Available online at www.isr-publications.com/jnsa J. Nonlinear Sci. Appl., 10 (2017), 290–298 Research Article

ISSN: 2008-1898

Journal of Nonlinear Sciences and Applications

Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa

The distributional Henstock-Kurzweil integral and applications II

Wei Liu^a, Guoju Ye^a, Dafang Zhao^{a,b,*}

^aCollege of Science, Hohai University, Nanjing 210098, P. R. China.

Communicated by Y. H. Yao

Abstract

In this paper, we study a special Banach lattice D_{HK} , which is induced by the distributional Henstock-Kurzweil integral, and discuss its lattice properties. We show that D_{HK} is an AM-space with the Archimedean property and the Dunford-Pettis property but it is not Dedekind complete. We also present two fixed point theorems in D_{HK} . Meanwhile, two examples are worked out to demonstrate the results. ©2017 All rights reserved.

Keywords: Distributional Henstock-Kurzweil integral, Banach lattice, AM-space, Archimedean property, Dunford-Pettis property, order continuity.

2010 MSC: 46B42, 47H10, 26A42, 46G12.

1. Introduction

This is a continuation of the preceding paper [22], where the distributional Henstock-Kurzweil integral and its properties were studied. The distributional Henstock-Kurzweil integral defined by using Schwartz distributional derivative is a very wide integral form. It includes the Henstock-Kurzweil integral and the Lebesgue integral, see details in [12–15, 19, 21, 22]. The space of Henstock-Kurzweil integrable distributions, denoted by D_{HK}, is a completion of the space of Henstock-Kurzweil integrable functions.

The outline of the present paper is as follows. Section 2 is devoted to the basic notations of the distributional Henstock-Kurzweil integral. In Section 3, an inner product is introduced in the space D_{HK} and so D_{HK} is an inner product space. Section 4 proves that the space D_{HK} is a Banach lattice with a norm cone. Besides, D_{HK} is also an AM-space with the Archimedean property and the Dunford-Pettis property, the details are carried out in Section 5. In Section 6, we show that the norm on D_{HK} is σ -order continuous. However, D_{HK} is not Dedekind complete. Finally, we end this paper with applications, where two fixed point theorems are presented in D_{HK} and two examples are given to demonstrate the results.

2. Basic definitions and preliminaries

For convenience, we use the same notations as in [22] and list some basic ones as follows. Let (a, b) be an open interval in \mathbb{R} , we define

Email addresses: liuw626@hhu.edu.cn (Wei Liu), yegj@hhu.edu.cn (Guoju Ye), dafangzhao@163.com (Dafang Zhao)

doi:10.22436/jnsa.010.01.27

Received 2016-10-30

^bSchool of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, P. R. China.

^{*}Corresponding author

$$\mathcal{D}((\mathfrak{a},\mathfrak{b})) = \{ \phi : (\mathfrak{a},\mathfrak{b}) \to \mathbb{R} \mid \phi \in C_{\mathfrak{c}}^{\infty} \text{ and } \phi \text{ has a compact support in } (\mathfrak{a},\mathfrak{b}) \}.$$

The distributions on (a,b) are defined to be the continuous linear functionals on $\mathcal{D}((a,b))$. The dual space of $\mathcal{D}((a,b))$ is denoted by $\mathcal{D}'((a,b))$.

For all $f \in \mathcal{D}'((a,b))$, we define the distributional derivative f' of f to be a distribution satisfying $\langle f', \phi \rangle = -\langle f, \phi' \rangle$, where $\phi \in \mathcal{D}((\alpha, b))$ is a test function. Further, we write distributional derivative as f' and its pointwise derivative as f'(t) where $t \in \mathbb{R}$. From now on, all derivatives in this paper will be distributional derivatives unless stated otherwise.

