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Abstract

In the present work, the Adomain decomposition and double Laplace transform methods are combined to solve linear
singular one dimensional hyperbolic equation and linear singular one dimensional thermo-elasticity coupled system. Also we
address the convergence of double Laplace transform decomposition method. Moreover, some examples are given to establish
our method. (©2017 All rights reserved.
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1. Introduction

In general, it is reported in the literature that finding the exact solutions for partial differential equa-
tions is a complicated task. Therefore, some recent approximate methods to overcome this task have been
improved, such as homotopy perturbation method [4, 19], combined Laplace transforms and decomposi-
tion method [6] to solve first order differential equation, an auxiliary parameter method using Adomain
polynomials and Laplace transformation have been powerfully combined [13] to study the nonlinear dif-
ferential equation. The one dimensional nonlinear hyperbolic equation with Bessel operator is one of the
fundamental nonlinear wave equations having many applications in science. The energy-integral method
is used to handle nonlinear singular one dimensional hyperbolic equation [7]. In [18] authors studied a
nonlocal mixed problem for a nonlinear singular system of thermo-elasticity by using a functional analy-
sis approach and an iteration method. The goal of this paper is to study the application of the modified
double Laplace transform decomposition method to solve a linear singular one dimensional hyperbolic
equation and linear singular one dimensional thermo-elasticity coupled system. The convergence of Ado-
mian’s method has been studied by several authors [1-3, 5, 10]. Now, we give the following definitions
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which are given by [8, 9, 14, 15]. The double Laplace transform is defined as

L L¢ [f(x,8)] =F(q,s) = J eq"J e SHf(x,t)dt dx, (1.1)
0 0
where x,t > 0 and q, s are complex values, and further double Laplace transform of the first order partial
derivatives is given by
ov(x,t)
0x

Similarly the double Laplace transform for second order derivative with respect to the variables x and
t are defined as follows

L.L¢ [ ] =qV(q,s) —VI(0,s). (1.2)

LiLe [‘“’Zgg’;“] =q°U(q,s) —qU(0,s) — aua(g,s)/
L.L [a%g(;it)] — s2U(q,s) — sU(q,0) — aué‘i’o). (1.3)
First of all we need the following lemma for future use in this paper.
Lemma 1.1. Double Laplace transform of the non-constant coefficient second order partial derivative x“g% and

the function x™f(x, t) given by
dm %u %u
g [t ()] - (58

LeLe (x™(x, 1)) = (-1)" i; oL (f0e )] = (-1)" dnzéﬂs)

and

We can prove this lemma by the aid of the definition of double Laplace transform in (1.1), (1.3) and
(1.2).
2. Singular one dimensional hyperbolic equation

In this part of the paper we discuss how to obtain the solution of the singular one dimensional
hyperbolic equation:

%u 1 ou
W = ; <Xax>x +f (X, t) , (21)
subject to
ou (x,0)

u(x,0) =" (x), =1, (x), (2.2)

ot
ou

where % (XW)X is called Bessel operator and f (x, t), f; (x) and f; (x) are known functions. In the follow-
ing theorem we apply modified double Laplace decomposition methods.

Theorem 2.1. The solution of the singular one dimensional hyperbolic equation given in (2.1) exists and is given
by

g1 | 1 g
u(x,t) =f (x) +tfr (x) — Lg L LZLXLt U xf (x, 1) dq”
0

1 q 0
N S e N e il
Ly L [SZLXLt UO (Xax Eoun) dq” , (2.3)
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where

u(x,t) = i un (x,t),
n=0

and LyL double Laplace transform with respect to x, t and Lgll_s_l double inverse Laplace transform with respect
to q, s, further Ay, represents the linear terms. Here we provided double inverse Laplace transform with respect to p
and s exists for each terms in the right hand side of (2.3).

