− Jxn〉 > 0},
xn+1 = ΠCn

⋂
Qnx,

(1.6)

where E is a 2-uniformly convex and uniformly smooth Banach space and A is only supposed to be
monotone and Lipschitz continuous. He proved the sequence {xn} generated by (1.6) strongly converges
to ΠDx, where D = VI(C,A)

⋂
F(T) and T is a relatively nonexpansive mapping.

In the Algorithm (1.6), the condition (A3) assumed in Theorem 1.1 is removed and the inverse-strong-
monotonicity of A is successfully weakened to monotonicity and Lipschitz continuity. Furthermore, the
duality mapping J doesn’t need to be weakly sequentially continuous and the sequence {xn} is strong
convergence. Therefore, the work done by Nakajo [20] is very meaningful. However, we should also note
that Algorithm (1.6) seems to be difficult to use in practice because the computation of the next iterate
becomes a subproblem of finding a general minimal distance onto the intersection of two additional
closed and convex subsets of a Banach space E. As mentioned in [7], it is not easy to solve a minimal
distance onto a general closed and convex set even if in a Hilbert space. This might seriously affect the
efficiency of Algorithm (1.6). Therefore, the purpose of this paper is to extend the method (1.4) to Banach
spaces. Consequently, we can solve the problems (P1)-(P4) and do not involve this subproblem produced
in Algorithm (1.6).

2. Preliminaries

Throughout this paper, we always let E be a Banach space, and E∗ be the dual space of E. 〈·, ·〉 denotes
the duality pairing of E and E∗. When {xn} is a sequence in E, we denote the strong convergence of {xn}
to x ∈ E by xn → x and the weak convergence by xn ⇀ x.
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Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to be strictly convex if for any x,y ∈ U and x 6= y
implies ‖x+y2 ‖ < 1. It is also said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such that
for any x,y ∈ U, ‖x− y‖ > ε implies ‖x+y2 ‖ 6 1 − δ. It is known that a uniformly convex Banach space is
reflexive and strictly convex. And we define a function δ : [0, 2] → [0, 1] called the modulus of convexity
of E as follows:

δ(ε) = inf{1 − ‖x+ y
2
‖ : x,y ∈ U, ‖x− y‖ > ε}.

Then E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. Let p be a fixed real number with p > 2.
A Banach space E is said to be p-uniformly convex if there exists a constant c > 0 such that δ(ε) > cεp for
all ε ∈ [0, 2]. It is obvious that a p-uniformly convex Banach space is uniformly convex. For example, see
[3] and [12] for more details. A Banach space E is said to be smooth if the limit limt→0

‖x+ty‖−‖x‖
t exists

for all x,y ∈ U. It is also said to be uniformly smooth if the limit is attained uniformly for x,y ∈ U. It is
well-known that the Hilbert and the Lebesgue Lq (1 < q 6 2) spaces are 2-uniformly convex, uniformly
smooth.

Let J : E→ 2E
∗

be the normalized duality mapping defined by

Jx := {v ∈ E∗ : 〈x, v〉 = ‖v‖2 = ‖x‖2}, ∀x ∈ E.

The following properties of the duality mapping J can be found in [2] :

(i) If E is smooth, then J is single-valued.
(ii) If E is strictly convex, then J is one-to-one and strictly monotone.

(iii) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of
E.

(iv) If E is a smooth, strictly convex, and reflexive Banach space, then J is single-valued, one-to-one, and
onto.

Let E be a smooth Banach space. We know the following Lyapunov functional introduced by Alber
[2]:

φ(x,y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀x,y ∈ E.

Clearly, we have from the definition of φ that

(B1) (‖x‖− ‖y‖)2 6 φ(y, x) 6 (‖x‖+ ‖y‖)2;

(B2) φ(x,y) = φ(x, z) +φ(z,y) + 2〈x− z, Jz− Jy〉;

(B3) φ(x,y) = 〈x, Jx− Jy〉+ 〈y− x, Jy〉 6 ‖x‖‖Jx− Jy‖+ ‖y− x‖‖y‖.

Remark 2.1. We have from Remark 2.1 in [18] that, if E is a strictly convex and smooth Banach space, then
for x,y ∈ E,φ(y, x) = 0 if and only if x = y.

Lemma 2.2 ([18]). Let E be a uniformly convex and smooth Banach space and let {yn}, {zn} be two sequences of E.
If φ(yn, zn)→ 0, and either {yn}, or {zn} is bounded, then yn − zn → 0.

Let E be a reflexive, strictly convex and smooth Banach space. C denotes a nonempty, closed and
convex subset of E. By Alber [2], for each x ∈ E, there exists a unique element x0 ∈ C (denoted by ΠC(x))
such that

φ(x0, x) = min
y∈C

φ(y, x).

The mapping ΠC : E → C, defined by ΠC(x) = x0, is called the generalized projection operator from E

onto C. Moreover, x0 is called the generalized projection of x. See [1] for some properties of ΠC. In a
Hilbert space, ΠC = PC (the metric projection operator).

