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Abstract

In the present paper we introduce and study vector valued Orlicz-Lorentz sequence spaces 1, qat,u,4,4(X) on Banach
space X with the help of a Musilak-Orlicz function M and for different positive indices p and q. We also study their cross
and topological duals. Finally, we introduce the operator ideals with the help of the corresponding scalar sequence spaces and
s-numbers. (©2017 All rights reserved.
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1. Introduction and preliminaries

Let X and Y be two sequence spaces and A = (ani) be an infinite matrix of real or complex numbers.
Then we say that A defines a matrix mapping from X into Y, if for every sequence x = (xi )3, € X, the

sequence Ax = {A, (x)}X_,, the A-transform of x, is in Y, where

An(x) = Z ankXk, (n€N). (11)
k=0

By (X,Y), we denote the class of all matrices A such that A : X — Y. Thus, A € (X,Y), if and only if the
series on the right-hand side of (1.1) converges for each n € IN and every x € X.
The matrix domain X of an infinite matrix A in a sequence space X is defined by

XA ={x=(x¢): Ax € X}

The approach constructing a new sequence space by means of the matrix domain of a particular limitation
method has recently been employed by several authors (see [20]).
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The study of vector-valued sequence spaces (VVSS) was provoked by the work of Grothendieck in [6].
Since then this theory has developed considerably in different directions, (see [3, 14] and references given
therein).

An Orlicz function M : [0,00) — [0, 00) is a continuous, nondecreasing and convex function such that
M(0) =0,M(x) > 0, for x > 0. Such function M always has the integral representation

where p(t), known as the kernel of M, is right continuous, non-decreasing function for t > 0. It is clear
that an Orlicz function M is always increasing as M(x) — oo as x — oo. Also tp(t) — co as t — oo and
tp(t) = 0 for t = 0, [11]. However p(t) > 0 for t = 0 is equivalent to the fact that the Orlicz sequence
space lp is isomorphic to 1, [8]. Therefore, we presume here that the kernel p(t) has value 0 for t = 0
and obviously p(t) — oo as t — oo.

For Orlicz function M and kernel p, we define q(s) = sup{t : p(t) < s}, s > 0. Clearly q possesses
the same properties as p and the function N defined as N(x) = [ q(t)dt, is an Orlicz function. The
functions M and N are called mutually complementary functions. These functions M and N satisfy
Young's inequality: xy < M(x) + N(y), for xy > 0 and also M(axx) < acM(x) for 0 < & < 1.

An Orlicz function M is said to satisfy the Ay-condition for small x or at 0, if for each k > 1, there exist
Ry > 0 and xy > 0 such that

M(kx) < RyM(x), forall x € (0, xy].

Suppose X and Y are vector spaces over the same field K of real or complex numbers, generates a
dual system (X, Y) with respect to the bilinear functional (x,y). We shall denote the vector space of all
sequences formed by the elements of X with respect to the operations of pointwise addition and scalar
multiplication by Q(X) and the space of all finitely non-zero sequences from Q(X) by ¢(X). A vector-
valued sequence space A(X) is a subspace of ()(X) containing ¢(X). The symbol 8 exists for the sequence
{0,0,...,0,%,0,0, ...}, where x is placed at the ith coordinate. The notation x(™) denotes the n-th section of
X given by {x1,%2,...,xn,0,0,...}.

A subset M of A(X) is said to be normal, if for {xi} € M and {«;} € K, with |xi| < 1,1 > 1, the sequence
{aixi} € M. The generalized Kothe dual of A(X) is the space

AX(Y) = {g = eY: Y I(xi,yi)l < oo forall {x;} € /\(X)}.
i>1

The generalized Kothe dual of A*(Y) is denoted by A**(X). The space A(X) is said to be perfect, if
A(X) = AX(X).
A vector-valued sequence space A(X) equipped with a Hausdorff locally convex topology T is called

(i) a GK-space, if the maps P, A (x) : A(X) = X, P a(x)(X) = xn, for each n > 1, are continuous;

(ii) a GAK-space, if A(X) is a GK-space and for each {xi} € A(X), x(M) 5 Xasn — oo, inT;

(iii) a GAD-space, if x € $(X), for every x € A(X), i.e., (X) = A(X).

Remark 1.1. Every perfect sequence space A(X) is normal [14].

Let us state here that if the dual system is (X, X*) where X is a Banach space and X* is its topological
dual, then we may interchangeably use the notations (x, f) or f(x) for x € X and f € X* in the sequel.

We write w for Q(X), ¢ for ¢(X) and A for A(X), if we take X = KK, the field of scalars. If e,,’s are the
n-th unit vectors in w, i.e., e™ = {8 };?';1, where 8, is the Kronecker delta, ¢ is clearly the subspace of w
spanned by en’s, n > 1.

A sequence space A is said to be symmetric, if &5 = {at;(1)} € A whenever @ € A and o € T, where IT is
the collection of all permutations of IN. The Kothe dual A* of a symmetric sequence space A is symmetric

[8].
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The 8-dual for scalar-valued sequence space A is defined as

5 — . ey
A :{cxew.élaiﬁpm<oo forall[ﬁe%andpeﬂ}.