Proof. We first apply the double Laplace transform to equation in (2.1), then in presence of initial con-
ditions (2.2), and the differentiation property of double Laplace transform together with Lemma 1.1, we
obtain:

du(q,s) 1dF(q) 1 dFa(q)
dp s dq s2  dq

— j—ZLXLt [<xgz) ] — Sl—ZLXLt [xf (x,1)]. (2.4)

By applying the integral for both sides of (2.4) from 0 to q, we get

q
U(q,s) = Fls(q) + Fzs(zq) = 512 L LyL¢ [xf (x,t)] dq

q
— slz JO L Ly Kxgz) } dq. (2.5)

The double Laplace Adomain decomposition methods (DLADM) defines the solution of linear singular
one dimensional hyperbolic equation as u (x, t) by the infinite series

u(x,t) = i Un (x,1).
n=0

By applying double inverse Laplace transform for (2.5) we obtain
u(x,t) = f1 (x) + tf2 (x)

11|19
_ quLs 1 |:82 JO L.L¢ [xf (X, t)] dq:|

o [1 d
. e [32 L L. [(xa‘:)x] dq}, (2.6)

then the general decomposition formula for (2.6) is given by

w(x,t) = fi (x) +tf (x) =L 'Lg ! leLXLt qu xf (x, 1) dq”

1|1 100 ¢
—1g'! [szl_xl_t UO <Xax Zun> dq” )
n=0 x
In particular, we have
-1 |1 a
o () = 1 () + thy (x) — Ly 'Ly LZLXLt U (xF (1)) qu ,
0

and

1 S P
Uni1 (1) = —L'L! [SZLXLt UO (an Zun> dq”,
n=0 x
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wheren =0,1,2,---, and by calculating the terms ug, u;,u, - - - we obtain the solution as follows
ux,t)=uw+uw +up+---.
O

In order to establish our method for solving the singular one-dimensional hyperbolic equation, we

consider the following example.

Example 2.2. Let us consider the one dimensional hyperbolic equation
?u 1 ou 5 . .
~—5 — — [Xx5= ] =-—x"sint—4sint,
otz x U ox/,

associated with the initial conditions

B ou(x,0) 5
u(x,0) =0, T = x°.
By taking the double and single Laplace transform for (2.7) and (2.8) respectively, we obtain
du(q,s) 6 6 4 1 ou
=— — < LiL — .
dq qts? * q*s? (s2+1) * q2s2(s2+1) 2 " [(Xax>x]

By taking integral in both sides of (2.9) from 0 to q, we have

5 D) 4 1 14 ou
U(q,s) = @3s2 @Bs2(s2+1) qs2(s2+1) _SZJO bk KXaX>J aa

By using double inverse Laplace transform, we have
1 0
u(x,t) =x*sint+4sint—4t—L 'L <32 JLXLt [(xt) ] dq) ,
X

and by using equation (2.3), we obtain

o0 ] ] B B 1 q a oo
nZOun (x,t) :x2sm‘c—i—45m’c—4t—quLs1 <S2J L.L¢ [(Xax Zun) ] dq) ,
= X

0 n=0

Uy = x?sint +4sint — 4t.

The other components are given by

o1 (1[4 ) —
Uny1 = _quLS 1 (SZ JO I—XLt [(Xax Z un> ] dq) .
n=0 x
11 (1 (@ 9
w = -1 <52 L L L [(xaxuo) J dq) ,

u; =4t —4sint,

Therefore

and
Uy = 0.

It is obvious that the rest coming terms all zeros, we have
u(x,t)=up+u;+---

Therefore, the exact solution is given by

2

u(x,t) =x"sint.

(2.7)

2.8)

(2.9)
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3. Linear singular one dimensional thermo-elasticity coupled system

In this section of the paper, we apply our technique to solve the linear singular one dimensional
thermo-elasticity coupled system given below