Lemma 2.3 ([12, 18]). Let C be a nonempty closed and convex subset of a smooth Banach space E and x ∈ E. Then,
x0 = ΠCx if and only if

〈x0 − y, Jx− Jx0〉 > 0, ∀y ∈ C.
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Lemma 2.4 ([12, 18]). Let E be a reflexive, strictly convex, and smooth Banach space, let C be a nonempty closed
and convex subset of E and let x ∈ E. Then

φ(y,ΠCx) +φ(ΠCx, x) 6 φ(y, x), ∀y ∈ C.

Let C be a nonempty closed and convex subset of a smooth, strictly convex and reflexive Banach space
E and T be a mapping from C into itself. A point x ∈ C is said to be a fixed point of T if Tx = x. We
denote the set of fixed points of T by F(T). A point p ∈ C is said to be an asymptotic fixed point of T
if there exists {xn} in C which converges weakly to p and limn→∞ ‖xn − Txn‖ = 0. We denote the set of
all asymptotic fixed points of T by ˆF(T). Following Matsushita and Takahashi [18], a mapping T of C into
itself is said to be relatively nonexpansive (see also [20]) if the following conditions are satisfied:

(i) F(T) is nonempty;
(ii) φ(u, Tx) 6 φ(u, x),∀u ∈ F(T), x ∈ C;

(iii) ˆF(T) = F(T).

Lemma 2.5 ([18]). Let E be a strictly convex and smooth Banach space, let C be a closed convex subset of E, and
let T be a relatively nonexpansive mapping from C into itself. Then F(T) is closed and convex.

Let E be a reflexive, strictly convex, smooth Banach space, and J the duality mapping from E into E∗.
Then J−1 is also single-valued, one-to-one, surjective, and it is the duality mapping from E∗ into E. We
make use of the following mapping V studied in Alber [2]:

V(x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2, (2.1)

for all x ∈ E and x∗ ∈ E∗. In other words, V(x, x∗) = φ(x, J−1(x∗)) for all x ∈ E and x∗ ∈ E∗. For each
x ∈ E, the mapping g defined by g(x∗) = V(x, x∗) for all x∗ ∈ E∗ is a continuous, convex function from E∗

into R.

Lemma 2.6 ([2]). Let E be a reflexive, strictly convex, smooth Banach space and let V be as in (2.1). Then

V(x, x∗) + 2〈J−1(x∗) − x,y∗〉 6 V(x, x∗ + y∗),

for all x ∈ E and x∗,y∗ ∈ E∗.

An operator A of C into E∗ is said to be hemicontinuous if for all x,y ∈ C, the mapping f of [0, 1] into
E∗ defined by f(t) = A(tx+ (1 − t)y) is continuous with respect to the weak∗ topology of E∗.

Lemma 2.7 ([12]). Let C be a nonempty, closed and convex subset of a Banach space E and A a monotone,
hemicontinuous operator of C into E∗. Then

VI(C,A) = {u ∈ C : 〈v− u,Av〉 > 0 for all v ∈ C}.

It is obvious from Lemma 2.7 that the set VI(C,A) is a closed and convex subset of C.

Lemma 2.8 ([20]). Let E be a 2-uniformly convex and smooth Banach space. Then, for every x,y ∈ E, φ(x,y) >
c1‖x− y‖2, where c1 > 0 is the 2-uniformly convexity constant of E.

Lemma 2.9 ([17]). Let {an} be a sequence of real numbers such that there exists a subsequence {ni} of {n} such that
ani < ani+1 for all i ∈ N. Then there exists a nondecreasing sequence {mk} of N such that limk→∞mk = ∞
and the following properties are satisfied by all (sufficiently large) numbers k ∈N:

amk
6 amk+1 and ak 6 ank+1.

In fact, mk = max{j 6 k : aj < aj+1}.
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Lemma 2.10 ([23]). Let {an} be a sequence of nonnegative real numbers satisfying the following relation:

an+1 6 (1 −αn)an +αnδn, n > n0,

where {αn} ⊂ [0, 1] and {γn} is a sequence of real numbers satisfying
∑∞
n=1 αn = ∞, limn→∞ αn = 0, and

lim supn→∞ γn 6 0. Then limn→∞ an = 0.

Lemma 2.11 ([22]). Let E be a uniformly convex Banach space and let r > 0. Then there exists a continuous strictly
increasing convex function g : [0, 2r]→ R such that g(0) = 0 and

‖tx+ (1 − t)y‖2 6 t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)g(‖x− y‖),

for all x,y ∈ Br and t ∈ [0, 1], where Br = {z ∈ B : ‖z‖ 6 r}.