AX coincides with A%, if A is symmetric.
We define
AX) = {xn) i xn € X, > Tand {Jxn|l} €A},

for a scalar-valued sequence space A and a Banach space X. In case, A equipped with the norm ||.||5, is a
Banach space. Therefore, A(X) is also a Banach space with respect to the norm

IXlacx) = IlPxn A, (see [1, 3]).

As particular cases, we have 1l (X) for A = 1o, and co(X) corresponding to A = co.
We define the set Ty (X) as

Im(X) ={xeQ(X): ) M(|xil) < oo},

i>1

for a Banach space X corresponding to an Orlicz function M.
The vector-valued Orlicz sequence space is defined as

Im(X) = {i e Q(X): Z fi(xi) converges for all {f;} € In (X*)},
i>1

for mutually complementary functions M and N.
A corresponding way of defining 1y (X) is

lm(X) = {i e Q(X): Z M(HX1H> < oo for some p > O}.

i1 P
Two norms
I%ll vy = sup {| > fibx)|: Y N(IFI) <1,
i>1 i>1
and
[X[[m = inf{p >0: Z M(HXPIH> < 1},
i1

are equivalent on 1y and hence we have
HfHM < |RH(M) < ZHKHM, forx ¢ lm(X), (see [21]).

We shall write 1y (X) as Iy for X = K. If M satisfies Ay-condition at 0 and M, N are mutually comple-
mentary Orlicz functions, then (Ipm)* = Iy [8].

A Musielak-Orlicz function M = {My,} is a sequence of Orlicz functions (see [5, 13]). A Musielak-
Orlicz function M is said to satisfy L1 condition, if pn(x) > pny1(x) for all x € [0, c0), where pr, be the
kernel of My, for all mn € IN. A convex modular p;¢ on w for a Musielak-Orlicz function M is defined as

pat{on}) = sup Y M (o,
o€l n—1

Analogous to a convex modular pj, we define modular space as

Av ={x={on} €wW:pm(f&) < oo, forsome 3 > 0}
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This space becomes a normed space under the Luxemburg norm

s o
[«]] = inf{p >0: pm(g
A modular sequence space Ay, is always a symmetric sequence space.

The decreasing rearrangement of the absolute values of a sequence & = {otn } in 1 is given by {tn (x)},
where

) <11

th (&) = inf{p > 0: card{k : || > p} < n}.

Here card A denotes the cardinality of the set A. The sequence {t,,(x)} satisfies the following properties
[16]:

i) &0 =t1(x) = ta(x) > ... 20 for & € loo.
(i) tmyn-1(x+ B) tm (&) + tm (B) for RIB € leo-
(ifi) tmyn—1(XB) < tm (X)tm(B) for &, B € lo.

Here &f = {&nPn}.
For X = {xn} € l(X), we denote by

th(X) = tn({xn}) = ta({[[xn]]}), meNN.
The Lorentz sequence space 1, 4 (0 < p, q < 00) is given by
11
For « € 1, 4, let us consider the real-valued function .||, 4 as follows

1

1
(NPTt (x ))q}q for 0 < q < oo,
[Xllp,q = n>1,
sup vty (o) for g = o0
n>1

For a convex modular py defined on w, it has been proved in [5], that

D Malta(®) = pu(®), (1.2)

for @ € w, if and only if M satisfies L1 condition. We see that (1, g, ||.|[p,q) is Banach spaces for p > q by
(1.2). But for p < q, it is a quasi-Banach space. Further, they are symmetric sequence spaces [15].
Throughout the paper, we shall denote the Banach spaces over the complex field C by X and Y and
the class of all bounded linear maps from X to Y by L(X,Y).
Let L be the class of all bounded linear operators between any pair of Banach spaces and w* be the
class of sequences of non-negative real numbers. A mapping s : L — w is called an s-number function,
if it satisfies the following conditions:

(@) [[Sl[=s51(S) = s2(S) > ... 20, s(S) ={sn(S)}, S€L;
(i) sn(S+T)<sn(S)+||T|| for S, T e L(X,Y)and n € N;
(iii) sn(RST) < ||R|[sn(S)||T|| for T € L(Xo,X), S € L(X,Y), R€ L(Y,Yy) and n € IN;
(iv) if rank S < m, then s, (S) =0, (v), if dim X > n, then s, (Ix) = 1, where Ix denotes the identity map

of X.
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If the condition (ii) is replaced by
(i) Sman_1(S+T) <sm(S)+sn(T)for S, TeL(X,Y)and m,n=1,2,---,

then the s-number function is called additive.
An s-number function is called multiplicative. if the condition (iii) is replaced by

(iii)" sman_1(RT) < sm(R)sn(T) forRe L(Yy,Y)and T € L(X,Yp), mn=1,2,--- .

