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Abstract

We study complete properties of root vectors of Schrödinger operators. More accurately, denote by B(r0) be the ball
centered at the origin with radius r0 and L1(B(r0)) the space which consists of real functions f(x) satisfying

∫
B(r0)

|f(x)|dx <∞,
then the complete properties of eigenvectors for Schrödinger equation are characterized. Our characterization depends on the
sum of eigenvalues. Our proof is based on a complex-analytic conjugate approach which is widely used in the investigation of
completeness of function systems in Banach spaces. c©2017 All rights reserved.
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1. Introduction and notations

By a complete system of elements {ek} of a Banach space B, we mean Span{ek} = B, i.e., the com-
pleteness is equivalent to the possibility of an arbitrary good approximation of any element of the space
by linear combination of elements of this system. The completeness of solutions or root vectors of PDE
and ODE has been investigated extensively. It is well-known that this problem is interesting both in
mechanics and differential equations. As far as we know, the completeness of root vectors of ordinary
differential equations could be traced back to 1970s, see [12] for example. The completeness problem of
ODE is in connection with analysis (see, [7] and [13] ). In [16], the completeness of eigenfunctions for
non-self-adjoint Sturm-Liuville operators are investigated by using the characteristic determinant. The
completeness of the Floquet solutions are investigated for the parabolic equation which describes small
oscillations of a fluid-system in [8].

Completeness of solutions of partial differential equations were considered in [9], where applications
to inverse problems were also given. A uniqueness theorem was established for inverse scattering with
fixed energy data in [14]. The phase shifts in this theorem are of some practical significance because they
can be measured in some physical experiments. They are also related to the classical Müntz Theorem
which states the necessary and sufficient conditions for a system of polynomials with gap to be complete
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in the Banach space consisting of continuous functions on a finite interval. In [3], the completeness of
eigenvectors for elliptic operators is proven. The completeness problem for abstract elliptic equations is
investigated in [17].

The completeness of the eigenmodes of a grounded parallel plate waveguide is given in [10], whose
proof is based on a general theorem governing the completeness of sets of complex exponentials, which
is similar to the complex-analytic approach to [18, 20] and [19].

Most of papers on completeness of Schrödinger operators are characterized by boundary conditions.
In [2], the completeness of solution system is characterized by the characteristic root of the equation. For
delay equation y

′
(t) = ay(t− 1), denote by {αn} the characteristic root of the equation, then the solution

system becomes {eiαnt}. The author reduces the investigation of properties of solution system to expo-
nential system.

As is well-known, there has been a lot of activity in connection with spectra with Schrödinger oper-
ators (see [5] and [11] for example). Inspired by [2], in this paper, we will investigate the completeness
of root vector systems associated to Schrödinger operators by spectral conditions rather than boundary
conditions. Our proof is based on the complex-analytic approach which is similar to [10, 18, 20] and [19].
More accurately, we will consider PDE of the form

(∆+ λ2 − q(x))h = 0, (1.1)

where q(x) satisfies the following:

Assumption 1.1. Let q be compactly supported, i.e., q(x) = 0, for |x| > r0, where r0 > 0 is an arbitrary
large fixed number; q(x) is real-valued, i.e., q = q; and q(x) ∈ Hk0 (Br0),k > 3.

Throughout this paper, points of Cn will be denoted by z = (z1, ..., zn), where zk ∈ C. If zk = xk+ iyk,
x = (x1, ..., xn),y = (y1, ...,yn), then we write z = x+ iy. The vectors x = <z and y = =z are the real
and imaginary parts of z, respectively, Rn will be thought of as the set of all z ∈ Cn with =z = 0. The
notations

|z| = (|z1|
2 + · · ·+ |zn|

2)1/2,

|<z| = (|x1|
2 + · · ·+ |xn|

2)1/2,

|=z| = (|y1|
2 + · · ·+ |yn|

2)1/2,
〈z, t〉 = z1t1 + · · ·+ zntn,

will be used for any t ∈ Rn and λ ∈ Cn. Let A denote positive constants, it may be different at each
occurrence. The symbol D(a, t) is used to denote the disk |z − a| < t. The letter A denotes positive
constants and it may be different at each occurrence. Throughout this paper, the upper half-plane
{z = x+ iy : y > 0} is denoted by C+.

Section 2 is devoted to the study of completeness of root vectors for Schrödinger operators. The
conjugate argument will be applied to characterize the completeness of root vectors for Schrödinger
operators.

2. Completeness of root vectors

In this section, we obtain some complete criterion which is characterized by the spectra of Schrödinger
operators.