3. The Halpern subgradient extragradient algorithm

Inspired by Kraikaew and Saejung’ results [14], we propose the Algorithm (3.1) to extend the Algo-
rithm (1.4) from Hilbert spaces to Banach spaces and prove a strong convergence theorem (i.e., Theorem
3.5), which is quite different from the scheme proposed by Nakajo [20]. In fact, we do not need to calcu-
late the generalized projections onto the constructible sets Cn and Qn as in [20]. It seems to us that we
simplify his result with the same conclusion.

In this section, we always assume the following conditions.

(C1) E is a 2-uniformly convex and uniformly smooth Banach space with the 2-uniformly convexity
constant c1 and C is a nonempty closed convex subset of E.

(C2) The mapping A : E→ E∗ is monotone and Lipschitz continuous on C with Lipschitz constant L > 0.
(C3) VI(C,A) 6= ∅.

Algorithm 3.1. For any x0 ∈ E, we define a sequence {xn} iteratively by
yn = ΠCJ

−1(Jxn − λnA(xn)),
Tn = {w ∈ E : 〈w− yn, Jxn − λnA(xn) − Jyn, 〉 6 0},

wn = ΠTnJ
−1(Jxn − λnA(yn)),

xn+1 = J−1(αnJx0 + (1 −αn)Jwn),

(3.1)

where {αn} is a sequence in [0, 1] satisfying limn→∞ αn = 0 and
∑∞
n=1 αn = ∞ and {λn} is a sequence in (0,∞).

Remark 3.2. It is obvious that Tn is a half-space and C ⊂ Tn for every n > 1.

Lemma 3.3. Let {xn}, {yn}, and {wn} be the three sequences generated by (3.1). Then, under Conditions (C1)-(C3),
we have

φ(u,wn) 6 φ(u, xn) − (1 −
λnL

c1
)[φ(wn,yn) +φ(yn, xn)], ∀u ∈ VI(C,A). (3.2)

In particular, if {λn} satisfies 0 < infn>1 λn 6 supn>1 λn <
c1
L , then, φ(u,wn) 6 φ(u, xn).

Proof. Since wn = ΠTnJ
−1(Jxn − λnA(yn)), it follows from Lemma 2.4, (B2), and VI(C,A) ⊂ C ⊂ Tn that,

for any u ∈ VI(C,A),

φ(u,wn) 6 φ(u, J−1(Jxn − λnA(yn))) −φ(wn, J−1(Jxn − λnA(yn)))

= φ(u, xn) +φ(xn, J−1(Jxn − λnA(yn))) + 2〈u− xn, λnA(yn)〉
−φ(wn, xn) −φ(xn, J−1(Jxn − λnA(yn))) − 2〈wn − xn, λnA(yn)〉

= φ(u, xn) −φ(wn, xn) + 2λn〈u−wn,A(yn)〉.

(3.3)
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Since u ∈ VI(C,A) and A is monotone on C, we have

〈yn − u,A(yn)〉 > 0,

and hence,
〈wn − u,A(yn)〉 > 〈wn − yn,A(yn)〉. (3.4)

Combining (3.3) with (3.4), we have

φ(u,wn) 6 φ(u, xn) −φ(wn, xn) + 2λn〈yn −wn,A(yn)〉
= φ(u, xn) −φ(wn,yn) −φ(yn, xn) − 2〈wn − yn, Jyn − Jxn〉+ 2λn〈yn −wn,A(yn)〉
= φ(u, xn) −φ(wn,yn) −φ(yn, xn) + 2〈wn − yn, Jxn − Jyn − λnA(yn)〉.

(3.5)

By the definition of Tn, we have

〈wn − yn, Jxn − λnA(xn) − Jyn, 〉 6 0.

Thus, it follows from the Lipschitz continuity of A, Lemma 2.8, and Cauchy-Schwarz inequality that

2〈wn − yn, Jxn − Jyn − λnA(yn)〉 = 2〈wn − yn, Jxn − Jyn − λnA(xn)〉
+ 2λn〈wn − yn,A(xn) −A(yn)〉

6 2λn〈wn − yn,A(xn) −A(yn)〉
6 2λnL‖wn − yn‖‖yn − xn‖

6 2λnL

√
φ(wn,yn)√

c1

√
φ(yn, xn)√

c1

6
λnL

c1
φ(wn,yn) +

λnL

c1
φ(yn, xn).

(3.6)

Combining (3.6) with (3.5), we have

φ(u,wn) 6 φ(u, xn) −φ(wn,yn) −φ(yn, xn) +
λnL

c1
φ(wn,yn) +

λnL

c1
φ(yn, xn)

= φ(u, xn) − (1 −
λnL

c1
)[φ(wn,yn) +φ(yn, xn)],

which implies that (3.2) holds.

Lemma 3.4. Let {xn} be a bounded sequence in E and yn = ΠCJ
−1(Jxn − λnA(xn)). Assume that xn ⇀ x̂ and

limn→∞ ‖xn − yn‖ = 0. If {λn} satisfies 0 < infn>1 λn 6 supn>1 λn <
c1
L , then, under conditions (C1)-(C3),

x̂ ∈ VI(C,A).