We write A(X,Y) = ANL(X,Y) for a subset A of L. An operator ideal is a collection of A, if it satisfies
the following:

(i) A contains all finite rank operators;
(i) T+S e A(X,Y) for S, T e A(X,Y);

(i) if T € A(X,Y)and S € L(Y,Z), then ST € A(X,Z) and also if T € L(X,Y) and S € A(Y,Z), then
STe A(X, Z).

For the Banach spaces X and Y the collection A(X,Y) is called a component of A.
A real-valued function f is said to be an ideal quasi-norm, if f is defined on an operator ideal A and
satisfies the following properties:

(i) 0 < f(T) < oo, foreach T € A and f(T) =0, if and only if T = 0;

(ii) there exists a constant o > 1 such that f(S+T) < o[f(S) + f(T)] for S, T € A(X,Y), where A(X,Y) is
any component of A;

(iii)) (a) f(RS) < ||R||f(S), for S € A(X,Z), R e L(Z,Y), and
(b) f(RS) < [|S||f(R), for S € L(X,Z), Re A(Z,Y).

An operator ideal is said to be quasi-normed operator ideal, if it is equipped with an ideal quasi-norm
and a quasi-Banach operator ideal is a quasi-normed operator ideal of which each component is complete
with respect to the ideal quasi-norm.

The notion of difference sequence spaces was introduced by Kizmaz [10] who studied the difference
sequence spaces lo(A), c(A) and co(A). The notion was further generalized by Et and Colak [4] by

introducing the spaces 1o (A™), c(A™) and co(A™). Let m be a non-negative integer, then for Z = ¢, ¢y
and 1., we have sequence spaces

Z(A™) ={x = (xx) e w: (A™xy) € Z},

where A™x = (A™x; ) = (A™ Ixi — A™ x4 1) and A%y = xy for all k € N, which is equivalent to the
following binomial representation

m
ATnXk = Z(_l)v ( 1:)1 > Xk+v-
v=0
Taking m = 1, we get the spaces studied by Et and Colak [4]. For more details about this work one can
refer to [1, 2,9, 12, 16-18].
2. The vector-valued sequence spaces 1, qn,u,a,A(X) and hy g au,a,A (X)

Let X be a Banach space. Let M = (My) be an Musielak-Orlicz function, that is, M is a sequence of
Orlicz functions, u = (uy) be a sequence of strictly positive real numbers and A = (an) be a nonnegative
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two-dimensional bounded-regular matrix. In this paper we define the following classes of sequences:

1 1
Akr at (A™
bparuan(X) = {X = (i} € loo(X) : Zuk [Mk<H - pk( Xk)”)} < oo, for some p > O},
Kk>1
|A kot (A™ x|
S

RpaatuanlX) = {x = facd € 1oo(X) 1 3 i | M

1 )} < 00, fora116>0}_

For x € 1, q,nu,4,A (X), we define

1 1
_ . Akr at (A™x
Wlnantnan®) =inf{p >0 3w [y (1A ] <
k>1

If we take M(x) = x in 1, g, ntu,a,A (X) and hp g aiu,a,A (X), then we have the following spaces:

AKP at (A™xy )|
P

lp,quaA(X) = {X = {xx} € lo(X) : Z uk[|

} < 0o, for some p > 0},
k>1

A kP Tt (A™x )|
o

() = {5 = b € LX) s 3

} < oo, forall & > 0}.
k>1

Let u = (ux) = 1, for all k € IN. Then the spaces 1, 4 niu,a,4(X) and hy, g4 (X) are reduced to
lp,q.004,A(X) and hy, a4 4 (X), respectively, as follow:

1 1
A kP at (A™
Lp,gma,A(X) = {x ={xi} € lo(X) : Z [Mk(H - pk( Xk)”)} < oo, for some p > 0},
k>1

1 1
I . [A K>~ ati (A )|
hp,qm,a,A(X) = {X = {xx} € lo(X) : kZ>1 |:Mk< 5 )} < oo, forall & > 0.

If we take A = (C,1) in 1, g m,ua,A(X) and hy, g viu,4,4 (X), then we have the following spaces:

| kPt (A™x )|
P

Lpaana () = {x = o € 1) Y e M

)} < oo, for some p > O},
k>1

1 1
kvt (A™
hp g mua(X) = {x ={xx} € lu(X) : Z Uk {Mk(H - Z( Xk)”)} < 0o, foralld> O}.
K>1

If we take A = (C,1) and M(x) = x in 1, g n,ua,A(X) and hy, g w4 (X), then we have the following
spaces:

1 1
kv T aty (A™
Lp,qua(X) = {X:{Xk} € loo(X) : Zuk[n Pt Xk)”] < 0o, forsome p > 0},
k>1 P
11
| kv " aty (A™x)|
5

hp, g0, (X) = {x = (i € LX) Y i

] < oo, foralld > 0}.
k>1

If we take (M) = M, A =1, (ux) = 1 for all k € IN and m = 0, then we get the analogous of
the spaces defined by Gupta and Bhar [7]. The aim of this paper is to study the vector-valued Orlicz-
Lorentz sequence spaces. We also study their structural properties and investigate cross and topological
duals of these spaces. Finally we prove that the operator ideals defined with the help of scalar-valued
sequence spaces lp q.n,u,a,A and additive s-numbers are quasi-Banach operator ideals for p < q and
Banach operator ideals for p > q.
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Theorem 2.1. Let M = (My) be a Musielak-Orlicz function, w = (uy) be a sequence of strictly positive real num-
bers and A = (anx) be a nonnegative two-dimensional bounded-regular matrix. Then the space 1, qviu,n,A (X)
equipped with ||.||p,q7u,a,A 1S a quasi-Banach space for p < q and Banach space for p > q. Further for
X € by qMua,A (X), we have

