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Abstract

In this article, we study nonlinear quadratic iterative integral equations and establish sufficient conditions for the existence
of Volterra solutions for fractional iterative integral equations and solvency in Banach space and Cy g. In the present work we
use the principle of contraction, Schaefer’s fixed point theorem and the non-expansive operator method as essential tools. In
this study we consider Riemann-Liouville differential operator and prove some related theorems, further provide an example as
an application. (©2017 all rights reserved.
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1. Introduction

The mathematical modeling in a biological phenomena has getting increasingly important since it has
an impact in our live. Thus there are many researchers in the literature who studied and have dealt this
type of problems, for example, see ([2, 5, 7, 8, 11, 12, 15, 16, 21, 22]).

During the process of modeling one can generate an integral equation and formulate related theorems.
Further related applied problems with integral equations are also growing very rapidly with the aid of
various tools such as functional analysis, topology and the theory of fixed point. In particular, integral
equations (quadratic type) have many beneficial applications in real-world problems. For instance, the
integral equations of the quadratic type are very applicable to the radioactive transference theory, theory
of the kinetics of gases, the neutron transport theory, theory of traffic, and as well as theory of queuing
[9]. It is also recognized that nonlinear quadratic iterative integral equations are often used in biological
applications. The fixed point theorems which are utilized in the nonlinear functional analysis generally
used to obtain existence of solutions concerning the investigative functional-operator equations.

In this present work, we are also interested in the mathematical biological model, and we study
the nonlinear quadratic iterative integral equations and establish sufficient conditions on existence of

*Corresponding author
Email addresses: faten_212326@hotmail.com (Faten H. M. Damag), akilic@upm.edu.my (Adem Kiligman)

doi:10.22436 /jnsa.010.02.03

Received 2016-09-28


http://dx.doi.org/10.22436/jnsa.010.02.03

F. H. M. Damag, A. Kiligman, J. Nonlinear Sci. Appl., 10 (2017), 368-376 369

solutions for the Volterra type fractional iterative integral equation and solvency in Banach space Cyg.
In our study we employ non-expansive operator technique as essential tools, and include the principle
of contraction and Schaefer’s fixed point theorem. The new result generalizes the previous results, see
[1, 3,10, 14, 18]. Further we also establish some related existence results for some integral equations with
a modified argument of fractional order, see the details in [6].

In the progress of the study we need some definitions, notations, and preliminary data that we will
use in the development of the paper, see [13, 17, 19, 20]. Let C(I,R) be Banach space of all continuous
functions from I to R and equipped with the norm

Wl == sup{lw(s)|:s € I}.

Then recall some important theorems related to fixed point which are used in the paper. These theorems
may be found in the following papers [3, 18].

Definition 1.1. The integral operator is defined as

1 r V()

La¥(s) =i |, = py=

dg,

where o > 0.

Definition 1.2. The fractional differentiation operator (Riemann-Liouville) is defined as
1 d It J * W(B)

[ . (s—[S)fX*LHdB’ i—1)<a<y,

MNi—o) ds
where ( is a whole number and « is a real number.

D (s) =

Definition 1.3. The fractional differentiation operator (Caputo) is defined as

L[ ")
F(L_(x) JO (S— B)OC*hLl dB’ (Lfl) < o <L,

where ( is a whole number and « > 0 is a real number.

D (s) =

Definition 1.4. Let (W, d) be a metric space and Q C C(W,R). We say Q is a equicontinuous if for all
€ > 0 there is > 0 so that for all g € Q,w, a € W then

dw,a) <d=|g(w)—g(a)l < e.

Theorem 1.5. Let (W, d) be a compact metric space and Q C C(W,R). Then, Q is compact if and only if Q is
equicontinuous, closed and bounded. This theorem is called the Arzel d-Ascoli theorem.

Theorem 1.6. Let E be a continuous and compact mapping in a Banach space W into itself, such that the set
{weW:w=oEw, for some 0 < o<1}
E is bounded. Then E has a fixed point. This theorem is known as the Schaefer theorem.

Theorem 1.7. Let W be a Banach space and Q # 0 subset of W, compact, and convex. Now, if T: Q — Q isa
continuous operator, then T has at least one fixed point in Q. This theorem is also called the Schaefer theorem.