Denote the space of continuous functions on [a, b] by C([a, b]). Let

$$C_0 = \{ F \in C([a, b]) : F(a) = 0 \}.$$

Then C_0 is a Banach space under the norm

$$\|F\|_{\infty} = \sup_{t \in [\mathfrak{a},b]} |F(t)| = \max_{t \in [\mathfrak{a},b]} |F(t)|.$$

Definition 2.1 ([22, Definition 1]). A distribution $f \in \mathcal{D}'((a,b))$ is said to be Henstock-Kurzweil integrable (shortly D_{HK}) on an interval [a, b], if there exists a continuous function $F \in C_0$ such that F' = f, i.e., the distributional derivative of F is f. The distributional Henstock-Kurzweil integral of f on [a, b] is denoted by $\int_{\alpha}^{b} f(t)dt = F(b) - F(a)$. The function F is called the primitive of f. For short, $\int_{\alpha}^{b} f = F(b) - F(a)$. For every $f \in D_{HK}$, $\varphi \in \mathcal{D}((a,b))$, we write

$$\langle f, \phi \rangle = \int_{0}^{b} f(t) \phi(t) dt = -\int_{0}^{b} F(t) \phi'(t) dt.$$

The distributional Henstock-Kurzweil integral is very wide and it includes the integrals of Riemann, Lebesgue, Henstock-Kurzweil, restricted and wide Denjoy (see [14, 21, 22]).

For $f \in D_{HK}$, define the Alexiewicz norm in D_{HK} as

$$\|f\|=\|F\|_{\infty}=\sup_{t\in[\mathfrak{a},\mathfrak{b}]}|F(t)|=\max_{t\in[\mathfrak{a},\mathfrak{b}]}|F(t)|.$$

Under the Alexiewicz norm, D_{HK} is a Banach space, see [21, Theorem 2]. In [5], the author first proved that the completion, under the Alexiewicz norm, of the family of all Henstock-Kurzweil integrable functions in [a, b], is the space D_{HK} .

Let $g:[a,b]\to\mathbb{R}$, its variation is $V(g)=\sup\sum_n|g(s_n)-g(t_n)|$ where the supremum is taken over every sequence $\{(t_n, s_n)\}$ of disjoint intervals in [a, b]. A function g is of bounded variation on [a, b], if V(g) is finite. Denote the space of functions of bounded variation by \mathcal{BV} . The space \mathcal{BV} is a Banach space with norm $\|g\|_{\mathcal{BV}} = |g(\mathfrak{a})| + V(g)$.

The dual of D_{HK} is \mathcal{BV} (see cf. [21]) and we have

Lemma 2.2 ([21, Theorem 7]). (Hölder inequality) Let $f \in D_{HK}$. If $g \in \mathcal{BV}$, then

$$\left| \int_{\alpha}^{b} fg \right| \leqslant 2 \|f\| \|g\|_{\mathcal{BV}}.$$

3. An inner product in D_{HK}

In this section we introduce an inner product in D_{HK} so that it is an inner product space.

Let f, $g \in D_{HK}$ with the primitives F, $G \in C_0$, respectively. We say that f = g if F(t) = G(t)everywhere.

Define

$$\langle f, g \rangle = \langle F, G \rangle = \int_{a}^{b} F(t)G(t)dt.$$
 (3.1)

Now, we prove that (3.1) is an inner product in D_{HK} .

(i) For any $f \in D_{HK}$,

$$\langle f, f \rangle = \langle F, F \rangle = \int_{0}^{b} F^{2}(t) dt \geqslant 0,$$

and $\langle f, f \rangle = 0$ if and only if F(t) = 0 almost everywhere, i.e., f = 0.

(ii) For any $f, g \in D_{HK}$,

$$\langle f, g \rangle = \int_{0}^{b} F(t)G(t)dt = \int_{0}^{b} G(t)F(t)dt = \langle g, f \rangle.$$

(iii) For any f, g, $h \in D_{HK}$,

$$\begin{split} \langle f,g+h\rangle &= \int_a^b F(t)(G(t)+H(t))dt \\ &= \int_a^b F(t)G(t)dt + \int_a^b F(t)H(t)dt = \langle f,g\rangle + \langle f,h\rangle. \end{split}$$

By (i), (ii) and (iii), we obtain:

Theorem 3.1. The space D_{HK} is an inner product space with the inner product given in (3.1).