1_1
Zuk [Mk(HA kv qtk(Aka)Hﬂ <1 2.1
k>1 ||§Hp,q,M,u,A,A

Proof. We can easily show that 1, qntu,a,A(X) is a vector space with usual coordinate wise addition
and scalar multiplication. To show that || 44,4 is a quasi-norm, let [X[/; g, ua,4 = 0, for each
X € lp gnauaa(X) and [[X|lp,q0uaa = 0, for X = 0. Suppose that ||X[/;,q,nu,a4 = 0, for some X =
{xx} € Lp,qmun,A(X) and for given &€ > 0, we can find p > 0 such that p < ¢ and

1_1
gluk [Mk<”A kP “tpk(Aka)Hﬂ <1

When X # 0, we get ||xk,|| # 0 for some kg € IN and so ty, (A™xy) = ||[A™xy, ||, for some k; € IN implies

11 11
AP Yy, (A™ AP Yy, (A™
uk[Mk(ll 7 Tt ( Xk)”ﬂ guk[Mk(” 7 Tt ( xk)llﬂ <1,
€ Y
for any ¢ > 0. We get a contradiction to the fact, so x = 0.
To prove triangular-type inequality, let us consider X = {xx} and §J = {yx} € 1p q,n,ua,A(X). Thus for
any ¢ > 0, there exist p1, p2 > 0 such that

1 1
_ I A kP at (A™x
p1 < [[Xllp,qnuan + 5 with Zuk {Mk(H p]; k)”ﬂ <1,
k>1

and

1 1
_ £ . Akr aty(A™
p2 < [Flpastuan+5 with Y we [Mk(H pz( yk)H” <1
k>1

It % — % > 0, then via properties (i) and (ii) of {ti (A™xy)}, we get
1 1 1 1
Akr At (A™(xk + A (2k)? T aty (A™ (xk +
Zuk[MkU P K(A™ (xk Uk))H)] :Zuk{Mk(H (2k) P " ato (A™ (xk Uk))”)}

1_1 1_1
k>1 20 a1 (py + py) k>1 2v @ (py + p2)

1 1
_ 5 a m
N Zuk [MK(HA (2k 1);_zizlk71(A (X1 +yk))H)}

K>1 2r a7 (p1+p2)

(HA K4 (b (A™x) + b (™)) )l
2(p1 + p2)

<Zuk[Mk( P1 )(’Ak;_}‘tk(Aka)H>

p1+ P2 P1

1_1
(e

N
—_

Hence,

1_1
X +Yllp,qMuan <27 a1 (p1 + p2)
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1_ 11— _
<27 4 (HXHp,q,M,u,A,A + ||U ”p,q,M,u,A,A + 5)-
Now we prove the completeness of the space (1 g,nua,A(X), [|-lp,q.0,ua,4). Let {Xi} be a Cauchy se-

quence in 1, g w44 (X), as X = (X In>1, k € IN. Hence for £ > 0, there exists ko € IN such that

1_1 _ _
|Ane qtn(Am(Xk+j_Xk))Hﬂ <1}<8

Xk+5 — Xxllp,q.0tu,a,4 = inf {p >0: Z Un |:Mn< .

n>1

for each k > kg and each j € IN. Thus

11 _ =
Z [Ane ™ aty (A™ (X4 — X)) ||

- }gl, forall k > ko, j € N,

n>1
which implies that
{lAny "3t (A™ Ry — %)/} i € N,

is a bounded set for j € IN and for all k > ko. Therefore {x}}} is a Cauchy sequence in X, for each n € N
and so converges to z,. Let Z = {zn}. Then t,(A™(Xx4j —Xk)) = tn(Z—Xk) as j — oo and hence by
continuity of M,

1 1
AnrP daty(A™(z—X
Zun[Mn<H Nt (AT(Z an”ﬂ <1, forall k> k.
n>1 €
This implies that z € 1, g n,ua,A(X) and ||Z—Xk[lp,q,0u,a4 — 0 as k — oco. Also, inequality (2.1) is
directly obtained from the definition of the quasi-norm ||.||, 42,44 - This completes the proof. O

Theorem 2.2. Let M = (M) be a Musielak-Orlicz function, uw = (uy) be a sequence of strictly positive real
numbers and A = (any) be a nonnegative two-dimensional bounded-regular matrix. Then hy, g vua,A(X) is a
closed subspace of 1, g n,ua,A(X). Moreover, if M = (My) satisfies Ay-condition at 0, then 1, g vua,A(X) =
hp,q,M,u,A,A (X)