Proof. Let x ∈ C. Since yn = ΠCJ
−1(Jxn − λnA(xn)), by Lemma 2.3, we have

〈yn − x, Jxn − λnA(xn) − Jyn〉 > 0, ∀n > 1.

Next, we consider

〈xn − x, λnA(xn)〉 = 〈xn − yn, λnA(xn)〉+ 〈yn − x, λnA(xn)〉
= 〈xn − yn, λnA(xn)〉− 〈yn − x, Jxn − λnA(xn) − Jyn〉+ 〈yn − x, Jxn − Jyn〉
6 〈xn − yn, λnA(xn)〉+ 〈yn − x, Jxn − Jyn〉
6 λn‖Axn‖‖xn − yn‖+ ‖Jxn − Jyn‖‖yn − x‖.

(3.7)
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Since A(xn) is bounded and limn→∞ ‖xn−yn‖ = 0, we have from (3.7) that lim supn→∞〈xn−x,A(xn)〉 6
0. It follows from the monotonicity of A that

〈x̂− x,A(x)〉 = lim sup
n→∞ 〈xn − x,A(x)〉 6 lim sup

n→∞ 〈xn − x,A(xn)〉 6 0, ∀x ∈ C. (3.8)

Since xn ⇀ x̂ and limn→∞ ‖xn − yn‖ = 0, we have yn ⇀ x̂. Since for all n > 0, yn ∈ C and C is closed
and convex, we have x̂ ∈ C. This implies that x̂ ∈ VI(C,A) by (3.8) and Lemma 2.7.

Theorem 3.5. Let {xn} be a sequence generated by Algorithm 3.1. If {λn} satisfies 0 < infn>1 λn 6 supn>1 λn <
c1
L , then, under conditions (C1)-(C3), xn → ΠVI(C,A)x0.

Proof. Put z = ΠVI(C,A)x0. Since 0 < infn>1 λn 6 supn>1 λn <
c1
L , by Lemma 3.3, we have φ(z,wn) 6

φ(z, xn) and hence,

φ(z, xn+1) 6 ‖z‖2 − 2〈z,αnJx0 + (1 −αn)Jwn〉+αn‖x0‖2 + (1 −αn)‖wn‖2

= αnφ(z, x0) + (1 −αn)φ(z,wn)
6 αnφ(z, x0) + (1 −αn)φ(z, xn)
6 max{φ(z, x0),φ(z, xn)}.

By induction, we have
φ(z, xn) 6 φ(z, x0) for all n > 1.

Hence, the sequence {xn} is bounded. It follows from (3.1) and Lemma 2.6 that

φ(z, xn+1) = φ(z, J−1(αnJx0 + (1 −αn)Jwn))

= V(z,αnJx0 + (1 −αn)Jwn)

6 V(z,αnJx0 + (1 −αn)Jwn −αn(Jx0 − Jz)) + 2αn〈xn+1 − z, Jx0 − Jz〉
= V(z,αnJz+ (1 −αn)Jwn) + 2αn〈xn+1 − z, Jx0 − Jz〉
6 αnV(z, Jz) + (1 −αn)V(z, Jwn) + 2αn〈xn+1 − z, Jx0 − Jz〉
= (1 −αn)φ(z,wn) + 2αn〈xn+1 − z, Jx0 − Jz〉
6 (1 −αn)φ(z, xn) + 2αn〈xn+1 − z, Jx0 − Jz〉.

(3.9)

Let us consider the following two cases.

Case 1: There exists an n0 ∈ N such that φ(z, xn+1) 6 φ(z, xn) for all n > n0. Then limn→∞φ(z, xn)
exists. It follows from (3.9) that

lim
n→∞(φ(z,wn) −φ(z, xn)) = 0.

By Lemma 3.3, we conclude that
lim
n→∞φ(yn, xn) = 0.

We have from Lemma 2.2 that
lim
n→∞ ‖yn − xn‖ = 0.

It follows from Lemma 2.3 that ωw{xn} ⊂ VI(C,A), where ωw{xn} denotes the set of all weak cluster
points of the sequence {xn}. Passing to a suitable subsequence {xnk} ⊂ {xn}, we assume that

lim sup
n→∞ 〈xn+1 − z, Jx0 − Jz〉 = lim

k→∞〈xnk − z, Jx0 − Jz〉

and xnk ⇀ x̂ for some x̂ ∈ VI(C,A). Consequently, from Lemma 2.3, we have

lim sup
n→∞ 〈xn+1 − z, Jx0 − Jz〉 = lim

k→∞〈xnk − z, Jx0 − Jz〉 = 〈x̂− z, Jx0 − Jz〉 6 0.

It follows from (3.9) and Lemma 2.10 that limn→∞φ(z, xn) = 0, which implies from Lemma 2.2 that
xn → z = ΠVI(C,A)x0.
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Case 2: There exists a subsequence {xmj
} of {xn} such that

φ(z, xmj+1) > φ(z, xmj
) for all j ∈N.