The inner product (3.1) induces a norm

$$\|f\|_{\langle , \rangle} = \left(\int_a^b F^2(t)dt\right)^{\frac{1}{2}}.$$

It is easy to obtain

parallelogram law.

$$\|f\|_{\langle , \rangle} \leqslant (b-\alpha)^{\frac{1}{2}} \|f\|.$$

This means that the norm $\|\cdot\|$ is stronger than $\|\cdot\|_{\langle,\rangle}$. However, the two norms $\|\cdot\|_{\langle,\rangle}$ and $\|\cdot\|$ in D_{HK} are not equivalent, because D_{HK} is complete under the norm $\|\cdot\|$ but not complete under the norm $\|\cdot\|_{\langle,\rangle}$. Remark 3.2. The norm $\|\cdot\|$ on D_{HK} does not induce an inner product, since $\|\cdot\|$ does not satisfy the

Remark 3.3. Although D_{HK} is an inner product space, it is not complete under the norm $\|\cdot\|_{\langle,\rangle}$. That is, D_{HK} is not a Hilbert space under the norm $\|\cdot\|_{\langle,\rangle}$. We know that the Hilbert space is self-conjugate. Since the dual of D_{HK} is \mathfrak{BV} , D_{HK} is not self-conjugate and therefore D_{HK} is not a Hilbert space.

4. The ordering in D_{HK} and Banach lattice

We shall first present some basic properties of order Banach space.

A closed subset X_+ of a Banach space X is called an order cone, if $X_+ + X_+ \subseteq X_+$, $X_+ \cap (-X_+) = \{0\}$ and $cX_+ \subseteq X_+$ for each $c \ge 0$. It is easy to see that the order relation \le defined by

$$x \leq y$$
, if and only if $y - x \in X_+$,

is a partial ordering in X, and that $X_+ = \{y \in X \mid 0 \le y\}$ is an order cone in X. The space X, equipped with this partial ordering, is called an ordered Banach space. For any r > 0, $B_r = \{x \in X : ||x|| \le r\}$ is called a closed ball in X. The order interval $[y,z] = \{x \in X \mid y \le x \le z\}$ is a closed subset of X for all y, $z \in X$. A sequence (subset) of X is called order bounded, if it is contained in an order interval [y,z] of X. We say that an order cone X_+ of a Banach space is normal, if there exists a constant $\gamma \ge 1$ such that

$$0 \le x \le y$$
 in X implies $||x|| \le \gamma ||y||$.

 X_+ is called regular, if all increasing and order bounded sequences of X_+ converge. If all normbounded and increasing sequences of X_+ converge, we say that X_+ is fully regular. As for the proof of the following result, see, e.g., [11, Theorem 2.2.2].

Lemma 4.1. Let X_+ be an order cone of a Banach space X. If X_+ is fully regular, it is also regular, and if X_+ is regular, it is also normal. Converse holds if X is reflexive.

Assume that X is an order linear space. If for every $x, y \in X$, there exists $z \in X$ such that $x \leq z$, $y \leq z$, and if $x \leq u$, $y \leq u$ then $z \leq u$, then X is called a Riesz space (or lattice) and we denote $z = x \vee y$.

A vector subspace M of a Riesz space X is said to be a Riesz subspace (or a vector sublattice), whenever M is closed under the lattice operations of X, i.e., whenever for each pair $x, y \in M$ the vector $x \vee y$ (taken in X) belongs to M.

For a vector x in a lattice X, define $x^+ = x \vee 0$, $x^- = (-x) \vee 0$ and $|x| = x \vee (-x)$, then we call them the positive part, the negative part and the absolute value (or modulus) respectively. Moreover, $x = x^+ - x^-$ and $|x| = x^+ + x^-$. Note that |x| = 0, if and only if x = 0.

Definition 4.2. Assume that X is a Banach space, if X is a lattice and

$$|x| \le |y| \text{ in X implies } ||x|| \le ||y||, \tag{4.1}$$

then X is called a Banach lattice and the norm $\|\cdot\|$ satisfying (4.1) is called a lattice norm.