Proof. First of all it is without a doubt that hy, 4 a,u,a,A(X) is a subspace of 1, g atua,A(X). Now we
prove that hy, g aiu,a,4(X) is closed in 1, g 4,4 (X). Suppose X = {xk} € hp g n,ua,4(X), the closure of
hp,q v uaA(X) in b, g aiua,a(X). So there exists a sequence {Uy} = {{yp}} € hp qaua,A(X), k > 1 and
we have [[§y, —X||p,q,M,u,a,A — 0as k — co. Take any & > 0. Thus for §; = min{Z%*%ZS, 5}, we get kg € IN
such that

_ _ Yy
1Tx —Xllp,qMmuaa < ?1, for all k > kg. (2.2)

When % — % > 0, we have

3 un [Mn<|yA néétn(Amx)Hﬂ 2F {Mn(HAné_é(tn(Am(x—ka)) + ta(A™Ty, )Hﬂ

5 &1
n>1 n>1
1A 1P~ 7 (tn (A™ (X —Ty,)) |
< Z““[M“( n61/2 : )}
n>1
IA P~ at, (A™ )|
+T§1un[M“< 511;2 : ﬂ

<Zun[Mn<HAnp T (tn(A™ (X —Ty,) )Hﬂ

n>1 ||X ykg”‘p,q,M,u,A,A
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Y [Mn<llA nél‘;éAmyko)ll )}
n>1

< 00.

1 1
In the case when » g < 0, we get

Z " [Mn(HA n;_étn(Amx)H)} < Z . [Mn<”A ne=d (tn(Am(g_gkO))) ””

5 51/2
n>1 n-l1
IA NPt (A™Gy, )|
N
< 00,

by the relation (2.2). Clearly X € h qua,A(X) and so the subspace hy, ¢ w4 (X) is closed. Now we
suppose that M satisfies Ay-condition at 0. Let X € 1, q,n,1,4,4 (X), we have

1 1
A ke at (A™
Zuk {Mk(n A Xk)”)} < 0o, for some pg > 0.
K1 Po

To show that X € hy, q,nu,4,4(X), choose any n > 0. If n > po, then

1_1
kZ>1LLK[]\/lk<||Ak’D q;k(Aka)Hﬂ < oo

Now presume n < py and suppose K = £2. Since M satisfies the Ay-condition, so we can find Rx > 0 and
xk > 0 such that M(Kx) < RxM(x) for all x € (0, xx]

1 1 1 1
KA kb~ aty (A™ A kPt (A™
-~y uk[Mk<H Pt Xk)H)] <Re Y uk{Mk<H Pt xk)llﬂ < o0,
K>Ko Po K>ko Po

for some kg € IN. Hence

Z U [Mk(HA ké_é;kmmxk)” )} < oo, foranyn >0,

and so X € hp,q,M’u,A,A(X), we have hp,q,M,u,A,A(X) = lp,q,M,u,A,AOQ- [l

Proposition 2.3. Let M = (My) be a Musielak-Orlicz function, uw = (uy) be a sequence of strictly positive real
numbers and A = (anyx) be a nonnegative two-dimensional bounded-regular matrix. If Y = hy, g aua,A(X) N
co(X), 0 < p,q < co. Then Y equipped with the subspace topology of hp g v a,A (X) is a GAD-space.

Proof. Obviously ¢(X) C Y. Suppose X € Y. Now for any ¢ > 0, we can find kg € IN, such that

1/p—1/
k;%uk[MkU\Ak P Ztk(Aka)Hﬂ <1

Let Iy ={ie N : ||xi]| > %}, ke Nand vk =} ;g 57" Since X € ¢o(X), Ik is finite and so vk € ¢(X). Set
ny = card Iy. Then take my € IN such that

Z uk[Mk(HA kl/Pl/:tk(Aka)Hﬂ < 1

N

k}m()
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Take k so large that

(] <

E.
Thus,
JA /Pt (A Y] 1§ |A it/
< = w--
3w M : ) < e X wMe(=—)
i>1 i=1
[A K/P At (A |
£ 3w : )
izmp+1
1 1
<-4+-=1.
2 * 2
This implies that ||X —Vi||p,q,nu,a,A < €, for sufficiently large k. Hence Y is a GAD-space. O

Proposition 2.4. Let M = (My) be a Musielak-Orlicz function satisfying Ay-condition at 0, w = (uy) be a
sequence of strictly positive real numbers and A = (ani) be a nonnegative two-dimensional bounded-reqular
matrix. If Ly g vtu,0,A(X) Cco(X), 0 <p < q < oo. Then Ly, g nviun,A is a GAD-space.

Remark 2.5. It is very motivating to know whether the space hy, ¢ 4,4 (X) is a GAK-space, this means

that the k" section x'%) = {xq,%2,...,xk,0,0,0,0,..} of an element X = {x;} of hp,qMua,A CcOnverges
to X with respect to its quasi-norm. Whenever, if p,q > 0 with 1 —1 > 0 and X € h, qmwan(X)
such that ||xq]| > ||x2f| > [|x3]| > ---, then tx(X) = ||xk|| and in this case, one can easily show that

||i_i(k)Hp,q,M,u,A,A —0ask — oo.