2. Main Results

In this section, we propose and find some outcomes concerning the existing solution of iterative
integral equations of fractional order.
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Let us consider the following nonlinear fractional iterative integral equation of quadratic type:

S (¢ _q1)(B—1)
v(s) = g(s,v(s)) + f(s,v(s)) L %K(u,v(u),v(v(u)))du. (2.1)
LetI =[0,b], T = max{0, b}, and
g —wlP

Cop = {V € C(L D) :vlw) —v(uz)| < ¢ , Yug,u € R+}, ¢>0.

rp+1)
Our first finding is based on Banach fixed point theorem.
Theorem 2.1. Suppose the following conditions are achieved

(b1) K: Ry xRxR—=R, f, g: Ry x R— R functions of continuous are given;

(by) 3t > 0, so that
lg(s,v) —g(s,w)| < l1lv—w|, Vs e Lv,w e R;

(b3) I €, > 0 so that
[f(s,v) —f(s,wW)| < blv—w|, Vs € I,v,weR;

(bg) 3 {3 > 0so that

Ik(s, v, v(v)) — k(s,w, w(w))| < & [|v—w| +Iv(v) —w(w)\] < G(04+2)v—w|, Vs € Lv,w € R.

If

JS (s —u)(B~1

)
o T(B) )K(“'V(u)rv(v(u)))‘du+eg(z+a f(s,v(s))l} <k<LVtel (22)

L £ 71-6
S“p{ 1 NCEEY

s2>0
then equation (2.1) has a unique solution on L

Proof. The transformation of Eq. (2.1) in a fixed-point problem: Consider the operator:
G:C(LR) = C(LR)
defined by

S (¢ 1) (B—1)
G(v)(s) = g(s,v(s)) —i—f(s,v(s))J %K<u,v(u),v(v(u)))du.

r(p)
0
The fixed point of the operator G is a solution of Eq. (2.1). We will use the principle of Banach contraction
mapping to demonstrate that G has a fixed point.

Letv,w e C[I,R]

[(Gv)(u) — (Gw) (u)|

<ot w50 — gts,wisn) [t vt [ LT vt wiviw Y

0 r'p)
S (¢ —q)(B—1)

—f(s,v(s)) JO (SF(?S)K(LL,W(u),W(W(u)))du
S (¢ 1) (B—1)

+f(s,v(s))J0 %K(u,w(u),w(w(u)))du

s,y [ C

0 r(B) K(u,w(u),w(w(u)))du‘
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< Gv(s) —w(s)

s _ .\ (B—1)

+mawwnj szw ™
0

10 K(u,v(u),v(v(u))) —K(u,w(u),w(w(u)))‘du

S _ ) (B—1)
+1£(s, v(s)) —f(s,w(s))I.JO %K(u,w(u),w(w(u)))du
(s —u)B—1)

[v(u) =ww)[+ p(v(u)) —ww(u))lldu

<&MQ—MMN+%W&WQNF

0 r'(p)
rs (S_u)(ﬁ—l)
+ivls) = wls)l | W‘K(u,w(u),w(w(u)))‘du
< v(s) —w(s)]
Si(s—u)B-D
+33f(8,V(S))|-J ————[v(s) =w(s)|+Lv(s) —w(s)|+ [v(w(s)) —w(w(s))[]du
0 I'(p)
+ Galv(s) —wis). “: (S_I}(L?;)B_”K<u,w(u),w(w(u))) du

< Uv(s) —w(s)| +L3[2 + ﬂlf(s,V(SJ)I-J v(s) —w(s)|du

0 I'(B)
s _ ) (B—1)
+ Gv(s) —w(s)l.L %K(u,w(u),w(w(u)))du.
Then
S (s—u)P-1)
IGv — Gw| g[el HZ'L W‘K(u,w(u),w(w(u))) ‘du
B
(24U s v Ivls) —wls)l

Therefore, G is a contraction. As a result of the Banach fixed point theorem, we can deduce that G has
a fixed point and the solution to Eq. (2.1). O

The second outcome is based on the Schaefer’s fixed point theorem.
Theorem 2.2. Suppose the following conditions are satisfied.