We shall recall some background knowledge of Schrödinger operators. Following [4], we recall a few
basic facts regarding the eigenvalues of a compact, linear operator T in a Banach space B. The geometric
multiplicity, m(λ0, T), of an eigenvalue λ0 ∈ σp(T) of T is given by m(λ0, T) := dim(ker(T − λ0)).

The root subspace of T corresponding to λ0 ∈ σp(T) is given by

Rλ0(T) = {f ∈ B| (T − λ0)
kf = 0, for some k ∈N}.

Elements of Rλ0(T) are called root vectors.
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Denote by {λj}
∞
j=1 the sequence of non-zero eigenvalues of T and let nj be the algebraic multiplicity of

λj. By a system of root vectors of the operators T , we mean a family of the form∞⋃
j=1

{ejk}
nj
k=1,

where {ejk}
nj
k=1 is a basis in Rλj(T).

We are particularly interested in the case where T is a densely defined, closed, linear operator in B.
Let us recall some basic knowledge on scattering solutions from [15]. Denote by h(x,α, λ) the scattering

solution solves the scattering problem (1.1)

h = eiλ<α,x> +A(α,β, λ)
eiλr

r
+ o(

1
r
),

where r := |x|→∞,β := x
r , furthermore, α,β ∈ S2 are the unit vectors, S2 is the unit sphere.

Let
f̃(ξ) =

∫
R3
f(x)ei<ξ,x>dx, f(x) =

1
(2π)3

∫
R3
e−i<ξ,x>f̃(ξ)dx,

f ∗ g :=

∫
R3
f(x− y)g(y)dy.

Denote by

f(x,y, λ) :=
eiλ|x−y|

4π|x− y|
,

then the scattering solution h = h(x,α, λ) solves the integral equation,

h(x,α, λ) = eiλ<α,x> −

∫
B(r0)

f(x,y, λ)q(y)h(y,α, λ)dx.

If
v = e−iλ<α,x>h(x,α, λ),

then
v = 1 −

∫
B(r0)

F(x− y, λ)q(y)h(y,α, λ)dx, (2.1)

where

F(x− y, λ) =:=
eiλ|x−y|−<β,x−y>

4π|x− y|
.

Define ε by
v = 1 + ε, (2.2)

then (2.1) can be rewritten as

ε(x,α, λ) = −

∫
B(r0)

F(x− y, λ)q(y)v(y,α, λ)dx−Gε,

where
Gε :=

∫
B(r0)

F(x− y, λ)q(y)ε(y,α, λ)dx.

We also need some results on analytic functions. We will make use of the following result from [6].

Lemma 2.1. Let Λ = {λn} be a sequence of complex numbers satisfying

0 < sup{| arg λn|} < π, (2.3)

and
inf{||λn|− |λn−1||} > 0, (2.4)

furthermore, letm be a nonnegative integer. An analytic function f(z) in the upper half-plane C+ vanishing exactly
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on Λ = {λn} can be decomposed as
f(z) = B(z)g(z),

where g(z) is zero free, the function B(z) is the Blaschke product

B(z) =
(z− i
z+ i

)m ∞∏
n=1

|λ2
n + 1|
λ2
n + 1

z− λn

z− λn
,

if and only if ∞∑
n=1

=λn

1 + |λn|2
<∞,

and there exists a harmonic function u(z) such that

log |f(z)| 6 u(z),

holds on C+.

Now we can prove the completeness theorems.

Theorem 2.2. Let q satisfy Assumption 1.1. If {λn} is a sequence of eigenvalues of (1.1) satisfying, (2.3), (2.4) and

∞∑
n=1

=λn

1 + |λn|2
= ∞, (2.5)

then the system of root vectors of (1.1) is complete in L1(B(r0)).

Proof. If {h(x, λn)}, λn ∈ Λ is incomplete in L1(B(r0)), by the Hahn-Banach Theorem, there exists a non-
trivial bounded linear functional such that ‖T‖ = 1 and T(h(x, λn)) = 0, for λn ∈ Λ. So by the Riesz
representation theorem, there exists a bounded function g on B(r0) satisfying

‖g‖ =
∫
B(r0)

|g(t)|dt = ‖T‖,

and
T(h) =

∫
B(r0)

h(x)g(x)dt, h ∈ L1(B(r0)).

Define
f(λ) =

∫
B(r0)

h(x, λ)g(x)dx,

then f(λ) is analytic in the upper half plane =λ > 0, vanishing on Λ = {λn}. Rewrite

f(λ) =

∫
B(r0)

eiλ<ζ,x>(1 + ε(x, λ)g(x))dx,

where ε(x, λ) is defined in (2.2), for all ζ ∈ S2
+. It is obvious that

sup
ζ∈S2

+

∣∣∣∣ ∫
B(r0)

eiλ<ζ,x>g(x)dx
∣∣∣∣ 6 Aer0|λ|,

and

sup
ζ∈S2

+

∣∣∣∣ ∫
B(r0)

(1 + ε(x, λ))g(x)dx
∣∣∣∣ 6 Aer0|λ|.
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Thus, for sufficiently large |λ|, we have
|f(λ)| 6 Aer0|λ|.