3. Duals of the space 1, g a,ua,A(X),1<p<qg< 0

Suppose that the spaces 1, qau,a,4(X) are symmetric sequence spaces, since the decreasing rear-
rangement of X would be the same as that of X, for any permutation 7 of N and M = (M) is an
increasing function. Thus the 8-dual of the scalar-valued sequence space l;, ,nt,u,4,4 Would coincide with
its cross-dual.

Theorem 3.1. Let M = (My) and N = (Ny) be two mutually complementary Musielak-Orlicz functions such
that M satisfies Ay-condition at 0, w = (uy) be a sequence of strictly positive real numbers and A = (ani) be
a nonnegative two-dimensional bounded-regular matrix. Then (1p, g, muw,a,A)" 2 o, qNua,A, Where 1/py +
1/p2 =1and 1/q1 +1/q2 = 1. Moreover, (1p, g, 7Mua,A)” = lp, qoNua,A when 1/p1—1/q1 = 0.

Proof. To show that Ly, g, NaaA C (Lp,qimaa,a)™, suppose B € Ly, g, Nua,A- Then, we have

11 _
Z U [NK(HA kre q;tk(AmB)H )} < 00, forsome &y > 0.
k>1 0

A kpl qlt (A™x
Let « € 1p1,q1,M,u,A,A- Then Z Uy [Mk ( H Kl

k>1 P

D loaBil < ) (ATt (A™B)

k>1 k>1

o (T 5y, (AR Q0B

k>1 k>1

Hﬂ < oo, forall p> 0. Thus,
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Hence B € (L, q,0u,4,4) . Now to prove (Lp, g, nu,a,4)" = Lpy,q2,30,4,A, SUppose B € (L, g, 0u,4,4) %,

then Z loii Bil < oo, for all {ai} € 1y, g, nu,4,4- Since by, g, au,a,A and (lp, g, 0u,4,4)" both are sym-
i>1

metric sequence spaces, {tx (A™X)} €1y, g, MuaA, for Xely g vuaa and {t (A™R)} € (1p, q,0wa,4) %)

for B € (Lp, q,nua,4) Hence Yt (A™&)ty(A™B) < oo, for all & € Ly, q, 7,u,8,A-
k>1
Again if ¥ € Ly, then {ti (A™Y)} € lyy as Ly is symmetric and normal and so

11 _
{AkP2 2t (A™Y)} € Ly g MauaA-

Hence - -
> [1A ke m AT n(A™B)|| < 0o, forall ¥ € Ly
k>1

11 _ _
This implies that {AkP2 92t (A™B)} € 1 = ly and so B € lp, g, Nu,a,A- Thus, we have

L 1 X = 1 u
( P1,91,.M, ,A,A) P2,q92,Nu,AA -
]

Proposition 3.2. Let M = (My) be a Musielak-Orlicz function, uw = (uy) be a sequence of strictly positive real
numbers and A = (any) be a nonnegative two-dimensional bounded-regular matrix. For positive reals p1,p2, 1, q2
with 1/p1+1/p2=1,1/q1+1/q2 = 1 such that q1 < p1, the spaces 1, q; Mu,a,A are perfect sequences spaces.

Proof. In fact in this case (lp, g, Nua,A)" = Loy,qumuwaa and by, g, vuwaa € (L, qumuwaa) . So we
have lpl,m,M,u,A,A - (lpll(IhM,u,A,A)XX - (lpzfqz,Nru,A,A)X = LPLQLM,U/A,A‘ [

Proposition 3.3. Let M = (My) be an Musielak-Orlicz function satisfying Ap-condition at 0, w = (uy) be a
sequence of strictly positive real numbers and A = (ani) be a nonnegative two-dimensional bounded-reqular matrix.
Let X be a Banach space and p1,p2, q1,q2 are such that 1/p1+1/p2=1,1/q1+1/qo =1and 1/p;1 —1/q; > 0.
Then (Lp,,q;, 08,4 (X)) = Lpy g5 Naa,A (X5).

Proof. One can easily prove it by using Theorem 3.1, so we omit the proof. O

Theorem 3.4. Let M = (M) be a Musielak-Orlicz function, uw = (uy) be a sequence of strictly positive real
numbers and A = (any) be a nonnegative two-dimensional bounded-regular matrix. Suppose p1,p2, q1, gz are real
numbers with 1 < p1,q1,P2,q2 < oo and 1/p1 +1/p2 =1,1/q1 +1/q2 = 1. Then the dual of 1, 4, m,ua,A(X)
is topologically isomorphic to 1y, q, Nuna,A(X*), if and only if the sequence {fi} € 1y, q, Nuna,A(X") is identified
with the linear functional F given by