(ay) The functions
f,g:Ry xR—R and K:Ry xRxR =R

are continuous;
(ap) if € is the Lipschitz constant and satisfies (2.2), then

Isp — so|P

K(u,v(u),v(v(u)))du < Bm,

51 (81 —u)(ﬁfl) s (Sz—u)(ﬁfl)
Jo r(B)K(u,v(u),v(v(u)))du—JO S

foreach s1,s € Iand v € R and

== SEaIx{‘1‘(5,\)(5)).‘[0S (S_I}(L?;)[s_l)K(u,v(u),v(v(u)))du’} ,Vsel,veR;

(az) there are constants n, N, { € R so that

lg(s,v) —g(s,z)| < njv—z|, foreachv,ze Rand s €1,
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s —ulP
rp+1)’

lg(s,v)| < ¢ foralls eI, veR;

and for all s,ue I,veR,

lg(s,v) —g(u,v)] < N.L

(a4) there are constants m, M € R so that

If(s,v) —1(s,z)] < m|v—z|,for each v,z€ Rand s €],

s —ulP
f(s,v) —f(u,v)| < MU ,and for all s,uel,veR;
(s, ) = 1l V)| € M
(as) there is a constant k € [0, 1] so that

sup {n N (m M) J K (w, viw), v(v(w)))ldu + |f(s,v(s))|} <k.

sel 0 F(B)

Then there is a solution in Cyq g for the equation (2.1).

Proof. It is well known (see [4, Lemma 1]) that C¢ g # ) is convex, on the other hand, it is a subset of
Banach space (Cla, b}, ||.||) (where ||| is the usual supreme norm) and compact.

Presently, we transform the equation (2.1) into problem of fixed point.

Now consider the integral operator:

G: C(,B — C(I, R)

and defined as

S (¢ 1) (B—1)
(Gv)(s) = g(s,v(s)) —i—f(s,v(s))JO (Sr‘(‘é)

Then it is clear that the operator of fixed points G is a solution for the equation (2.1). We shall use
Schaefer’s fixed point theorem to demonstrate that G has a fixed point.

K(u,v(u),v(v(u)))du.

Phase 1. G is continuous.
Let {v)-} be o sequence so that vj — v in C(I, R). Therefore for all s € I

Gv3(s)) = GW)(s)] < Ig(s,v3(s)) — gls,v(s))]
s (g —u)(P—1)

s w1 [k (v, v ) - K (v, vivia) ) au

vy (5)) = s, vls)L. | S ir—

Since g, K and f are continuous functions, we get the following

K(u,v(u),v(v(u)))du.

IGv; — Gv|| = 0, as j — oo.

Phase 2. G is a bounded map in C; g into bounded sets in C(I,R). Hence, just to prove for any p > 0,
there is a positive constant L so that forallv e A, = {v € Cep VIl < u}, we have [|GVv|| < L. By (a3) — (a4)
we get for all s € L.

[

Js (s —u)(B—1)

o T(B) K(“'V(u)fv(v(u)))du’<c+

|@WBN<@BNBW+F@N@D

Hence

IGvl| < C+2Z:=L



F. H. M. Damag, A. Kiligman, J. Nonlinear Sci. Appl., 10 (2017), 368-376 373

Phase 3. G maps bounded sets into equicontinuous sets of C¢g.

[(Gv)(s1) — (Gv(s2)]
< llg(s1,v(s1)) —1g(s2, v(s2))ll

S1 _ ( 1

frssvtsnn [ K (v v o
$2 —u)(B-1)

szt [ 2T (vt viv

< 19(s1,v(s1)) — gls2,v(s1))[ +1g(s2,v(s1)) — g(s2,v(s2))|

S1 (g9 — )(ﬁ*l)
+ ‘f(sl,v(sz)) — (52, v(s1)) L TK(u,v(u),v(v(u)))du
S1 (g —u)(B—1)
+‘f(sz,v(sl))’. Jo TK(u,v(u),v(v(u)))du
s2 (Sz—u)(ﬁ_l)
_Jo TK(u,v(u),v(v(u)))du‘
_<s|B
< N.Bm Fnpv(sy) —v(so)|
1 (g9 —u)(B—1)
v f(sl,v(sz))—f(sl,v(sl))‘.L 6] K(u,v(u),v(v(u)))‘du
s1 (Sl_u)(ﬁ—l)
+ f(sl,v(s1))—f(sz,v(sl))‘.L B K(u,v(u),v(v(u)))‘du
S1 _ (B—
+ f(sz,v(sl))‘. Jo WK(u,v(u),v(v(u)))du
$2 (gy —u)(B—1)
—“O TK(u,v(u),v(v(u)))du‘
s — so/P |s1—solP 51 (s7 —uw) BV
< (N 1) E 2+ (M m)t s .L 6 K(u,v(u),v(v(u))) ’du
|s1 — solP
+ ‘f(SZ,V(Sl))‘eW
s —solP SUp(sp—uw) (B~
_EW<N —i—n—i—(M—i—m).L TK(u,v(u),v(v(u)))‘dqulf(sz,v(sl))I)
< Qw_
r'p+1)