0?2 1 0 0
gu <x“u) +X—V:f(x,t), xcQ,
X

otz xn 7 ox ox
g\t)—;i<x“g;>x+xaaj§t:g(x,t), t>0, (3.1)
subject to
w0 =0, 20 o6, v0 =0, 62)
where ,%n (x“g—‘;)x and ,%n (x“g—;’)x are called Bessel’s operators, f (x,t), g (x,t),f1 (x), f2 (x) and g; (x) are
known functions and n = 1,2,3,---. To obtain the solution of Linear singular one dimensional thermo-

elasticity coupled system of (3.1), we apply our method as follows. On using the definition of partial
derivatives of the double Laplace transform and single Laplace transform for (3.1) and (3.2) respectively
and Lemma 1.1, we get

d"U(q,s) _d"Fi(q) A d"F2(q) d"F(q,s)

dqn sdqn s2dqm s2dqm
" 0 0
I [(02) ]

0x 0x

and

dnv(qls) _ dnGl (q) + dTlG (qls)

dqm sdqm sdqm™
(_1)“ n ov n+1 azu
T Babe || X ox /), oot

where F(q,s), G(q,s),Fi1(q), F2(q) and G;(q) are double and single Laplace transforms of f(x,t),
g(x,t),f1(x),f2(x) and g; (x) respectively. By integrating n times for both sides of (2.4) from 0 to q
with respect to ¢, we obtain

B d"Fi1(q) A d"Fa(q) | d"F(q,s)
U(q,s)—JJ...J( sdqn + 2dqn + 2dqn dq...dqdq

=k 0 .0
x5 JJ...J(LXLt Kx £>X—x +1a>V<D dq...dqdq, (3.3)

_ d"Gi(q) L d"G(q,s)
V(q,s)_JJ...J< sdqn + sdqn )dq...dqdq

(—" “’ J n OV el 0%u
N — — —_— . 4
+ . LiL¢ | | x o). X %ot dq...dqdq (3.4)

The double Laplace Adomain decomposition methods (DLADM) defines the solution of the system as
u(x,t) and v (x, t) by the infinite series

and

o0

u(x,t) = Z un (x,t), vixt)= Z vn (x,t). (3.5)
n=0

n=0
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By applying double inverse Laplace transform for (3.3) and (3.4) and using (3.5), we have
1 d"Fi(q)  d"Fa(q)  d"F(q,s)
_ 71171 1
u(x,t) =14 L UJJ( qu + dqn + 2dqn dq...dqdq
+L L <LXLt K ) ]) dq...dqdq]

< [ ntl D dq...dq] , (3.6)
vixt) =Lg'L! U J(d Gl q) d G(q’ )>dq...dqdq}

+L 'L 1[ <Lth K ) qu...dqdq}

11 0%

JJ J(L Lt[ ™ at]) dqg..dqdq]| . (3.7)

+1g It

[ n+1
[~

n+1

+L Lt [
In particular, if n =1, (3.6) and (3.7) becomes

u(x,t) =f1 (x)+tf2 (x) + Lgll_s_l le Joq dF(q, s)]

1 (4 ou ov
=171 x2
et [ () 2 ad], o

and

| S

q 2
P [1 | (mt [(g) et at]) dq] . (39)

By using (3.5) into (3.8) and (3.9) we get

v(x,t) =g1(x)+ Lgll_s_l E Joq dG (q,s)]

Zun(x,t):fl( ) +tfa (x) + Ly 11__1 [1 qu s)}
n=0

— L't [2 LyL <x (Z Unx (%, 1) >> dq]
n=0 x

1 o0
+ Lgngl [52 JO LyL¢ [XZ Z Vnx (X, t)] dq] ,
n=0

(/)
O

and

OO q
Y vl t) =g (x) + LML [1 L dG (q,s)]
n=0

e [U (LXLt !(an_ovm (x,t)) D dq]
2 [o/e]
+Lg! [U (LXLt ["Zaiat <nZ_Oun (x,t))]) dq] .
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In particular
11 [ L[
g (x,t) =f1 (x) +tf2 (x) + L Ly LZJ dF (q,s)] ,
0

q
vo (x, 1) = g1 (x) + Lg 'L [1 JO dG (q,s)] . (3.10)

Generally we have

Uni1 (x,t) = —Lall_s_l

g |1 (A >
S e SZL LL¢ [x2va (X,t)] dq], (3.11)