Denote by

f1(λ) =
f(λ)

Γ(λ)
,

where Γ(λ) is the Gamma function. It is well-known that |Γ(λ)| = O(e|λ| log |λ|) holds as |λ|→∞. Thus, we
have

|f1(λ)| 6 A,

i.e., f1(λ) is bounded in the upper half plane =λ > 0. Applying Lemma 2.1 to f1(λ), we conclude that
f1(λ) ≡ 0 by (2.5), which is equivalent to f(λ) ≡ 0, then∫

B(r0)
eiλ<ζ,x>(1 + ε(x, λ)g(x))dx ≡ 0. (2.6)

Since the left-hand side of (2.6) depends on ζ analytically on the variety M := {< θ, θ >= 1,< θ, θ >=
θ2

1 + θ
2
2 + θ

2
3, θj ∈ C, j = 1, 2, 3}, by Lemma 2.2 in [15], equation (2.6) holds for complex λ,

λ = u+ iv, v > 0.

We may derive from (2.6) the relation

g̃((u+ iv)ζ) +
1

(2π)3 (ε̃ ∗ g̃)((u+ iv)ζ)) = 0, ∀ζ ∈ S2, ∀u ∈ R, (2.7)

where the notation (f ∗ g)(z) means that the convolution f ∗ g is calculated at the argument z = (u+ iv)ζ.
Denote by

ρ(u, v) = sup
ζ∈S2

∫
R3

|ε̃((u+ iv)ζ− s)|ds,

then

sup
ζ∈S2

|ε̃ ∗ p̃| := sup
ζ∈S2

∣∣∣∣ ∫
R3

ε̃((u+ iv)ζ− s)g̃(s)ds

∣∣∣∣ 6 ρ(u, v) sup
s∈R3

|g̃(s)|.

From the proof of Lemma 3.1 in [15] (see page 5–7 in [15], replace p by bounded g, one can see that (27)
and (28) in [15] hold), we can derive for bounded function g,

sup
ζ∈S2

|g̃(u+ iv)ζ)| > sup
s∈R3

|g̃(s)|,u→∞. (2.8)

From the proof in [15] (see (43) and (44) there), we also have

0 < ρ(u,η(u)) < 1,

if η(u) = O(lnu) is suitably chosen for u→∞. Combination of (2.7), (2.8) and (2.1) yields

g̃ ≡ 0.

Thus, by the injectivity of the Fourier transform, we have g ≡ 0.

We will study the completeness problem wherever the equation (1.1) has spectra on the imaginary
axis. We need some more results on analytic functions from [1].

Lemma 2.3. If f(z) is regular for = > 0 and
|f(z)| 6 eA|z|,

and f(iλn) = 0, with λn > 0, λn − λn−1 > δ > 0, then f(z) ≡ 0, if
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lim sup
t→∞ t−2A/πϕ(t) = ∞, (2.9)

where
ϕ(t) = exp{2

∑
λn<t

λ−1
n }. (2.10)

Lemma 2.4. If f(z) satisfies the hypothesis of Lemma 2.3, then f(z) ≡ 0, if A < π and

lim inf
n→∞ n/λn > 1. (2.11)

Theorem 2.5. Let q satisfy Assumption 1.1. If {λn} is a sequence of eigenvalues of (1.1) satisfying (2.3), (2.4) and
(2.9), where ϕ(t) is defined in (2.10), furthermore, suppose that r0 < π, then the system of root vectors of (1.1) is
complete in L1(B(r0)).

Proof. We may apply the proof of Theorem 2.2. Denote by f(z) the analytic function defined in the proof
of Theorem 2.2, replacing Lemma 2.1 by Lemma 2.3, then the result follows from the proof of Theorem
2.2.

Theorem 2.6. Let q satisfy Assumption 1.1. If {λn} is a sequence of eigenvalues of (1.1) satisfying (2.3), (2.4) and
(2.11), furthermore, suppose that r0 < π, then the system of root vectors of (1.1) is complete in L1(B(r0)).

Proof. We may apply the proof of Theorem 2.2. Denote by f(z) the analytic function defined in the proof
of Theorem 2.2, replacing Lemma 2.1 by Lemma 2.4, then the result follows from the proof of Theorem
2.2.
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