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Abstract
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1. Introduction

In 1990 Lawrence Markus formulated the following problem:

Problem 1.1. Consider the differential field F < J0, J1, J2, · · · >, where F is the differential field of all
elementary functions over C(x). Is

∫
J31(x)dx in this field F < J0, J1, J2, · · · >?

In the paper [11] the partial answer was obtained to this question. More exactly, Sibuya proved that

∫
Jn(x)dx


∈ C(x)[J0(x), J1(x)], if n ≡ 1(2),

6∈ C(x)[J0(x), J1(x)], if n ≡ 0(2),

and also
∫
J31(x)dx 6∈ C(x)[J0(x), J1(x)].

In this paper we develop a technique from the paper [11] and prove that

1.
∫
Jm0 (x)dx 6∈ C(x)[J0(x), J1(x)], if m > 2.

2.
∫
Jm1 (x)dx 6∈ C(x)[J0(x), J1(x)], if m > 2.

3.
∫
J2n(x)dx 6∈ C(x)[J0(x), J1(x)], if n > 0.
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In connection with the obtained statements, the following hypothesis naturally arises:
Hypothesis. If n > 0 and m > 2 then ∫

Jmn (x)dx 6∈ C(x)[J0(x), J1(x)].

Problems of this type are directly connected with the questions of differential algebra [3, 4, 7, 8]. At
first, it is a statement as Liouville’s theorem that integrals of some differential equations are expressed by
elementary functions. Classical result of this kind is the theorem of Holder [2] that the Gamma function
Γ(x) of Euler is not a solution any algebraical differential equation over field C(x) of rational functions of
a complex variable x. In our paper we use Siegel’s theorem [12] about algebraical independence functions
x, J0(x), J1(x) over the field C. Also these questions are connected with the problems of analytical theory
of numbers and problems of transcendence. For example, Shidlovskii proved usual theorems on the
transcendence and algebraical independence of values in algebraical points, a sufficiently wide class of
entire functions which are solutions linear differential equations with polynomial coefficients (see [1]).
Some consequences of this direction can be found in [5, 9, 10].

2. Main results

Let C be the field of complex numbers, x the complex variable and let C(x) be the field of rational
functions with variable x. For every nonnegative integer n, let us denote by Jn(x) the Bessel function of
the first kind of order n, i.e.,

Jn(x) =
(x

2

)n +∞∑
l=0

(−1)l

l!(n+ l)!

(x
2

)2l
.

We consider the ring C(x)[J0(x), J1(x)] of polynomials in J0(x) and J1(x) with coefficients in C(x).
We remind some well-known facts about the Bessel functions [6, 13].

1. If δ = x
d

dx
, then functions Jn(x), n > 0, are solutions of the equation

δ2y+ (x2 −n2)y = 0.

In particular, δ2J0(x) = −x2J0(x).

2. The following recurrence relations hold:

Jn+1(x) = Jn−1(x) − 2Jn(x)
′, n > 1,

xJn+1(x) = nJn(x) − xJn(x)
′, n > 0,

Jn+1(x) =
2n
x
Jn(x) − Jn−1(x), n > 1,

J1(x) = −J0(x)
′.

Here
d

dx
denotes ′. From the third relation it can be obtained that

C(x)[J0(x), J1(x)] = C(x)[Jn(x), Jn+1(x)], n > 0.

From the second relation

C(x)[Jn(x), Jn+1(x)] = C(x)[Jn(x), δJn(x)], n > 0.

From these relations we obtain that the field C(x)(Jn(x), δJn(x)) is a differential algebra and it is
equal to C(x)(J0(x), δJ0(x)) = C(x)(J0(x), J1(x)).
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In addition, we will use the following fact.

3. Functions x, J0(x), J1(x) are algebraically independence over the field C [12].

Now we proceed to formulate and prove main results of this paper.

Theorem 2.1. For every m > 2, we have∫
J0(x)

mdx 6∈ C(x)[J0(x), J1(x)].

Proof. Assume to the contrary that we have∫
J0(x)

mdx ∈ C(x)[J0(x), J1(x)].

Since xJ1(x) = −δJ0(x), it follows that∫
J0(x)

mdx ∈ C(x)[J0(x), δJ0(x)].

Hence there is a polynomial F(x, ξ,η) ∈ C(x)[ξ,η] such that

J0(x)
m =

∂

∂x
F(x, J0(x), δJ0(x)) + (J0(x))

′ ∂

∂ξ
F(x, J0(x), δJ0(x))

+ (δJ0(x))
′ ∂

∂η
F(x, J0(x), δJ0(x)),

or
xJ0(x)

m = x
∂

∂x
F(x, J0(x), δJ0(x)) + δJ0(x)

∂

∂ξ
F(x, J0(x), δJ0(x))

+ δ2J0(x)
∂

∂η
F(x, J0(x), δJ0(x)).