Recall that C([a,b]) is a Banach lattice with the uniform norm and so is $C_0([a,b])$. For $F \in C_0([a,b])$, the positive part $F^+ = F \lor 0 = \max_{t \in [a,b]} \{F(t),0\}$, the negative part $F^- = (-F) \lor 0 = \max_{t \in [a,b]} \{-F(t),0\}$, and hence $F = F^+ - F^-$ and the absolute value $|F| = F^+ + F^-$. Moreover, F^+ , F^- , |F| all belong to $C_0([a,b])$. Let $f \in D_{HK}$ with the primitive $F \in C_0([a,b])$, define

$$f^+ = (F^+)', \quad f^- = (F^-)', \quad |f| = |F|'.$$

Then,

$$f = f^+ - f^-, |f| = f^+ + f^-.$$

See details in [21].

In $C_0([a,b])$ there exists a pointwise order: for $F,G \in C_0([a,b])$, $F \leqslant G$, if and only if $F(t) \leqslant G(t)$, for all $t \in [a,b]$. For $f,g \in D_{HK}$ with primitives $F,G \in C_0([a,b])$, respectively, let

$$f \leq g \text{ (or } g \succeq f), \text{ if and only if } F \leqslant G.$$
 (4.2)

Theorem 4.3 ([21, Theorem 23]). D_{HK} is a Banach lattice.

In the Banach lattice D_{HK}, define

$$D_{HK+} = \{ f \in D_{HK} : f \succeq 0 \}. \tag{4.3}$$

Then $D_{\mathsf{HK}+}$ is an order cone. Moreover, one has

$$0 \le f \le g \Rightarrow 0 \leqslant F \leqslant G \Rightarrow 0 \leqslant F(t) \leqslant G(t) \Rightarrow ||F||_{\infty} \leqslant ||G||_{\infty}$$
$$\Rightarrow ||f|| \leqslant ||g||.$$

Therefore, the following statement holds.

Theorem 4.4. D_{HK+} is a normal cone in D_{HK} .

Remark 4.5. In [22], another ordering was introduced in D_{HK} and the cone D_{HK+} there is proved to be regular. However, in Section 6, we will prove that the cone D_{HK+} in (4.3) is not regular, still less full regular.

5. AM-space

This section shows that D_{HK} is an AM-space. Moreover, we prove that D_{HK} possesses the Archimedean property (Theorem 5.7) and the Dunford-Pettis property (Theorem 5.8).

Definition 5.1. A lattice norm on a Riesz space is:

- 1. an M-norm, if $x, y \ge 0$ implies $||x \lor y|| = \max\{||x||, ||y||\}$;
- 2. an L-norm, if $x, y \ge 0$ implies ||x + y|| = ||x|| + ||y||.

A normed Riesz space equipped with an M-norm (resp. an L-norm) is called an M-space. A norm complete M-space (resp. L-space) is an AM-space (resp. AL-space).

Theorem 5.2. D_{HK} *is an AM-space.*

Proof. Let $f, g \in D_{HK}$ and $f, g \succeq 0$ with the primitives F and G. Then $F, G \in C_0$ and $F(t) \geqslant 0$, $G(t) \geqslant 0$ for every $t \in [a, b]$. Therefore,

$$||f \vee g|| = ||F \vee G||_{\infty} = \max_{t} \{F(t), G(t)\} = \max\{||F||_{\infty}, ||G||_{\infty}\}$$
$$= \max\{||f||, ||g||\}.$$

This means that Alexiewicz norm $\|\cdot\|$ in D_{HK} is M-norm. Note that D_{HK} is complete, hence D_{HK} is an AM-space.

Lemma 5.3 ([1, Theorem 9.27]). A Banach lattice is an AL-space (resp. an AM-space), if and only if its dual is an AM-space (resp. an AL-space).

Theorem 5.4. BV is an AL-space.

Proof. By Theorem 5.2, D_{HK} is AM-space. It follows from Lemma 5.3 that \mathcal{BV} is an AL-space, because \mathcal{BV} is the dual of D_{HK} .