From Lemma 2.9, there exists a nondecreasing sequence {ni} of N such that limi→∞ ni = ∞ and the
following inequalities hold for all i ∈N:

φ(z, xni) 6 φ(z, xni+1) and φ(z, xi) 6 φ(z, xni+1). (3.10)

Note that

φ(z, xni) 6 φ(z, xni+1) 6 αniφ(z, x0) + (1 −αni)φ(z,wni) 6 αniφ(z, x0) + (1 −αni)φ(z, xni).

It follows from limn→∞ αn = 0 that

lim
i→∞[φ(z,wni) −φ(z, xni)] = 0.

By discarding the repeated terms of {ni}, but still denoted by {ni}, we can view {xni} as a subsequence of
{xn}. Hence, by Lemmas 3.3, 2.2, and 3.4, we have

lim
i→∞ ‖wni − yni‖ = lim

i→∞ ‖yni − xni‖ = 0 and ωw{xni} ⊂ VI(C,A).

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
i→∞ ‖Jwni − Jyni‖ = lim

i→∞ ‖Jyni − Jxni‖ = 0. (3.11)

Note that

‖Jxni+1 − Jxni‖ = ‖αniJx0 + (1 −αni)Jwni − Jxni‖
6 αni‖Jx0 − Jxni‖+ (1 −αni)‖Jwni − Jxni‖
6 αni‖Jx0 − Jxni‖+ (1 −αni)‖Jwni − Jyni‖+ (1 −αni)‖Jyni − Jxni‖.

It follows from limi→∞ αni = 0 and (3.11) that

lim
i→∞ ‖Jxni+1 − Jxni‖ = 0.

As proved in the first case, we can conclude that

lim sup
i→∞ 〈xni+1 − z, Jx0 − Jz〉 = lim sup

i→∞ 〈xni − z, Jx0 − Jz〉 6 0. (3.12)

It follows from (3.9) and (3.10) that

φ(z, xni+1) 6 (1 −αni)φ(z, xni) + 2αni〈xni+1 − z, Jx0 − Jz〉
6 (1 −αni)φ(z, xni+1) + 2αni〈xni+1 − z, Jx0 − Jz〉.

Since αni > 0, we have that

φ(z, xi) 6 φ(z, xni+1) 6 2〈xni+1 − z, Jx0 − Jz〉.

Hence, by (3.12), we have

lim sup
i→∞ φ(z, xi) 6 2 lim sup

i→∞ 〈xni+1 − z, Jx0 − Jz〉 6 0, ∀i ∈N.

This implies that xi → z = ΠVI(C,A)x0, as i→∞, by Lemma 2.2.
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Remark 3.6. Theorem 3.5 improves Theorem 1.1 of this paper (i.e., Theorem 3.1 of [12]) in the following
senses.

(1) The condition (A3) is removed.
(2) The inverse-strong-monotonicity of A is relaxed to monotonicity and Lipschitz continuity.
(3) The condition that the duality mapping J is weakly sequentially continuous is removed.
(4) The strong convergence of {xn} is obtained.

Remark 3.7. Theorem 3.5 is different from Theorem 3.1 of [20] in the following several aspects.

(1) In Theorem 3.5, {λn} satisfies 0 < infn∈N λn 6 supn∈N λn <
c1
L , which is weaker than that {λn}

satisfies 0 < infn∈N λn 6 supn∈N λn <
c1
2L in Theorem 3.1 of [20].

(2) In Theorem 3.5, we do not need to calculate the intersection of Cn and Qn as in Theorem 3.1 of [20].
(3) In Theorem 3.5, we replace the second general projection onto the closed and convex set Cn

⋂
Qn

in Theorem 3.1 of [20] with the one onto the half-space Tn.

Remark 3.8. Remarks 3.6 and 3.7 show that Theorem 3.5 solves the problems (P1)-(P4) mentioned in Section
1 and does not involve a subproblem of finding a point in the intersection of two additional general closed
convex subsets of C as in Theorem 3.1 of [20].

Remark 3.9. If E = H (the Hilbert space), then J = I, c1 = 1, and ΠC = PC. Taking E = H and λn ≡ τ
satisfying τL < 1, then Algorithm (3.1) reduces to Algorithm (1.4) and Theorem 3.5 reduces to Theorem
3.1 of [14]. Therefore, Theorem 3.5 absolutely generalizes Theorem 3.1 of [14] from Hilbert spaces to
Banach spaces. Furthermore, we change the parameter from a fixed constant τ to a changeable sequence
{λn}.

4. The Modified subgradient extragradient algorithm

Inspired by the second main result of Kraikaew et al. [14], we present a modified subgradient extra-
gradient algorithm in Banach spaces for finding a solution of the variational inequality (1.1) which is also
a fixed point of a given relatively nonexpansive mapping. Our algorithm is as follows.