Since δ2J0(x) = −x2J0(x) and function x, J0(x), J1(x) are algebraically independence over field C, we have
the identity

xξm = x
∂

∂x
F(x, ξ,η) + η

∂

∂ξ
F(x, ξ,η) − x2ξ

∂

∂η
F(x, ξ,η). (2.1)

Write F as a sum

F(x, ξ,η) = F0(x) + (F10(x)η+ F11(x)ξ) + · · ·+
m∑
i=0

Fmiη
m−iξi + · · · ,

where
m∑
i=0

Fmiη
m−iξi is the homogeneous component of F of order m with variables ξ, η. Substitute this

presentation of F into (2.1) and consider its homogeneous component of order m:

xξm = x

m∑
i=0

Fmi(x)
′ηm−iξi +

m∑
i=0

iFmi(x)η
m−i+1ξi−1 −

m∑
i=0

x2Fmi(x)(m− i)ηm−i−1ξi+1. (2.2)

Splitting (2.2) on monomials of ξ, η, we obtain the system of identities:

x = δFmm(x) − x2Fm,m−1(x),

0 = δFm,m−1(x) +mFmm − 2x2Fm,m−2(x),

0 = δFm,m−2(x) + (m− 1)Fm,m−1 − 3x2Fm,m−3(x),
.................................................................................

0 = δFm1(x) + 2Fm2 −mx
2Fm0(x),

0 = δFm0(x) + Fm1.
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Let Hi = Fmi, i = 0, · · · ,m, H = (H0, · · · ,Hm)t is the vector-column, ”t” - transpose, and

A0 =



0 1 0 ........ 0 0
0 0 2 ........ 0 0
0 0 0 ........ 0 0

..............................
0 0 0 ........ 0 m

0 0 0 ........ 0 0

 , A1 =



0 0 0 ........ 0 0
m 0 0 ........ 0 0
0 m− 1 0 ........ 0 0

.......................................
0 0 0 ........ 0 0
0 0 0 ........ 1 0

 ,

are the matrices of order (m+ 1)× (m+ 1). Then we can write this system as

δH+ (A0 − x
2A1)H = xe, (2.3)

where e = (0, 0, · · · , 0, 1)t. Vector-column H(x) is a rational solution of this equation. The operator δ
increases the degree of simplest fraction on unit

δ
1

(x− x0)k
=

kx0

(x− x0)k+1 −
k

(x− x0)k
, k > 1.

Therefore, if we present H(x) as the sum of simplest fractions and substitute it in this equation, then we
obtain

H(x) =
Ck

xk
+
Ck−1

xk−1 + · · ·+ C1

x
+B0 +B1x+ · · ·+Bnx

n,

where Ck, · · · ,Bn are vector-columns with elements from C. It means that the decomposition H(x) as the
sum of simplest fractions has only fractions of the form 1/xk.

Substituting H into (2.3) and equating coefficients under identical degrees x, we obtain the system of
equations

−kCk +A0Ck = 0,
−(k− 1)Ck−1 +A0Ck−1 = 0,

−(k− 2)Ck−2 +A0Ck−2 −A1Ck = 0,
.......................................................

−C1 +A0C1 −A1C3 = 0,
A0B0 −A1C2 = 0,

B1 +A0B1 −A1C1 = e,
2B2 +A0B2 −A1B0 = 0,

.....................................................
nBn +A0Bn −A1Bn−2 = 0,

A1Bn−1 = 0,
A1Bn = 0.

(2.4)

Since the eigenvalues of matrix A0 are equal to zero, it follows from first k equations that we find

Ck = Ck−1 = · · · = C1 = 0.

From the remaining equations, we consider subsystem with odd indices

(E+A0)B1 = e,
(3E+A0)B3 = A1B1,

.......................................................
((2s+ 1)E+A0)B2s+1 = A1B2s−1,

A1B2s+1 = 0.
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For arbitrary matrix A = (aij) of order p× q over the field R, we denote by σ(A) the matrix of order
p× q which consists of 0 and ±1, and σ(A)ij = signaij.

Now calculate sequentially the vectors σ(B1), σ(B3), · · · .
Note that if u > 0 then

σ((uE+A0)
−1) =



1 −1 1 ........ (−1)m

0 1 −1 ........ (−1)m+1

0 0 1 ........ (−1)m+2

....................................
0 0 0 ........ −1
0 0 0 ........ 1

 .

Consequently
σ(B1) = σ((E+A0)

−1e) = ±(1,−1, 1, · · · )t,
σ(B3) = σ((3E+A0)

−1B1) = ±(1,−1, 1, · · · )t,
.........................................................
σ(B2s+1) = ±(1,−1, 1, · · · )t.