Fixal) = Y _(xi,fi), foreach {xi} € Ly, qu a4 (X), (3.1)

i>1

Proof. Subsequently for {fi} € l,, 4, nu,a,A(X*), we define a linear functional F on 1, 4, 2t,u,4,4(X) as in
(+) where convergence of the series is being guaranteed by Proposition 3.3. For k € N, let

k
Flfad) =Y (o fi), i) € Ly aquatuanl(X).

i=1

Obviously, {F} is a sequence of continuous linear functionals on 1, ¢, a4, (X) converging pointwise
to F. Thus F is continuous by Banach-Steinhaus Theorem (see [19]). Hence, F € (1, q,,0,ua,A (X))*. Next,
for x € 1y, g, 00,44 (X), we get
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<D I, f1)l

i>1

<) tilx) t(f)

i>1
= . B B (il/P2— 1/t (A™F))
< fllpyaznwan ) wi [Mi (|A( il/Pi-l/ai (Amx))| 16 L I ﬂ
i>1 1£1lp2,q230,8,A
< fllps qunaa ALY P91 (A™X)}| )

A il/P2—1/ a2y, (A™F)
since Z ul[ (H - ) )} < 1. Therefore,
i>1 1Fllp,a230,4,A

F(X)| < 2[[fllpo,qunwaa [1XlpyqrMaa,A

for any X € 1, q;,m,u,a,A(X). Thus,
HfH 2”{f }sz q2, N, u,AA - (3.2)

Conversely, suppose F € (1p, q;mun,A(X))*. Define f; € X*,i € N as fi(x) = F(6). Now to prove
{fi}_e Lo, a2 N ua,A (X*) we choose {«i} € 1y, q,0u,a,A- Take {xi} € X with |x;i|| =1 and ||[fi[| < fi(xi) +
1/2%, for all i € IN. Let {1} C C be such that [fi(xixi)| = fi(xiBixi), for all i € IN. Obviously, |B;| =1, for
all i € IN, and so {x;Bixi} € Lp,,q;,m,ua,A (X). Suppose

S lllfill < Y filaiBox) + Y oF
i>1 i>1 i>1
=Y F(3™Prt) 4K
i>1

= lim Z F( 6"“5"‘1

k—o0

oty 4

where K:Z % Therefore, Z loci|[[fi]] < oo, for all {xi} €1y, g, 0ua,A and hence {fi} €1y, g, nua A (XF)
i>1 i1
by Theorem 3.1. To prove that F has the form as given in equation (3.1), suppose for {xi} € l,, 4, 7,44 (X)

D I i)l =) [F(8™),
i>1 i>1
k
= lim Y F(5P™) =F({Bix}),

k—o00
i=1

where 3; are taken as above. Thus ZI (xi,fi)] < co. Hence,

i>1
Z |(xi,fi)| is unconditionally convergent. (3.3)
i>1
Now if 0 <Pp1 < q1 <00, by, g muaA(X) is a GAD-space. We write t;(X) = ||x¢ (1)||, for some ¢ € 7w and
Uy = Z 6 , for k € N. Therefore wx € ¢(X) and ||Xx —Uy||p,,q,,7,u,a,A — 0 as k — oo by Proposition

3.3. Then
Fifxi}) = F( lim ) = > (xifi),

i>1
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by (3.3). Hence the mapping R : Ly, g, Nua,a(X*) = (Lp,q0ua4 (X)) defined by R(f) = F, with
f = {fi}, fix) = F(8]), i € N is a topological isomorphism from equations (3.1), (3.2) and the open
mapping theorem (see [19]). This completes the proof. O

4. The operator ideals L;S,A,M,u, aar0<p,q< oo
Let M = (M) be a Musielak-Orlicz function and X, Y are Banach spaces.

Definition 4.1. Let T : X — Y be a bounded linear operator. Then T is said to be of type 1, q,ua,A, if
{sk(T)} € 1p,q,nu,a,A- We shall denote the set of all above mappings by LSA/MM, A A Where

Lnatuan ={T€L:{sK(T)} € Ly qatuanl

. (s)
We define the norm forany T € L’ 3¢\, A A @S

1_1
ITllp,q A = inf{p >0:) [Mk<||A k» qsmsk(T)llﬂ < 1}‘
k>1

Theorem 4.2. Let M = (M) be a Musielak-Orlicz function, uw = (uy) be a sequence of strictly positive real

(s)

numbers and A = (anx) be a nonnegative two-dimensional bounded-regular matrix. Then for p < q, L0 e A A

equipped with ||.||p,qMw,a,A 15 a quasi-Banach operator ideal and for p > q it is a Banach ideal.

Proof. To show that LI()S;EI,M/UI A A 1s an operator ideal, firstly note that all finite rank operators are contained

in L1(98,()1,M,u,A,A' since sy (T) =0 for k > kg, if rank T < kg. For Ty, T, € L](DS’;,MM,A,A(X, Y), we have

1_1
éuk[MkU’Akp qulmSk(Tl)Hﬂ < oo,

and

5 [Mk(HA ké—éAmsk(Tz)uﬂ oo,

K>1 P2
for some py, po > 0. Firstly, we consider the condition when % — % >0
1 1 1 1
5 a m 5 a m
Zuk[Mk(HA k"l qlAl Sk(Tl‘i‘TZ)H)} < Z P1 uk[Mk(HA kr qA Sk(Tl)Hﬂ
K>1 27" (p1 +p2) 1 PLT P2 Pl
1 1
A kp T dA™s (T
+Z P2 uk|:Mk<|| P aAT sy ( 2)||>}
o1 P + P2 P2
< 0.

