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Abstract
In this paper, we study a special Banach lattice DHK, which is induced by the distributional Henstock-Kurzweil integral,

and discuss its lattice properties. We show that DHK is an AM-space with the Archimedean property and the Dunford-Pettis
property but it is not Dedekind complete. We also present two fixed point theorems in DHK. Meanwhile, two examples are
worked out to demonstrate the results. c©2017 All rights reserved.
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1. Introduction

This is a continuation of the preceding paper [22], where the distributional Henstock-Kurzweil in-
tegral and its properties were studied. The distributional Henstock-Kurzweil integral defined by using
Schwartz distributional derivative is a very wide integral form. It includes the Henstock-Kurzweil integral
and the Lebesgue integral, see details in [12–15, 19, 21, 22]. The space of Henstock-Kurzweil integrable
distributions, denoted by DHK, is a completion of the space of Henstock-Kurzweil integrable functions.

The outline of the present paper is as follows. Section 2 is devoted to the basic notations of the
distributional Henstock-Kurzweil integral. In Section 3, an inner product is introduced in the space DHK
and so DHK is an inner product space. Section 4 proves that the space DHK is a Banach lattice with a
norm cone. Besides, DHK is also an AM-space with the Archimedean property and the Dunford-Pettis
property, the details are carried out in Section 5. In Section 6, we show that the norm on DHK is σ-order
continuous. However, DHK is not Dedekind complete. Finally, we end this paper with applications, where
two fixed point theorems are presented in DHK and two examples are given to demonstrate the results.

2. Basic definitions and preliminaries

For convenience, we use the same notations as in [22] and list some basic ones as follows.
Let (a,b) be an open interval in R, we define
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D((a,b)) = {φ : (a,b)→ R | φ ∈ C∞c and φ has a compact support in (a,b)}.

The distributions on (a,b) are defined to be the continuous linear functionals on D((a,b)). The dual
space of D((a,b)) is denoted by D ′((a,b)).

For all f ∈ D ′((a,b)), we define the distributional derivative f ′ of f to be a distribution satisfying
〈f ′,φ〉 = −〈f,φ ′〉, where φ ∈ D((a,b)) is a test function. Further, we write distributional derivative as
f ′ and its pointwise derivative as f ′(t) where t ∈ R. From now on, all derivatives in this paper will be
distributional derivatives unless stated otherwise.

Denote the space of continuous functions on [a,b] by C([a,b]). Let

C0 = {F ∈ C([a,b]) : F(a) = 0}.

Then C0 is a Banach space under the norm

‖F‖∞ = sup
t∈[a,b]

|F(t)| = max
t∈[a,b]

|F(t)|.

Definition 2.1 ([22, Definition 1]). A distribution f ∈ D ′((a,b)) is said to be Henstock-Kurzweil integrable
(shortly DHK) on an interval [a,b], if there exists a continuous function F ∈ C0 such that F ′ = f, i.e., the
distributional derivative of F is f. The distributional Henstock-Kurzweil integral of f on [a,b] is denoted
by
∫b
a f(t)dt = F(b) − F(a). The function F is called the primitive of f. For short,

∫b
a f = F(b) − F(a).

For every f ∈ DHK, φ ∈ D((a,b)), we write

〈f,φ〉 =
∫b
a

f(t)φ(t)dt = −

∫b
a

F(t)φ ′(t)dt.

The distributional Henstock-Kurzweil integral is very wide and it includes the integrals of Riemann,
Lebesgue, Henstock-Kurzweil, restricted and wide Denjoy (see [14, 21, 22]).

For f ∈ DHK, define the Alexiewicz norm in DHK as

‖f‖ = ‖F‖∞ = sup
t∈[a,b]

|F(t)| = max
t∈[a,b]

|F(t)|.

Under the Alexiewicz norm,DHK is a Banach space, see [21, Theorem 2]. In [5], the author first proved that
the completion, under the Alexiewicz norm, of the family of all Henstock-Kurzweil integrable functions
in [a,b], is the space DHK.

Let g : [a,b] → R, its variation is V(g) = sup
∑
n |g(sn) − g(tn)| where the supremum is taken over

every sequence {(tn, sn)} of disjoint intervals in [a,b]. A function g is of bounded variation on [a,b], if
V(g) is finite. Denote the space of functions of bounded variation by BV. The space BV is a Banach space
with norm ‖g‖BV = |g(a)|+ V(g).

The dual of DHK is BV (see cf. [21]) and we have

Lemma 2.2 ([21, Theorem 7]). (Hölder inequality) Let f ∈ DHK. If g ∈ BV, then∣∣∣∣∣
∫b
a

fg

∣∣∣∣∣ 6 2‖f‖‖g‖BV.