But from the equation A1B2s+1 = 0, it follows that B2s+1 = (0, 0, · · · , ?)t, a contradiction, and the proof is
complete.

Theorem 2.2. For every m > 2, we have∫
J1(x)

mdx 6∈ C(x)[J0(x), J1(x)].

Proof. Proceed by contradiction: suppose that∫
J1(x)

mdx ∈ C(x)[J0(x), J1(x)].

Reasoning as in Theorem 2.1, we obtain the relation

xmJ1(x)
m = xm

∂

∂x
F(x, J0(x), δJ0(x)) + xm−1δJ0(x)

∂

∂ξ
F(x, J0(x), δJ0(x))

+ xm−1δ2J0(x)
∂

∂η
F(x, J0(x), δJ0(x)).

Using algebraical independence of functions x, J0(x), J1(x) and using relation δ2J0(x) = −x2J0(x) we obtain
the identity

(−1)mηm = xm
∂

∂x
F(x, ξ,η) + xm−1η

∂

∂ξ
F(x, ξ,η) − xm+1ξ

∂

∂η
F(x, ξ,η).

Considering homogeneous component of degree m on variables ξ, η we obtain the relation

δH+ (A0 − x
2A1)H = x1−mv, (2.5)

where v = (1, 0, · · · , 0, )t. Vector function H(x) is a rational solution of this equation. Writing H(x) as
a sum of simplest fractions and substituting in the equation (2.5) and reasoning as in Theorem 2.1, we
obtain

H(x) =
Ck

xk
+
Ck−1

xk−1 + · · ·+ C1

x
+B0 +B1x+ · · ·+Bnx

n,

where Ck, · · · ,Bn - vector-columns are in Cm+1.
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Substituting H in (2.5) and equating coefficients under same degrees x, we obtain the system of equa-
tions

−kCk +A0Ck = 0,
−(k− 1)Ck−1 +A0Ck−1 = 0,

−(k− 2)Ck−2 +A0Ck−2 −A1Ck = 0,
.......................................................

−mCm +A0Cm −A1Cm+2 = 0,
−(m− 1)Cm−1 +A0Cm−1 −A1Cm+1 = v,

.......................................................
−C1 +A0C1 −A1C3 = 0,

A0B0 −A1C2 = 0,
B1 +A0B1 −A1C1 = 0,

2B2 +A0B2 −A1B0 = 0,
.....................................................
nBn +A0Bn −A1Bn−2 = 0,

A1Bn−1 = 0,
A1Bn = 0.

Since the eigenvalues of matrix A0 are equal to zero, we have

Ck = Ck−1 = · · · = Cm = 0.

Let m be an even number. Then subsystem with odd indices has the form

(A0 − (m− 1)E)Bm−1 = v,
(A0 − (m− 3)E)Bm−3 = A1Cm−1,

...................................................
(A0 − E)C1 = A1C3,
(A0 + E)B1 = A1C1,

....................................................
(A0 + (2s+ 1)E)B2s+1 = A1B2s−1,

A1B2s+1 = 0.

Therefore,
σ(Cm−1) = (−1, 0, 0, · · · )t,
σ(Cm−3) = ±(1,−1, 0, · · · )t,
.........................................
σ(B2s+1) = ±(1,−1, 1, · · · )t.

But from the equation A1B2s+1 = 0, it follows that B2s+1 = (0, 0, · · · , ?)t, a contradiction.
Let m be an odd number. Then subsystem with even indices has the form

(A0 − (m− 1)E)Bm−1 = v,
(A0 − (m− 3)E)Bm−3 = A1Cm−1,
........................................................

(A0 − 2E)C2 = A1C4,
A0B0 = A1C2,

.........................................................
(A0 + 2sE)B2s = A1B2s−2,

A1B2s = 0.

(2.6)
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It can be supposed that B2s 6≡ 0. From the last equation, we find B2s = α(0, · · · , 1)t, α 6≡ 0.
Beginning from the first equation of system (2.6) we consistently find

σ(Cm−1) = ±(1, 0, 0, · · · )t,

σ(Cm−3) = ±(1,−1, 0, · · · )t,

and so on
σ(C2) = ±(1,−1, 1, · · · , 0, 0, · · · )t.

where the first (m− 1)/2 elements of vector C2 are zero.
From the equation A0B0 = A1C2, we have σ(B0) = (?, 0, 1, · · · )t.
Moving from the last to the first equation of system (2.6) we consistently find

B2(s−1) = α(0, · · · , 0,m/2, 2s, ?)t,

B2(s−2) = α(0, · · · , 0,m(m− 3)/8, (m(s− 1) + 2s(m− 1))/3, ?, ?, ?)t,

and so on. Since σ(B0) = (?, 0, 1, · · · )t, we have s > (m− 1)/2. Hence when we move from the vector B2k
to the vector B2(k−1) we obtain two nonzero elements on the places where there were two last zeros of
the vector B2k. Therefore, there is such a number k that

B2k = α(0, x,y, · · · )t.