A vector e > 0 in a Riesz space X is an order unit, or simply a unit, if for each $x \in X$ there exists some $\lambda > 0$ such that $|x| \leq \lambda e$. It is easy to see that D_{HK} is a Banach lattice with unit.

Two Riesz spaces X and Y are lattice isomorphic, (or Riesz isomorphic or simply isomorphic), if there exists a one-to-one, onto, lattice preserving linear operator $T: X \to Y$. That is, besides being linear, one-to-one, and surjective, T also satisfies the identities

$$T(x \lor y) = T(x) \lor T(y)$$
 and $T(x \land y) = T(x) \land T(y)$,

for all $x, y \in X$.

The Kakutani-Bohnenblust-M.Krein-S.Krein theorem ([1, Theorem 9.32]) shows that a Banach lattice is an AM-space with unit, if and only if it is lattice isometric to C(K) for some compact Hausdorff space K. The space K is unique (up to homeomorphism). So, we have the following result.

Theorem 5.5. Banach lattice D_{HK} is lattice isometric to C([a,b]).

Proof. The proof follows from Theorem 5.2 and the Kakutani-Bohnenblust-M.Krein-S.Krein theorem. □

Now, we consider the Archimedean property and the Dunford-Pettis Property of D_{HK}.

Recall that a net $\{x_{\alpha}\}$ in a Riesz space is decreasing, written $x_{\alpha} \downarrow$, if $\alpha \geqslant \beta$ implies $x_{\alpha} \preceq x_{\beta}$. The symbol $x_{\alpha} \uparrow$ indicates an increasing net, while $x_{\alpha} \uparrow \preceq x$ (resp. $x_{\alpha} \downarrow \succeq x$) denotes an increasing (resp. decreasing) net that is order bounded from above (resp. below) by x. The notation $x_{\alpha} \downarrow x$ means that $x_{\alpha} \downarrow$ and $\inf\{x_{\alpha}\} = x$. The meaning of $x_{\alpha} \uparrow x$ is similar.

Definition 5.6. A Riesz space X is Archimedean, whenever $\frac{1}{n}x \downarrow 0$ holds in X for each $x \in X^+$.

Theorem 5.7. D_{HK} has the Archimedean property.

Proof. Suppose that $f \in D_{HK}$ with the primitive $F \in C_0([a,b])$ and $0 \le f$ on [a,b]. Then $0 \le F(t)$ for each $t \in [a,b]$. So, $\frac{1}{n}F(t) \downarrow 0$ in $\mathbb R$ for each t. Hence, by the Dini theorem, $\frac{1}{n}F \downarrow 0$ uniformly. It follows that $\frac{1}{n}f \downarrow 0$ in D_{HK} . By Definition 5.6, D_{HK} has the Archimedean property and the proof is complete.

A Banach space X has the Dunford-Pettis Property, if $x_n \xrightarrow{w} x$ in X and $x'_n \xrightarrow{w} x'$ in X' imply $\langle x'_n, x_n \rangle \rightarrow \langle x', x \rangle$, where " \xrightarrow{w} " stands for the weak convergence, see more details in [2, 3].

Theorem 5.8. D_{HK} and BV possesses the Dunford-Pettis Property.

Proof. The Grothendieck theorem ([1, Theorem 9.37]) shows that an AM-space (or AL-space) possesses the Dunford-Pettis Property. Since D_{HK} is an AM-space and \mathcal{BV} is an AL-space, the assertion follows immediately.

6. The σ -order continuity

In this section, we show that the norm on D_{HK} is σ -order continuous but D_{HK} is not Dedekind complete.

Definition 6.1 ([1]). A lattice norm $\|\cdot\|$ on a Riesz space is

- (a) order continuous, if $x_{\alpha} \downarrow 0$ implies $||x_{\alpha}|| \downarrow 0$.
- (b) σ -order continuous, if $x_n \downarrow 0$ implies $||x_n|| \downarrow 0$.

Obviously, order continuity implies σ -order continuity. The converse is false, even for Banach lattices.

Theorem 6.2. The norm $\|\cdot\|$ on D_{HK} defined as in (4.2) is σ -order continuous.