3. An inner product in DHK

In this section we introduce an inner product in DHK so that it is an inner product space.
Let f, g ∈ DHK with the primitives F, G ∈ C0, respectively. We say that f = g if F(t) = G(t)

everywhere.
Define

〈f,g〉 = 〈F,G〉 =
∫b
a

F(t)G(t)dt. (3.1)

Now, we prove that (3.1) is an inner product in DHK.
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(i) For any f ∈ DHK,

〈f, f〉 = 〈F, F〉 =
∫b
a

F2(t)dt > 0,

and 〈f, f〉 = 0 if and only if F(t) = 0 almost everywhere, i.e., f = 0.
(ii) For any f,g ∈ DHK,

〈f,g〉 =
∫b
a

F(t)G(t)dt =

∫b
a

G(t)F(t)dt = 〈g, f〉.

(iii) For any f,g,h ∈ DHK,

〈f,g+ h〉 =
∫b
a

F(t)(G(t) +H(t))dt

=

∫b
a

F(t)G(t)dt+

∫b
a

F(t)H(t)dt = 〈f,g〉+ 〈f,h〉.

By (i), (ii) and (iii), we obtain:

Theorem 3.1. The space DHK is an inner product space with the inner product given in (3.1).

The inner product (3.1) induces a norm

‖f‖〈,〉 =

(∫b
a

F2(t)dt

) 1
2

.

It is easy to obtain
‖f‖〈,〉 6 (b− a)

1
2 ‖f‖.

This means that the norm ‖ · ‖ is stronger than ‖ · ‖〈,〉. However, the two norms ‖ · ‖〈,〉 and ‖ · ‖ in DHK are
not equivalent, because DHK is complete under the norm ‖ · ‖ but not complete under the norm ‖ · ‖〈,〉.
Remark 3.2. The norm ‖ · ‖ on DHK does not induce an inner product, since ‖ · ‖ does not satisfy the
parallelogram law.

Remark 3.3. Although DHK is an inner product space, it is not complete under the norm ‖ · ‖〈,〉. That is,
DHK is not a Hilbert space under the norm ‖ · ‖〈,〉. We know that the Hilbert space is self-conjugate. Since
the dual of DHK is BV, DHK is not self-conjugate and therefore DHK is not a Hilbert space.

4. The ordering in DHK and Banach lattice

We shall first present some basic properties of order Banach space.
A closed subset X+ of a Banach space X is called an order cone, if X+ + X+ ⊆ X+, X+ ∩ (−X+) = {0}

and cX+ ⊆ X+ for each c > 0. It is easy to see that the order relation � defined by

x � y, if and only if y− x ∈ X+,

is a partial ordering in X, and that X+ = {y ∈ X | 0 � y} is an order cone in X. The space X, equipped with
this partial ordering, is called an ordered Banach space. For any r > 0, Br = {x ∈ X : ‖x‖ 6 r} is called a
closed ball in X. The order interval [y, z] = {x ∈ X | y � x � z} is a closed subset of X for all y, z ∈ X. A
sequence (subset) of X is called order bounded, if it is contained in an order interval [y, z] of X. We say
that an order cone X+ of a Banach space is normal, if there exists a constant γ > 1 such that

0 � x � y in X implies ‖x‖ 6 γ‖y‖.

X+ is called regular, if all increasing and order bounded sequences of X+ converge. If all norm-
bounded and increasing sequences of X+ converge, we say that X+ is fully regular. As for the proof of
the following result, see, e.g., [11, Theorem 2.2.2].
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Lemma 4.1. Let X+ be an order cone of a Banach space X. If X+ is fully regular, it is also regular, and if X+ is
regular, it is also normal. Converse holds if X is reflexive.

Assume that X is an order linear space. If for every x,y ∈ X, there exists z ∈ X such that x � z, y � z,
and if x � u, y � u then z � u, then X is called a Riesz space (or lattice) and we denote z = x∨ y.

A vector subspaceM of a Riesz space X is said to be a Riesz subspace (or a vector sublattice), whenever
M is closed under the lattice operations of X, i.e., whenever for each pair x,y ∈M the vector x∨ y (taken
in X) belongs to M.

For a vector x in a lattice X, define x+ = x∨ 0, x− = (−x)∨ 0 and |x| = x∨ (−x), then we call them the
positive part, the negative part and the absolute value (or modulus) respectively. Moreover, x = x+ − x−

and |x| = x+ + x−. Note that |x| = 0, if and only if x = 0.