0
(LXLt ["Zai; (i Un (x,t))]) dq] . (3.12)

By calculate the terms ug, uy,--- and vo, vy, - - -, we get the solution of our system as

—17 -1
+ 1L

Vst (1) = —L;'L;! !

ulx,t)=u+u +---, and vix,t) =vg+vy+---
In the following example we consider n =1 in (3.1) as

Example 3.1. Consider the following linear singular one dimensional thermo-elasticity coupled system

02 1 0 0
gu_- x—u +x—v:—x2sint—4sint+2xzet, x € Q,
otz x \'ox/, Ox

ov 1/ v %u 2t
——=[x= — = —4e® +2x 0, 3.13
m x<xax>x+xaxat x“e e"+2x“cost, t> (3.13)
subject to
0
w(x,0) =0, “é’;’o):x% v (x,0) = x2. (3.14)

By using modified double Laplace decomposition methods for (3.13), (3.14) and apply (3.8), (3.9), we have

w(x,t) = x?sint +4sint — 4t + 2x%et — 2x%t — 2x?

1 (4 ou ov
P e J Lele [(x5— ) =%
Lo'Ls s2 Jo 1\ X ox N ox dqj,

v(x,t) =x*et —4et + 2x%sint — 4

1 ov o%u
_r—1y-1|t v 2
Lt [ (e (52) 5 ) oo

On using (3.10), (3.11) and applying (3.12), we get

and

up (x,t) = x%sint +4sint — 4t + 2x%et — 2x%t — 2x2,
vo (x,t) = x%et —4et +2x%sint — 4,
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w (x,t) = —4t+4x%sint —4sint + 8¢t — 8 — §t3 — 412 — 2x%et — 2Pt + 2X7,
vi (x,t) = 4x%et +4et —2x%sint + 4 — 8 cost — 4x2,
and
Uy (x,t) =8t —4x%sint — 16sint — 8et + 8 + §t3 + 412 — 4x%et + 8x%t + 4x% + 2x%t2,
Vo (x,t) = 4x%e' + 16et — 8x?sint — 24 + 8 cos t — 4x? + 4x°t — 16t.
Therefore, the approximate solution is
ulx,t)=uw+u +---, and vix,t)=vg+vy+---.

We obtain the closed form solution

2 2

u(x,t) =x*sint, and v(x,t)=xe".

4. Convergence analysis

In this section, we discuss the convergence analysis of the modified double Laplace decomposition
methods for the nonlinear singular one dimensional hyperbolic equation. We propose to extend this idea
given in [16, 17]. First of all let us consider the Hilbert space H = Li((a,b)x [0, T]), where a < 0 with
following scalar product

u:(a,b)x[0,T] - R, with Hu||%4 = unZ (x,1) dxdt
Q
(u,v) = un (x,t)v(x,1t) dxdt,
Q
where Q = (a,b) x [0, T] and

H— (u,v) : (a,b) x [0, T], with
L [ [ Ll b (x, 0] (p, s) dp] (x,1) < o0

Problem: We consider the nonlinear singular one dimensional hyperbolic equation that is given by

2u 10 ou ou
= (x— — 4+ f t 4.1
ot2  x0x <Xax)+“ax+ (W), >0, (1)

for all u,v € H. We define H as H = L2 ((a,b)x [0,T]) and

u:(a,b)x[0,T] - RxR, with HquH = unz (x,t) dxdt
Q

(u,v) = un (x,t)v(x,t) dxdt,
Q

where Q = (a,b) x [0, T] and
Ho { (u,v) : (a,b) x [0, T], with }
L;ll_s_l [% fg LiLe lu(x,t)] (q,8) dq] (x,t) < oo
Multiplying both sides of (4.1) by x and write the equation in the operator form

T2 ox o2 27 dx

where [x| < b. Since L is hemicontinuous operator, then we have the following definition.

+xf(u), u=u(x,t), t>0, (4.2)
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Definition 4.1.