For mappings A,S : E → E and a closed and convex subset C of E, define three iterative sequences
{xn}, {yn}, and {zn} by 

x0 ∈ E,

yn = ΠCJ
−1(Jxn − λnA(xn)),

Tn = {w ∈ E : 〈w− yn, Jxn − λnA(xn) − Jyn, 〉 6 0},

wn = ΠTnJ
−1(Jxn − λnA(yn)),

zn = J−1(αnJx0 + (1 −αn)Jwn),

xn+1 = J−1(βnJxn + (1 −βn)JSzn),

(4.1)

where {βn} ⊂ [a,b] ⊂ [0, 1] for some a,b ∈ (0, 1) and {αn} is a sequence in [0, 1] satisfying limn→∞ αn = 0
and

∑∞
n=1 αn = ∞.

Theorem 4.1. Let E be a 2-uniformly convex and uniformly smooth Banach space with the 2-uniformly convexity
constant c1 and C be a nonempty closed convex subset of E. Let S : E → E be a relatively nonexpansive mapping
and A : E → E a monotone and L-Lipschitz mapping on C. Let {λn} be a real number sequence satisfying
0 < infn>1 λn 6 supn>1 λn <

c1
L . Suppose that VI(C,A)

⋂
F(S) is nonempty. Let {xn} ⊂ E be a sequence

generated by (4.1). Then xn → ΠVI(C,A)
⋂
F(S)x0.

We aligned the proof into several lemmas.

Lemma 4.2. The sequence {xn} is bounded.
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Proof. Let u ∈ VI(C,A)
⋂
F(S). Then we have from Lemma 3.3 that

φ(u, xn+1) 6 ‖u‖2 − 2〈u,βnJ(xn) + (1 −βn)JS(zn)〉+βn‖xn‖2 + (1 −βn)‖Szn‖2

6 βnφ(u, xn) + (1 −βn)φ(u, zn)
6 βnφ(u, xn) + (1 −βn)[αnφ(u, x0) + (1 −αn)φ(u,wn)]
6 βnφ(u, xn) + (1 −βn)αnφ(u, x0) + (1 −βn)(1 −αn)φ(u, xn)
= [1 − (1 −βn)αn]φ(u, xn) + (1 −βn)αnφ(u, x0)

6 max{φ(u, xn),φ(u, x0)}.

By induction, {xn} is bounded.

Lemma 4.3. The following inequality holds for all u ∈ VI(C,A)
⋂
F(S) and n ∈N,

φ(u, xn+1) 6 [1 − (1 −βn)αn]φ(u, xn) + 2(1 −βn)αn〈zn − u, Jx0 − Ju〉−βn(1 −βn)g(‖Jxn − JSzn‖).

Proof. Let u ∈ VI(C,A)
⋂
F(S). It follows from Lemmas 2.6, 2.11, and 3.3 that

φ(u, xn+1) = φ(u, J−1(βnJxn + (1 −βn)JSzn))

6 βnφ(u, xn) + (1 −βn)φ(u,Szn) −βn(1 −βn)g(‖Jxn − JSzn‖)
6 βnφ(u, xn) + (1 −βn)φ(u, zn) −βn(1 −βn)g(‖Jxn − JSzn‖)
= βnφ(u, xn) + (1 −βn)φ(u, J−1(αnJx0 + (1 −αn)Jwn)) −βn(1 −βn)g(‖Jxn − JSzn‖)
= βnφ(u, xn) −βn(1 −βn)g(‖Jxn − JSzn‖) + (1 −βn)V(u,αnJx0 + (1 −αn)Jwn)

6 βnφ(u, xn) −βn(1 −βn)g(‖Jxn − JSzn‖)
+ (1 −βn)[V(u,αnJx0 + (1 −αn)Jwn −αn(Jx0 − Ju)) + 2αn〈zn − u, Jx0 − Ju〉]

= βnφ(u, xn) −βn(1 −βn)g(‖Jxn − JSzn‖)
+ (1 −βn)[V(u,αnJu+ (1 −αn)Jwn) + 2αn〈zn − u, Jx0 − Ju〉]

6 βnφ(u, xn) −βn(1 −βn)g(‖Jxn − JSzn‖)
+ (1 −βn)[αnV(u, Ju) + (1 −αn)V(u, Jwn) + 2αn〈zn − u, Jx0 − Ju〉]

= βnφ(u, xn) −βn(1 −βn)g(‖Jxn − JSzn‖) + (1 −βn)(1 −αn)φ(u,wn)
+ 2(1 −βn)αn〈zn − u, Jx0 − Ju〉

6 βnφ(u, xn) −βn(1 −βn)g(‖Jxn − JSzn‖) + (1 −βn)(1 −αn)φ(u, xn)
+ 2(1 −βn)αn〈zn − u, Jx0 − Ju〉

= [1 − (1 −βn)αn]φ(u, xn) + 2(1 −βn)αn〈zn − u, Jx0 − Ju〉−βn(1 −βn)g(‖Jxn − JSzn‖).