Definition 4.2. Assume that X is a Banach space, if X is a lattice and

|x| � |y| in X implies ‖x‖ 6 ‖y‖, (4.1)

then X is called a Banach lattice and the norm ‖ · ‖ satisfying (4.1) is called a lattice norm.

Recall that C([a,b]) is a Banach lattice with the uniform norm and so is C0([a,b]). For F ∈ C0([a,b]),
the positive part F+ = F∨ 0 = maxt∈[a,b]{F(t), 0}, the negative part F− = (−F)∨ 0 = maxt∈[a,b]{−F(t), 0},
and hence F = F+ − F− and the absolute value |F| = F+ + F−. Moreover, F+, F−, |F| all belong to C0([a,b]).

Let f ∈ DHK with the primitive F ∈ C0([a,b]), define

f+ = (F+) ′, f− = (F−) ′, |f| = |F| ′.

Then,
f = f+ − f−, |f| = f+ + f−.

See details in [21].
In C0([a,b]) there exists a pointwise order: for F,G ∈ C0([a,b]), F 6 G, if and only if F(t) 6 G(t), for

all t ∈ [a,b]. For f,g ∈ DHK with primitives F,G ∈ C0([a,b]), respectively, let

f � g (or g � f), if and only if F 6 G. (4.2)

Theorem 4.3 ([21, Theorem 23]). DHK is a Banach lattice.

In the Banach lattice DHK, define

DHK+ = {f ∈ DHK : f � 0}. (4.3)

Then DHK+ is an order cone. Moreover, one has

0 � f � g⇒ 0 6 F 6 G⇒ 0 6 F(t) 6 G(t)⇒ ‖F‖∞ 6 ‖G‖∞
⇒ ‖f‖ 6 ‖g‖.

Therefore, the following statement holds.

Theorem 4.4. DHK+ is a normal cone in DHK.

Remark 4.5. In [22], another ordering was introduced in DHK and the cone DHK+ there is proved to be
regular. However, in Section 6, we will prove that the cone DHK+ in (4.3) is not regular, still less full
regular.

5. AM-space

This section shows that DHK is an AM-space. Moreover, we prove that DHK possesses the Archime-
dean property (Theorem 5.7) and the Dunford-Pettis property (Theorem 5.8).
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Definition 5.1. A lattice norm on a Riesz space is:

1. an M-norm, if x,y � 0 implies ‖x∨ y‖ = max{‖x‖, ‖y‖};
2. an L-norm, if x,y � 0 implies ‖x+ y‖ = ‖x‖+ ‖y‖.

A normed Riesz space equipped with an M-norm (resp. an L-norm) is called an M-space. A norm
complete M-space (resp. L-space) is an AM-space (resp. AL-space).

Theorem 5.2. DHK is an AM-space.

Proof. Let f,g ∈ DHK and f,g � 0 with the primitives F and G. Then F,G ∈ C0 and F(t) > 0, G(t) > 0 for
every t ∈ [a,b]. Therefore,

‖f∨ g‖ = ‖F∨G‖∞ = max
t

{F(t),G(t)} = max{‖F‖∞, ‖G‖∞}
= max{‖f‖, ‖g‖}.

This means that Alexiewicz norm ‖ · ‖ in DHK is M-norm. Note that DHK is complete, hence DHK is an
AM-space.

Lemma 5.3 ([1, Theorem 9.27]). A Banach lattice is an AL-space (resp. an AM-space), if and only if its dual is
an AM-space (resp. an AL-space).

Theorem 5.4. BV is an AL-space.

Proof. By Theorem 5.2, DHK is AM-space. It follows from Lemma 5.3 that BV is an AL-space, because BV

is the dual of DHK.

A vector e > 0 in a Riesz space X is an order unit, or simply a unit, if for each x ∈ X there exists some
λ > 0 such that |x| � λe. It is easy to see that DHK is a Banach lattice with unit.

Two Riesz spaces X and Y are lattice isomorphic, (or Riesz isomorphic or simply isomorphic), if there
exists a one-to-one, onto, lattice preserving linear operator T : X → Y. That is, besides being linear,
one-to-one, and surjective, T also satisfies the identities

T(x∨ y) = T(x)∨ T(y) and T(x∧ y) = T(x)∧ T(y),

for all x,y ∈ X.
The Kakutani-Bohnenblust-M.Krein-S.Krein theorem ([1, Theorem 9.32]) shows that a Banach lattice

is an AM-space with unit, if and only if it is lattice isometric to C(K) for some compact Hausdorff space
K. The space K is unique (up to homeomorphism). So, we have the following result.