Proof. Suppose that $f_n \in D_{HK}$ with the primitive F_n , $n=1,2,\cdots$, and $f_n \downarrow 0$. Then $F_n(t) \downarrow 0$ for each $t \in [a,b]$. By the Dini Theorem, $\{F_n\}$ uniformly converges to 0. It implies $\|F_n\|_{\infty} \downarrow 0$ in C([a,b]) and therefore $\|f_n\| \downarrow 0$ in D_{HK} . So, the norm $\|\cdot\|$ on the D_{HK} is σ -order continuous and the proof is complete.

A Riesz space X is order complete, or Dedekind complete, if every nonempty subset that is order bounded from above has a supremum. (Equivalently, if every nonempty subset that is bounded from below has an infimum).

Assume that X is a Banach lattice, if for any upper bounded sequence $\{x_n\}$ has supremum $\vee_n x_n$, then X is called σ -complete (or K_{σ} -space). If for any upper bounded set has supremum, then X is called K-space. Obviously, K-space implies K_{σ} -space. The converse is false.

It is a pity that in D_{HK} the monotone convergence theorem is not true and so D_{HK} is not an K_{σ} -space, although D_{HK} is a Banach lattice.

In fact, in $C_0([\mathfrak{a},\mathfrak{b}])$ there exists $\{F_n\}$ such that $-1 \leqslant F_n \uparrow \leqslant \mathbf{0}$ in $C_0[\mathfrak{a},\mathfrak{b}]$, where $\mathbf{0}$ is the zero function, but $\{F_n\}$ does not have a supremum in $C_0([\mathfrak{a},\mathfrak{b}])$. For example,

$$F_{n}(t) = \begin{cases} 0, & \text{if } 0 \leqslant t \leqslant \frac{1}{2} - \frac{1}{n}, \\ -n(t - \frac{1}{2}) - 1, & \text{if } \frac{1}{2} - \frac{1}{n} < t < \frac{1}{2}, \\ -1, & \text{if } \frac{1}{2} \leqslant t \leqslant 1. \end{cases}$$

$$(6.1)$$

The limit function of F_n is

$$F(t) = \begin{cases} 0, & \text{if } 0 \le t < \frac{1}{2}, \\ -1, & \text{if } \frac{1}{2} \le t \le 1, \end{cases}$$
 (6.2)

which is not in $C_0([0,1])$.

By (6.1) and (6.2), it is easy to verify that D_{HK} is not order complete, that is,

Theorem 6.3. D_{HK} is not K_{σ}-space, and also not K-space.

According to Theorem 6.3, we obtain the following consequence.

Corollary 6.4. The cone D_{HK+} is not regular and so is not full regular.

However, D_{HK} can have Dedekind completions as \hat{D}_{HK} , since, by [1, Theorem 8.8], every Archimedean Riesz space has a unique (up to lattice isomorphism) Dedekind completion. That is, the Dedekind completion of D_{HK} is an order complete Riesz space \hat{D}_{HK} having a Riesz subspace M that is lattice isomorphic to D_{HK} (hence M can be identified with D_{HK}) satisfying

$$\hat{f} = \sup\{f \in M : f \leq \hat{f}\} = \inf\{g \in M : \hat{f} \leq g\},\$$

for each $\hat{f} \in \hat{D}_{HK}$.

7. Fixed point theorems and applications

In this section, we apply the conclusions in Section 5 to establish fixed point theorems in D_{HK} . The obtained results are used to prove the existence of solutions of an operator equation and a Volterra integral equation.

Let B be a subset of an order Banach space X. An operator $T : B \to B$ is a nonexpansive operator, if $||T(x) - T(y)|| \le ||x - y||$, $\forall x, y \in B$.

Lemma 7.1 ([20, Corollary 1]). Suppose X is an AM-space. If $B_r \subset X$ is a closed ball and $T : B_r \to B_r$ is a nonexpansive operator, then T has a fixed point in B_r .

Lemma 7.2 ([20, Corollary 2]). *Suppose* X *is an AM-space. If* $I \subset X$ *is a closed order interval and* $T : I \to I$ *is a nonexpansive operator, then* T *has a fixed point in* I.