But from the equation
(A0 + 2kE)B2k = A1B2k−2,

we obtain
(A0 + 2kE)B2k = α(2kx, ?, · · · )t,

A1B2k−2 = α(0, ?, · · · )t,

a contradiction. Thus, the theorem is proved.

Next we need eigenvalues of matrix A0 +n
2A1. The following lemma holds.

Lemma 2.3. The eigenvalues of the matrixA0 +n
2A1 are equal to (m− 2k)n, k = 0, 1, · · · ,m, and the coordinates

eigenvector vk, corresponding to the eigenvalue (m− 2k)n, are equal to the coefficients of the polynomial fk(x) =
(1 −n2x2)k(1 +nx)m−2k, arranged in the order of ascending powers of variable x.

Proof. Let f(x) = a0 + a1x+ · · ·+ amxm ∈ C[x] and f ′(x) its derivative on variable x. Consider the vector
v = (a0,a1, · · · ,am)T . We have

(A0 +n
2A1)v = (a1, 2a2, · · · ,mam, 0)T +n2(0,ma0, (m− 1)a1, · · · ,am−1)

T .

Since
a1 + 2a2x+ · · ·+mamxm−1 = f(x) ′,

n2(ma0x+ (m− 1)a1x
2 + · · ·+ am−1x

m) = −n2xm+2
(
f(x)

xm

)
′,

it follows that it is enough to prove the equality

fk(x)
′ −n2xm+2

(
f(x)

xm

)
′ = (m− 2k)nfk(x).

Let f = fk(x). Then

f ′ = −2kn2x
f

1 −n2x2 + (m− 2k)n
f

1 +nx
.
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From this, we obtain

f ′ −n2xm+2x
mf ′ −mxm−1f

x2m −(m− 2k)nf

= −
2kn2x

1 −n2x2 f+
(m− 2k)n

1 +nx
f−n2x2f ′ +mn2xf− (m− 2k)nf

= f

(
−

2kn2x

1 −n2x2 +
(m− 2k)n

1 +nx
+

2kn4x3

1 −n2x2−

−
(m− 2k)n3x2

1 +nx
+mn2x+ (m− 2k)n

)
.

Simple computation shows that the last expression is equal to zero, hence the proof is complete.

Theorem 2.4. For every l > 2, we have ∫
Jl(x)

2dx 6∈ C(x)[J0(x), J1(x)].

Proof. Suppose to the contrary that we have∫
Jl(x)

2dx ∈ C(x)[J0(x), J1(x)] = C(x)[Jl(x), δJl(x)].

Then there is a polynomial F(x, ξ,η) ∈ C(x)[ξ,η] such that

xξ2 = x
∂

∂x
F(x, ξ,η) + η

∂

∂ξ
F(x, ξ,η) + (n2 − x2)ξ

∂

∂η
F(x, ξ,η).

Consider homogeneous of degree two of this relation. We have

δH+ (A0 + (l2 − x2)A1)H = xe,

where e = (0, 0, 1)t. The vector function H(x) is a rational solution of this equation. Writing H(x) as a
sum of simplest fractions and substituting into this equation we obtain

H(x) =
Ck

xk
+
Ck−1

xk−1 + · · ·+ C1

x
+B0 +B1x+ · · ·+Bnx

n,

where Ck, · · · ,Bn are vector columns with elements from C.
We obtain a system of equations for Ck, · · · ,Bn which is analogous to system (2.4). Since the eigen-

values of matrix A0 + l
2A1 are equal to −2l, 0, 2l, there is inequality k 6 2l in the system (2.4).

Consider the subsystem with odd indices. From the first equations we obtain

C1 = C3 = · · · = 0.

Then the remaining equations are

(E+A0 + l
2A1)B1 = e,

(3E+A0 + l
2A1)B3 = A1B1,

...........................................................

((2s+ 1)E+A0 + l
2A1)B2s+1 = A1B2s−1,
A1B2s+1 = 0.
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A direct computation shows that

Tp = σ(pE+A0 + l
2A1)

−1 =

 ? −1 1
? 1 −1
? ? ?

 , p = 1, 3, · · · .

Therefore,
σ(B1) = ±(1,−1, ?)t, σ(A1B1) = ±(0, 1,−1)t,

σ(B3) = ±(1,−1, ?)t, σ(A1B3) = ±(0, 1,−1)t,

and so on
σ(B2s+1) = ±(1,−1, ?)t.

But from the equation A1B2s+1 = 0 follows that B2s+1 = (0, 0, ?)t, a contradiction. The proof is complete.
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