Theorem 5.5. Banach lattice DHK is lattice isometric to C([a,b]).

Proof. The proof follows from Theorem 5.2 and the Kakutani-Bohnenblust-M.Krein-S.Krein theorem.

Now, we consider the Archimedean property and the Dunford-Pettis Property of DHK.
Recall that a net {xα} in a Riesz space is decreasing, written xα ↓, if α > β implies xα � xβ. The

symbol xα ↑ indicates an increasing net, while xα ↑� x (resp. xα ↓� x) denotes an increasing (resp.
decreasing) net that is order bounded from above (resp. below) by x. The notation xα ↓ x means that xα ↓
and inf{xα} = x. The meaning of xα ↑ x is similar.

Definition 5.6. A Riesz space X is Archimedean, whenever 1
nx ↓ 0 holds in X for each x ∈ X+.

Theorem 5.7. DHK has the Archimedean property.

Proof. Suppose that f ∈ DHK with the primitive F ∈ C0([a,b]) and 0 � f on [a,b]. Then 0 6 F(t) for each
t ∈ [a,b]. So, 1

nF(t) ↓ 0 in R for each t. Hence, by the Dini theorem, 1
nF ↓ 0 uniformly. It follows that

1
nf ↓ 0 in DHK. By Definition 5.6, DHK has the Archimedean property and the proof is complete.
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A Banach space X has the Dunford-Pettis Property, if xn
w−→ x in X and x ′n

w−→ x ′ in X ′ imply 〈x ′n, xn〉 →
〈x ′, x〉, where “ w−→” stands for the weak convergence, see more details in [2, 3].

Theorem 5.8. DHK and BV possesses the Dunford-Pettis Property.

Proof. The Grothendieck theorem ([1, Theorem 9.37]) shows that an AM-space (or AL-space) possesses
the Dunford-Pettis Property. Since DHK is an AM-space and BV is an AL-space, the assertion follows
immediately.

6. The σ-order continuity

In this section, we show that the norm on DHK is σ-order continuous but DHK is not Dedekind
complete.

Definition 6.1 ([1]). A lattice norm ‖ · ‖ on a Riesz space is
(a) order continuous, if xα ↓ 0 implies ‖xα‖ ↓ 0.
(b) σ-order continuous, if xn ↓ 0 implies ‖xn‖ ↓ 0.

Obviously, order continuity implies σ-order continuity. The converse is false, even for Banach lattices.

Theorem 6.2. The norm ‖ · ‖ on DHK defined as in (4.2) is σ-order continuous.

Proof. Suppose that fn ∈ DHK with the primitive Fn, n = 1, 2, · · · , and fn ↓ 0. Then Fn(t) ↓ 0 for
each t ∈ [a,b]. By the Dini Theorem, {Fn} uniformly converges to 0. It implies ‖Fn‖∞ ↓ 0 in C([a,b])
and therefore ‖fn‖ ↓ 0 in DHK. So, the norm ‖ · ‖ on the DHK is σ-order continuous and the proof is
complete.

A Riesz space X is order complete, or Dedekind complete, if every nonempty subset that is order
bounded from above has a supremum. (Equivalently, if every nonempty subset that is bounded from
below has an infimum).

Assume that X is a Banach lattice, if for any upper bounded sequence {xn} has supremum ∨nxn,
then X is called σ-complete (or Kσ-space). If for any upper bounded set has supremum, then X is called
K-space. Obviously, K-space implies Kσ-space. The converse is false.

It is a pity that in DHK the monotone convergence theorem is not true and so DHK is not an Kσ-space,
although DHK is a Banach lattice.

In fact, in C0([a,b]) there exists {Fn} such that −1 6 Fn ↑6 0 in C0[a,b], where 0 is the zero function,
but {Fn} does not have a supremum in C0([a,b]). For example,

Fn(t) =


0, if 0 6 t 6 1

2 −
1
n ,

−n(t− 1
2) − 1, if 1

2 −
1
n < t <

1
2 ,

−1, if 1
2 6 t 6 1.

(6.1)

The limit function of Fn is

F(t) =

{
0, if 0 6 t < 1

2 ,
−1, if 1

2 6 t 6 1,
(6.2)

which is not in C0([0, 1]).
By (6.1) and (6.2), it is easy to verify that DHK is not order complete, that is,

Theorem 6.3. DHK is not Kσ-space, and also not K-space.

According to Theorem 6.3, we obtain the following consequence.