According to Theorem 5.2 and Lemmas 5.3, 7.1 and 7.2, it is easy to see the following results.

Theorem 7.3. If $T: B_r \to B_r$ is a nonexpansive operator, where

$$B_{r} = \{x \in D_{HK} : ||x|| \le r\}. \tag{7.1}$$

Then the operator T has a fixed point in B_r.

Theorem 7.4. *If* $T: I \rightarrow I$ *is a nonexpansive operator, where*

$$I = [y, z] = \{x \in D_{HK} : y \leq x \leq z\}.$$

Then the operator T has a fixed point in I.

Example 7.5. Consider an operator equation

$$Tx = f(t, x), t \in [0, 1],$$

where $x \in D_{HK}$, $f : [0,1] \times D_{HK} \to D_{HK}$. If there exist $y, z \in D_{HK}$ such that

$$y \leq f(.,x) \leq z$$
, $\forall x \in [y,z]$,

and

$$\|f(.,x_1)-f(.,x_2)\| \leqslant \|x_1-x_2\|, \quad \forall x_1,x_2 \in [y,z].$$

Then T has a fixed point in [y, z].

Proof. For each $x \in [y, z]$, one has

$$y \leq Tx = f(t, x) \leq z$$
,

i.e., $T([y,z]) \subset [y,z]$. Moreover, for any $x_1, x_2 \in [y,z]$, it is easy to see that

$$||Tx_1 - Tx_2|| = ||f(t, x_1) - f(t, x_2)|| \le ||x_1 - x_2||,$$

which implies that T is a nonexpansive operator. In view of Theorem 7.4, the assertion follows immediately.

Example 7.6. Consider a Volterra integral equation of the type

$$x(t) = g(t) + \int_0^t K(t, s)f(s, x(s))ds, \quad t \in [0, 1],$$
 (7.2)

where $x, g \in D_{HK}$, $f : [0,1] \times D_{HK} \to D_{HK}$, $K : [0,1] \times [0,1] \to \mathbb{R}$ is a continuous function with bounded variation. If there exist positive constants r, L such that

$$\|g\| \leqslant \frac{r}{2}, \quad \|K\| \leqslant \frac{1}{2L},$$
 (7.3)

and

$$\|f(.,x) - f(.,y)\| \le L\|x - y\|, \quad \|f(.,x)\| \le \frac{L}{2}\|x\|, \quad \forall x, y \in B_r,$$
 (7.4)

where B_r is defined as in (7.1). Then, the Volterra integral equation (7.2) has a solution.

Proof. Define an operator $T: B_r \to D_{HK}$

$$Tx(t) := g(t) + \int_0^t K(t, s)f(s, x(s))ds, \quad t \in [0, 1].$$
 (7.5)

From (7.3)-(7.5) and Lemma 2.2, it follows that

$$\|Tx\| \leqslant \|g\| + 2\|K\|\|f\| \leqslant \frac{r}{2} + \frac{r}{2} = r,$$

and

$$||Tx - Ty|| \le 2||K|| ||f(.,x) - f(.,y)|| \le ||x - y||.$$

Therefore, $T: B_r \to B_r$ is a nonexpansive operator. By virtue of Theorem 7.3, T has a fixed point in B_r , i.e., the Volterra integral equation (7.2) has a solution.

Remark 7.7. In Examples 7.5 and 7.6, we deal with equations involving distributions, e.g., let

$$f(t,x) = h(x) + \left(\sum_{n=1}^{\infty} \frac{\sin n^2 \pi t}{n^2}\right)',$$

where h(x) is continuous with respect to $x \in C([0,1])$ and (.)' denotes the distributional derivative. According to [22, Remark 1], f(t,x) is neither Henstock-Kurzweil integrable nor Lebesgue integrable on [0,1], so approaches in the literatures [4,6-10,16-18] are no longer effective. This implies that our results are more general.

Acknowledgment

The authors wish to thank the referees for their valuable comments and suggestions. This research was supported by the program of High-end Foreign Experts of the SAFEA (No. GDW 20163200216).