Lemma 4.4. Let u ∈ VI(C,A)
⋂
F(S). If there exists a subsequence {xnk} of {xn} such that

lim inf
k→∞ (φ(u, xnk+1) −φ(u, xnk)) > 0,

then ωw{xnk} ⊂ VI(C,A)
⋂
F(S).

Proof. Since lim infk→∞(φ(u, xnk+1) − φ(u, xnk)) > 0, by the construction of {xn+1}, the properties of
φ(·, ·), and (3.2) for 0 < infn>1 λn 6 supn>1 λn <

c1
L , we have

0 6 lim inf
k→∞ (φ(u, xnk+1) −φ(u, xnk))

6 lim inf
k→∞ (1 −βnk)(αnkφ(u, x0) + (1 −αnk)φ(u,wnk) −φ(u, xnk))
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= lim inf
k→∞ (1 −βnk)(φ(u,wnk) −φ(u, xnk))

6 (1 − a) lim inf
k→∞ (φ(u,wnk) −φ(u, xnk))

6 (1 − a) lim sup
k→∞ (φ(u,wnk) −φ(u, xnk)) 6 0.

Hence,
lim
k→∞(φ(u,wnk) −φ(u, xnk)) = 0.

It follows from Lemmas 3.3, 3.4 and 2.2 that

lim
k→∞ ‖xnk − ynk‖ = 0, lim

k→∞ ‖wnk − ynk‖ = 0 and ωw{xnk} ⊂ VI(C,A). (4.2)

Next we show that ωw{xnk} ⊂ F(S). By Lemma 4.3, we have

0 6 lim inf
k→∞ (φ(u, xnk+1) −φ(u, xnk))

6 lim inf
k→∞ (−αnk(1 −βnk)φ(u, xnk) + 2αnk(1 −βnk)〈znk − u, Jx0 − Ju〉

−βnk(1 −βnk)g(‖Jxnk − JSznk‖))
= − lim sup

k→∞ βnk(1 −βnk)g(‖Jxnk − JSznk‖)

6 −a(1 − b) lim sup
k→∞ g(‖Jxnk − JSznk‖) 6 0.

Hence,
lim
k→∞ ‖Jxnk − JSznk‖ = 0.

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
k→∞ ‖xnk − Sznk‖ = 0. (4.3)

Applying (4.1), we have that

Jznk − Jxnk = αnk(Jx0 − Jxnk) + (1 −αnk)(Jwnk − Jxnk). (4.4)

It follows from (4.2) that
lim
k→∞ ‖wnk − xnk‖ = 0. (4.5)

Since J is also uniformly norm-to-norm continuous on bounded sets, we have that

lim
k→∞ ‖Jwnk − Jxnk‖ = 0. (4.6)

Since limk→∞ αnk = 0, it follows from (4.4) and (4.6) that limk→∞ ‖Jznk − Jxnk‖ = 0. Since J−1 is uniformly
norm-to-norm continuous on bounded sets, we have that

lim
k→∞ ‖znk − xnk‖ = 0. (4.7)

Since ‖znk − S(znk)‖ 6 ‖znk − xnk‖+ ‖xnk − S(znk)‖, it follows from (4.3) and (4.7) that

lim
k→∞ ‖znk − S(znk)‖ = 0. (4.8)

By (4.8), (4.7) and the definition of the relatively nonexpansive mapping S, we infer that ωw{xnk} =
ωw{znk} ⊂ F(S). This and (4.2) imply that ωw{xnk} ⊂ VI(C,A)

⋂
F(S).
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The next is the proof of Theorem 4.1.

Proof of Theorem 4.1. Let z = ΠVI(C,A)
⋂
F(S)x0. Since βn < 1 for all n ∈N, it follows from Lemma 2.3 that

φ(z, xn+1) 6 [1 − (1 −βn)αn]φ(z, xn) + 2αn(1 −βn)〈zn − z, Jx0 − Jz〉. (4.9)

Case 1. There exists an n0 ∈ N such that φ(z, xn+1) 6 φ(z, xn) for all n > n0. Then limn→∞φ(z, xn)
exists. In particular, limn→∞(φ(z, xn+1) − φ(z, xn)) = 0. It follows from Lemma 2.4 and (4.5) that
ωw{xn} ⊂ VI(C,A)

⋂
F(S) and limn→∞ ‖xn−wn‖ = 0. Since J is uniformly norm-to-norm continuous on

bounded sets, we have that
lim
n→∞ ‖Jxn − Jwn‖ = 0. (4.10)

Since Jzn − Jxn = αn(Jx0 − Jxn) + (1 − αn)(Jwn − Jxn), it follows from limn→∞ αn = 0 and (4.10) that
limn→∞ ‖Jzn− Jxn‖ = 0. Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we have
that

lim
n→∞ ‖zn − xn‖ = 0.