Corollary 6.4. The cone DHK+ is not regular and so is not full regular.
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However,DHK can have Dedekind completions as D̂HK, since, by [1, Theorem 8.8], every Archimedean
Riesz space has a unique (up to lattice isomorphism) Dedekind completion. That is, the Dedekind com-
pletion ofDHK is an order complete Riesz space D̂HK having a Riesz subspaceM that is lattice isomorphic
to DHK (hence M can be identified with DHK) satisfying

f̂ = sup{f ∈M : f � f̂} = inf{g ∈M : f̂ � g},

for each f̂ ∈ D̂HK.

7. Fixed point theorems and applications

In this section, we apply the conclusions in Section 5 to establish fixed point theorems in DHK. The
obtained results are used to prove the existence of solutions of an operator equation and a Volterra integral
equation.

Let B be a subset of an order Banach space X. An operator T : B → B is a nonexpansive operator, if
‖T(x) − T(y)‖ 6 ‖x− y‖, ∀x,y ⊂ B.

Lemma 7.1 ([20, Corollary 1]). Suppose X is an AM-space. If Br ⊂ X is a closed ball and T : Br → Br is a
nonexpansive operator, then T has a fixed point in Br.

Lemma 7.2 ([20, Corollary 2]). Suppose X is an AM-space. If I ⊂ X is a closed order interval and T : I → I is a
nonexpansive operator, then T has a fixed point in I.

According to Theorem 5.2 and Lemmas 5.3, 7.1 and 7.2, it is easy to see the following results.

Theorem 7.3. If T : Br → Br is a nonexpansive operator, where

Br = {x ∈ DHK : ‖x‖ 6 r}. (7.1)

Then the operator T has a fixed point in Br.

Theorem 7.4. If T : I→ I is a nonexpansive operator, where

I = [y, z] = {x ∈ DHK : y � x � z}.

Then the operator T has a fixed point in I.

Example 7.5. Consider an operator equation

Tx = f(t, x), t ∈ [0, 1],

where x ∈ DHK, f : [0, 1]×DHK → DHK. If there exist y, z ∈ DHK such that

y � f(., x) � z, ∀x ∈ [y, z],

and
‖f(., x1) − f(., x2)‖ 6 ‖x1 − x2‖, ∀x1, x2 ∈ [y, z].

Then T has a fixed point in [y, z].

Proof. For each x ∈ [y, z], one has
y � Tx = f(t, x) � z,

i.e., T([y, z]) ⊂ [y, z]. Moreover, for any x1, x2 ∈ [y, z], it is easy to see that

‖Tx1 − Tx2‖ = ‖f(t, x1) − f(t, x2)‖ 6 ‖x1 − x2‖,

which implies that T is a nonexpansive operator. In view of Theorem 7.4, the assertion follows immedi-
ately.
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Example 7.6. Consider a Volterra integral equation of the type

x(t) = g(t) +

∫t
0
K(t, s)f(s, x(s))ds, t ∈ [0, 1], (7.2)

where x,g ∈ DHK, f : [0, 1]×DHK → DHK, K : [0, 1]× [0, 1] → R is a continuous function with bounded
variation. If there exist positive constants r,L such that

‖g‖ 6 r

2
, ‖K‖ 6 1

2L
, (7.3)

and
‖f(., x) − f(.,y)‖ 6 L‖x− y‖, ‖f(., x)‖ 6 L

2
‖x‖, ∀x,y ∈ Br, (7.4)

where Br is defined as in (7.1). Then, the Volterra integral equation (7.2) has a solution.

Proof. Define an operator T : Br → DHK,

Tx(t) := g(t) +

∫t
0
K(t, s)f(s, x(s))ds, t ∈ [0, 1]. (7.5)

From (7.3)-(7.5) and Lemma 2.2, it follows that

‖Tx‖ 6 ‖g‖+ 2‖K‖‖f‖ 6 r

2
+
r

2
= r,

and
‖Tx− Ty‖ 6 2‖K‖‖f(., x) − f(.,y)‖ 6 ‖x− y‖.

Therefore, T : Br → Br is a nonexpansive operator. By virtue of Theorem 7.3, T has a fixed point in Br,
i.e., the Volterra integral equation (7.2) has a solution.

Remark 7.7. In Examples 7.5 and 7.6, we deal with equations involving distributions, e.g., let

f(t, x) = h(x) +

( ∞∑
n=1

sinn2πt

n2

) ′
,

where h(x) is continuous with respect to x ∈ C([0, 1]) and (.) ′ denotes the distributional derivative.
According to [22, Remark 1], f(t, x) is neither Henstock-Kurzweil integrable nor Lebesgue integrable on
[0, 1], so approaches in the literatures [4, 6–10, 16–18] are no longer effective. This implies that our results
are more general.
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