Thus it follows that Gv € Cy g, for allv € C¢g. Then T:€ Co g —€ Cy .
As s1 — sy, the right hand side of the above inequality approaches zero. As a result of Phases 1 to 3,
using Arzeld-Ascoli theorem, we may deduce that G is completely continuous.

Phase 4. Beforehand bounds.
Presently, it remains to prove that the set

§={veCyp:v=pGv for some 0 < p <1}

is bounded.
Let v € 6, therefore v = pGv for some 0 < p <1

I
~

s (g —1)(B—1)
Ms) < g5, )]+ [rls,v(s)). | ST —

oy Kt v Jau] < e
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According to the Schaefer’s fixed point theorem G has a fixed point that is a solution for equation
(2.1). O

In the next theorem, we will give the result for the existence of solution for the equation (2.1) by using
the Schaefer’s fixed point theorem.

Theorem 2.3. Suppose that (ai1), (a3), (aa) in Theorem 2.2 are held and further

(dp) there is a constant U so that

IK(s,v(s),v(v(s))) —K(s,w(s), ww(s)))| < L+2)v(s) —w(s)|, for eachs €I, v,w € R.

If
S (s—u)P-1) sP
sslgg {n—l— mJO 7”5) K<u,v(u),v(v(u)))du+ 7”[5 ey .If(s,v(s))} <1
or ;
sli_}rr;o ﬁ.lf(s,v(s))l = 0 uniformly with respect tov € Cq g,

then the equation (2.1) has at least one solution in Cq,g.

Proof. Through the use of the Theorem 2.1 and Theorem 2.2, we prove that G is nonexpansive. By applying
the Schaefer’s fixed point theorem, we can deduce that G has at least one fixed point which is used for
solving the equation (2.1). O

3. Application

We provide an example to interpret the utility of our major outcome. Consider the following nonlinear
fractional iterative integral equation.

1

1 S(s—=7)2 e (1)
v(s) = S +9.\)(3) —|—cos(s(v(s))).JO rl) Tre it \v(v(r))ldr' (3.1)
In this case, we get
Ry xR —=R,qg(s,v(s)) = ! v(s), Vs el
9 . =+ /9 7 — S+9 7 7
f:Ry xR — R, f(s,v(s)) = cos(sv(s)), Vs € L.
and S ls))
e v(v(s
K:R = . .
+ X Rx R —= R,K(s,v(s),v(v(s))) T T Vs el
We are keen to study the solution v subsidiary
|s1 — sp|*? |s1 — sp|°?
= LI): - < - ’ ’ I
Cep {"E CILD:vis1) =Vl S =757~ = G8sexn69255” "o %2 €

that means { = 1. From Theorem 2.1 we get {; = %, = %, {3 = %

If £; < k < 1in Theorem 2.1, the equation (3.1) has a unique solution in I. From Theorem 2.2 we get

140.5 1 1

() | 1 1 1
‘T(1.5) 16.838312" 2’

- d== —
r5 17725 " 2r(0.5)

[

1
M ==
2

O | =

1
:7’N:
"=

Also, from Theorem 2.3, we get I = % Therefore, equation (3.1) has at least one solution in C; 5.
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4. Conclusion

From the above, we conclude that the fractional iterative differential equations are the best way to
study the mathematical biological model and generally. Moreover, as future work, one can investigate the
existence of solution for the following equations

S (¢ 1) (B-1)
v(s) = g(s,v(s),v(v(s))) + f(s,v(s)) L %K(u,v(u),v(v(u)))du
and . 1)
v(s) = g(s,v(s),v(v(s))) + f(s,v(s),v(v(s)) Jo %K(u,v(u),v(v(u))) du.
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