(H1)
1
Hu—sz < X (Luy—Lv),u—v), k>0, Vu,veH.
(H2) For any positive constant N*, there exists a constant C (N*) > 0 such that for u,v € H with N* >

|lu||, and N* > ||v|| we have:

1
C(N*)

[w—=vl{jwl = (L(w)—L(v),w),

for each w € H. For more details see [16, 17].
Now by using the above definition we have the next theorem and we follow [10-12].

Theorem 4.2 (Sufficient condition of convergence). The modified double Laplace decomposition methods applied
to the nonlinear singular one dimensional hyperbolic equation (4.2) with homogenous initial condition, converges to
a solution.

Proof. Firstly we try to verify the hypothesis (H1) for L(u) of (4.2). By using the definition of L, we have

L — L (o1 02 LD 0 oy oo
(u) — (V)—a(U—VH—Xw(u—V)—l—EXa (u —v)—i—x( (u) —f(v)),
therefore,
(LW —L (), u—v) = (a (w—v), u—v)
0x
62
+< i 55 (u—v), u—v) 43

1 0o
+ <2Xax (u? —v?) ,u—v)

+ (x(f(u) —~F(v)),u—v).

According to the coercive operator the differential operator and a 32 in H, there exist constants «, 3,
0 > 0 such that

ox

and by using Cauchy-Schwarz inequality we have
2

62
_ < = (-
( az(u v),u V)\X| axz(u

2
< Bb flu—v]

<a (u—v), u—v) > llu—v|?, (4.4)

[u—v]|

(4.5)

i

02 >
Xas 5 u—v),u—v| > -pblu—v|,

where [[u| < N* and ||v|]| < N*, and according to the Schwarz inequality, we get

1 0 5 o 1
(—2xax(u Vi), u v)<2

1 W2
zbeHu H lu—v|

0 2
x (u —\))
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1
< 500 utv lu—v]?

< BON* lu—v|?.

Hence

(;Xaax (u? —v?) ,u—v) > —bON* |[u—v]. (4.6)
By using Schwarz inequality, where o > 0 as f is Lipschitzian function, we obtain
(=x(f(u) = f(v)), u—v) <[ ||f — W) [u—=v]
<bf () = (V)] e —v]
< bGHu—vHZ (4.7)
-~
(x (F (W) = f(v)), u =) > ~bo [Ju—v]?.

Substituting (4.4), (4.5), (4.6) and (4.7) into equation (4.3) gives

(x—Bb—bON* —bo) [[u—v|?,

So the hypothesis (H1) holds, where
k = o — BN* — bON* — bo > 0.

Let us now verify hypotheses (H2) for L(u). For any N* > 0 there exists a positive constant C (N*) > 0
such that for all u,v € H with |ju|| < N¥, ||v|| < N*, and there exist constants &, xp, 31, 01 > 0 such that

(L(w) =L v),w) < C(NT) flu—=v[[[w],

(L)~ (: )
X

for all w € H. So we have,

0w

162
5?“‘” )
)

—f(v)),w).

The boundedness of the functions u and v and using Schwarz inequality lead to
0
(s tw=v)w) <o fu=vlwl,

62
(322 (w=v),w) < 0B fu vl ]
X

1 0 1
<><X@3—#)m) 50 ellfu+ v =] ]

2
< LN [[u—v|flw],
<b

(x (f (u) —f(v)),w)

o [lu—=v{jwl,
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so we have
(L(w) —L(v),w) < (o1 +bB1 +bozN* +boy) [[u—v [w]|
= CIN) lu—=v lwll,
where
C(N*)=(x1+bp1+baxN*+boy),
and therefore (H2) holds. This completes the proof. O

Conclusion 4.3. In this work, first, we proposed new modified double Laplace decomposition methods to solve linear
singular one dimensional hyperbolic equation and linear singular one dimensional thermo-elasticity coupled system.
The efficiency and accuracy of the present scheme are validated through examples. Many classes of single and
systems of partial differential equations either linear or nonlinear can be treated and studied by the used method and
does not require linearization. Second, we presented a convergence proof of the (DLADM) applied to the nonlinear
singular one dimensional hyperbolic equation.
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