References

- [1] C. D. Aliprantis, K. C. Border, *Infinite dimensional analysis*, A hitchhiker's guide, Third edition, Springer, Berlin, (2006). 5.3, 5, 5, 6.1, 6
- [2] C. D. Aliprantis, O. Burkinshaw, *Dunford-Pettis operators on Banach lattices*, Trans. Amer. Math. Soc., **274** (1982), 227–238. 5
- [3] C. D. Aliprantis, O. Burkinshaw, *Positive operators*, Pure and Applied Mathematics, Academic Press, Inc., Orlando, FL, (1985). 5

- [4] A. Ben Amar, Some fixed point theorems and existence of weak solutions of Volterra integral equation under Henstock-Kurzweil-Pettis integrability, Comment. Math. Univ. Carolin., 52 (2011), 177–190. 7.7
- [5] B. Bongiorno, *Relatively weakly compact sets in the Denjoy space*, The collection of theses of Symposium on Real Analysis, Xiamen, (1993), J. Math. Study, **27** (1994), 37–44. 2
- [6] D. Bugajewski, On the Volterra integral equation and the Henstock-Kurzweil integral, Math. Pannon., 9 (1998), 141–145.
- [7] T. S. Chew, On Kurzweil generalized ordinary differential equations, J. Differential Equations, 76 (1988), 286–293.
- [8] T. S. Chew, F. Flordeliza, On x' = f(t,x) and Henstock-Kurzweil integrals, Differential Integral Equations, 4 (1991), 861–868.
- [9] M. Federson, R. Bianconi, Linear integral equations of Volterra concerning Henstock integrals, Real Anal. Exchange, 25 (1999/00), 389–417.
- [10] M. Federson, R. Bianconi, Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral, Arch. Math. (Brno), 37 (2001), 307–328. 7.7
- [11] D.-J. Guo, Y. J. Cho, J. Zhu, *Partial ordering methods in nonlinear problems*, Nova Science Publishers, Inc., Hauppauge, NY, (2004). 4
- [12] J. Kurzweil, *Henstock-Kurzweil integration: its relation to topological vector spaces*, Series in Real Analysis, World Scientific Publishing Co., Inc., River Edge, NJ, (2000). 1
- [13] J. Kurzweil, *Integration between the Lebesgue integral and the Henstock-Kurzweil integral*, Its relation to local convex vector spaces, Series in Real Analysis, World Scientific Publishing Co., Inc., River Edge, NJ, (2002).
- [14] P. Y. Lee, *Lanzhou lectures on Henstock integration*, Series in Real Analysis, World Scientific Publishing Co., Inc., Teaneck, NJ, (1989). 2
- [15] P. Y. Lee, R. Výborný, *Integral: an easy approach after Kurzweil and Henstock*, Australian Mathematical Society Lecture Series, Cambridge University Press, Cambridge, (2000). 1
- [16] D. O'Regan, Fixed-point theory for weakly sequentially continuous mappings, Math. Comput. Modelling, 27 (1998), 1–14. 7.7
- [17] B. Satco, *Volterra integral inclusions via Henstock-Kurzweil-Pettis integral*, Discuss. Math. Differ. Incl. Control Optim., **26** (2006), 87–101.
- [18] B. R. Satco, Nonlinear Volterra integral equations in Henstock integrability setting, Electron. J. Differential Equations, 2008 (2008), 9 pages. 7.7
- [19] S. Schwabik, G.-J. Ye, *Topics in Banach space integration*, Series in Real Analysis, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, (2005). 1
- [20] P. M. Soardi, Existence of fixed points of nonexpansive mappings in certain Banach lattices, Proc. Amer. Math. Soc., 73 (1979), 25–29 7.1, 7.2
- [21] E. Talvila, The distributional Denjoy integral, Real Anal. Exchange, 33 (2008), 51-82. 1, 2, 2.2, 4, 4.3
- [22] G.-J. Ye, W. Liu, The distributional Henstock-Kurzweil integral and applications, Monatsh. Math., 181 (2016), 975–989. 1, 2, 2.1, 2, 4.5, 7.7