. . 1 1
Again, if » g < 0, then

Zuk[Mk(HAkééAmsk(Tl+T2)|’)}<Zpluk[Mk(”Ak;}‘Amsk(Tl)Hﬂ

=i (p1+ p2) Sipte 1
1 1
Akr aAMs (T
o2 e (! <)
K1 P1 T P2 P2
< 0.

This implies that T; + T, € L}()S,()J,M,u, A, A(X,Y). Now, we want to show that for T ¢ L‘E)S/‘]LM/U, A, A(E,F),
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ReL(F,Y)and S € L(X,E), RTS € LI} 0 1 (X, Y). Thus for T€ L) o\ 4 (E,F), we have

11
éuk {Mk<HA kv quzmsk(T)\ﬂ < o0,

for some py > 0 and hence

|A K» 4 A™sy (RTS)|
Zuk{Mk( RSl ) <%

by the property (iii) of s-number function. Thus RTS € L‘E)S,()],M,u, A (X, Y). Therefore, L;(:.S,()q,m,u, AA IS an
operator ideal.

The proof of the function |.||p q,aun,A i @ quasi-norm (or, norm) defined on LS;,M’u’ A A is similar
to one defined on Ly, g,nt,u,,A (X) and so excluded. To prove the completeness, suppose {Ty} is a Cauchy

sequence in component of LLS, A,M,u, A, AX,Y) of LLS,()J,M,u, AA- Thus for € > 0, there exists kg € IN such that
||Tk+j _TkH'p,q,M,u,A,A <e¢, forallk > kgandj € IN.

This implies that there exists p > 0 such that p < € and

Zun[M (”A“p A" (T — H)] <1, forallk >k, jeN. (4.1)

£
n>1

Thus,

11 o
{Anp aA Sn(Tk+] Tk);n>1},
£

is a bounded sequence for each k > ko and j € IN. Therefore for some constant K > 0, we get
[Tk —Tx|| < eK, forallk > ko, j € N.

Thus, {Ti} is a Cauchy sequence in L(X,Y). So there exists a T € L(X,Y) such that ||Tx —T|| — 0 as k — oo.
As s (T —T) < ||Tx —T||, for all k > 1, we have s, (Tx —T) — 0 as k — oco. Also,

Isn (Tt — Tie) = s (T = Ti)| < || Tieqs — Tkl

which implies
Sn(Tk+j —Tk) — Sn(T—Tk) asj — oo.

Now, we have from (4.1),

1_1
5 un[Ma (AR ATS T o s kg

£
n>1

This implies that T— Ty € LS;/MM,A,A(X, Y) and || T — Txl|p,qmuaa < g forall k > k. Therefore,

T e L](DS; Muna and T — T € Li)s; M ua A Which shows that Lészl MuAA 1S a quasi-Banach operator
ideal. O

Theorem 4.3. Let M = (My) and N = (Ny) be two complementary Musielak-Orlicz functions, u = (uy)
be a sequence of strictly positive real numbers, A = (anx) be a nonnegative two-dimensional bounded-regular

matrix and s is a multiplicative s-number function. If 0 < p1,p2,P, q1,q2, q < oo are such that % + % =1

p/
1,1 _1
ar *a = fhen (s) (s) (s)
S S S
praMwaA Loy g nuaa CLygiuanr
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where

L1()S,3'|,1,u,A,A = {T el: Z u~k[||/q k%iéAmSkTH] € ll}.
k>1

Proof. Suppose T € L;? AMALAA o]_if2 ?qlelu, (X, Y). Then T =TiTp, where Ty € L;?%Mu, aa(ZY)and
T, € LL‘: A NALA, A (X, Z) and here Z is a Banach space. Thus

1 1
A kP aa A™Mgy (T
Zuk[Mk<H i sk 1)")} < oo, forsome p; >0,
1 P1

11
Zuk [Nk(HA kr2 % Amsk(TZ)”)} < 0o, forsome pp > 0.

k>1 P2
1 1
Ifg—a>0,wehave

A k%_%AmSk(Tsz)H

uk[ 11 }

K>1 27 4ap1p2
1 1 1 1
A KP1 @ AT (T A kP2~ @ AT (T,
<Zzuk{Mk<H 1 a1 sk 1)”” +Zuk[Nk(H 2 92 skl 2)”” < oo,
K1 P1 K>1 P2

and for % — % < 0, we have

Zuk[HA kééAmsk(Tsz)H} <2 [Mk<HA kvllqllAmsk(Tl)\)]

1 1
A kP2 2A™gy (T
SN L)
>1 P2
< 0.
This implies that {A k%*%Amsk(Tsz)} celorTiT, € Lés, 34,1,u, AA- This completes the proof. O
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