Hence, ωw{xn} = ωw{zn}. Since {xn} is bounded, there exists a subsequence {xnk} of {xn} such that
xnk ⇀ x̂ and

lim
k→∞〈xnk − z, Jx0 − Jz〉 = lim sup

n→∞ 〈xn − z, Jx0 − Jz〉 = lim sup
n→∞ 〈zn − z, Jx0 − Jz〉.

Because ωw{xn} ⊂ VI(C,A)
⋂
F(S), it follows from Lemma 2.3 that

lim
k→∞〈xnk − z, Jx0 − Jz〉 = 〈x̂− z, Jx0 − Jz〉 6 0,

which implies that lim supn→∞〈zn − z, Jx0 − Jz〉 6 0. By applying Lemma 2.10 to (4.9), we have

lim
n→∞φ(z, xn) = 0,

that is, xn → z, as n→∞.
Case 2. There exists a subsequence {xmj

} of {xn} such that

φ(z, xmj
) < φ(z, xmj+1), ∀j ∈N.

From Lemma 2.9, there exists a nondecreasing sequence {ni} of N such that limi→∞ ni = ∞ and the
following inequalities hold for all i ∈N:

φ(z, xni) 6 φ(z, xni+1) and φ(z, xi) 6 φ(z, xni+1). (4.11)

By discarding the repeated terms of {ni}, but still denoted by {ni}, we can view {xni} as a subsequence
of {xn}. In this case, we have lim infi→∞(φ(z, xni+1) −φ(z, xni)) > 0. By Lemma 4.4, we have ωw{xni} ⊂
VI(C,A)

⋂
F(S) and, by the same argument as in the first case, ωw{zni} = ωw{xni}. It follows from the

boundedness of {xni} that there exists a subsequence {xnil } of {xni} such that xnil ⇀ x̂ and

lim sup
i→∞ 〈xni − z, Jx0 − Jz〉 = lim sup

i→∞ 〈zni − z, Jx0 − Jz〉

= lim
l→∞〈xnil − z, Jx0 − Jz〉 = 〈x̂− z, Jx0 − Jz〉 6 0.

(4.12)

It follows from (4.9) and (4.11) that

rclφ(z, xni+1) 6 [1 − (1 −βni)αni ]φ(z, xni) + 2(1 −βni)αni〈zni − z, Jx0 − Jz〉
6 [1 − (1 −βni)αni ]φ(z, xni+1) + 2(1 −βni)αni〈zni − z, Jx0 − Jz〉.
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In particular, since (1 −βni)αni > 0 for all i ∈N, we have

φ(z, xi) 6 φ(z, xni+1) 6 2〈zni − z, Jx0 − Jz〉.

Consequently, it follows from (4.12) that

lim sup
i→∞ φ(z, xi) 6 lim sup

i→∞ 2〈zni − z, Jx0 − Jz〉 6 0.

Therefore xi → z.

Remark 4.5. If E = H, then a relatively nonexpansive mapping S reduces to a quasi-nonexpansive mapping
S which satisfies I− S is demiclosed at zero. Hence, taking E = H and λn ≡ τ satisfying τL < 1, then
Theorem 4.1 reduces to Theorem 4.1 of [14]. Therefore, Theorem 4.1 absolutely generalizes Theorem 4.1 of
[14] from Hilbert spaces to Banach spaces. Furthermore, we change the parameter from a fixed constant
τ to a changeable sequence {λn}.

We next introduce another algorithm, which is a slight modification of Algorithm (4.1) and includes
Algorithm (4.1) when S is the identity mapping. Since the proof of this result is very similar to that of
Theorem 4.1, we leave the proof for the reader to verify.

Theorem 4.6. Let {xn} ⊂ E be a sequence generated by

x0 ∈ E,

yn = ΠCJ
−1(Jxn − λnA(xn)),

Tn = {w ∈ E : 〈w− yn, Jxn − λnA(xn) − Jyn, 〉 6 0},

wn = ΠTnJ
−1(Jxn − λnA(yn)),

zn = J−1(αnJx0 + (1 −αn)Jwn),

xn+1 = J−1(βnJzn + (1 −βn)JSzn).

Then under the same conditions as Theorem 4.1, xn → ΠVI(C,A)
⋂
F(S)x0.

5. Conclusions

The subgradient extragradient method was firstly introduced by Censor et al. [7] which provides a
weak convergence theorem for variational inequalities of monotone and Lipschitz continuous operators in
Hilbert spaces. Subsequently, Kraikaew and Saejung [14] modified this method to obtain strong conver-
gence by means of Halpern method [9] in Hilbert spaces. In this paper, we generalized the results of [14]
from Hilbert spaces to Banach spaces. Consequently, we improve and extend the corresponding results
in [2, 5–7]. Furthermore, our results are different from the ones studied in [7] as described in Remarks 3.7
and 3.8.
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