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1. Introduction

Throughout this paper, let E1 and E2 be two p-uniformly convex real Banach spaces which are also
uniformly smooth. Let C and Q be nonempty closed convex sets of E1 and E2, respectively. Let A be a
bounded linear operator from E1 to E2 with its adjoint A∗. Let T be a nonlinear mapping from C to itself.
We use Fix(T) to denote the set of all fixed points of the mapping T , that is, Fix(T) = {x ∈ C : Tx = x}.

This paper is concerned with studying the following split feasibility and fixed point problems:

Find x∗ ∈ C∩ Fix(T) such that Ax∗ ∈ Q. (1.1)

Let Γ = {x∗ : x∗ ∈ C ∩ Fix(T) such that Ax∗ ∈ Q} be the set of all solutions of (1.1). In the sequel, we
assume Γ 6= ∅. A special case of (1.1) is the following split feasibility problem (in short, SFP):

Find x∗ ∈ C such that Ax∗ ∈ Q. (1.2)

Let Γ0 = {x∗ : x∗ ∈ C such that Ax∗ ∈ Q} be the set of all solutions of (1.2). Then, we have that Γ0 is a
closed and convex subset of E1.
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The theory of the SFP was first introduced and learned by Censor and Elfving [13] in finite-dimensional
space for modeling inverse problems which arise from phase retrievals and in image reconstruction has
been discussed in the last two decades and much intensively in the last ten years. A large number of
algorithms related to the SFP have been studied, see, for example [5, 6, 14] and the references therein.
Recently, it has been found that the SFP can be used in intensity modulated radiation therapy, please see
[12, 14, 15] and the references therein. The algorithm suggested by Censor and Elfving in [13] involves
the computation of the inverse A−1, so it can not be widely used. A seemingly more popular algorithm
is the CQ algorithm [5]:

xn+1 = PC
(
I− γA∗(I− PQ)A

)
xn, n > 0, (1.3)

where x0 ∈ H1 (a Hilbert space) and γ ∈ (0, 2
λ), with λ being the largest eigenvalue of the matrix A∗A.

Recently, the SFP was studied in a more general framework, for example, Banach spaces. More specifically,
Schöpfer et al. [21] proposed the following algorithm in p-uniformly convex and uniformly smooth real
Banach spaces:

xn+1 = ΠCJ
∗ (Jxn − γA∗J(I− PQ)Axn

)
, (1.4)

where ΠC denotes the Bregman projection and J the duality mapping, they established weak conver-
gence of algorithm (1.4) under some mild conditions. Obviously the above algorithm (1.4) covers the CQ
algorithm (1.3) as a special case.

It is worth pointing out that only weak convergence result is established in [21]. However, the strong
convergence is more acceptable than the weak convergence in some practical applications. Wang [24]
considered the following iterative algorithm for multiple-sets split feasibility problem in p-uniformly
convex and uniformly smooth real Banach spaces:

yn = Tnxn,
Dn = {v ∈ E1 : ∆p(yn, v) 6 ∆p(xn, v)},
En = {v ∈ E1 : 〈xn − v, Jpx− Jpxn〉 > 0},
xn+1 = ΠDn

⋂
Enx.

(1.5)

Using the idea in the work of Nakajo and Takahashi [18], Wang proved the strong convergence of iterative
algorithm (1.5). Subsequently, Takahashi [22] proposed the following hybrid projection algorithm for the
SFP in uniformly convex and uniformly smooth real Banach spaces:

zn = xn − rJ−1
E1
A∗JE2

(
Axn − PQAxn

)
,

Cn = {v ∈ E1 : 〈zn − v, JE1 (xn − zn)〉 > 0},
Qn = {v ∈ E1 : 〈xn − v, JE1 (x1 − xn)〉 > 0},
xn+1 = PCn

⋂
Qnx1.

(1.6)

Basing mainly on the hybrid method, he proved the strong convergence of iterative algorithm (1.6).
On the other hand, in 1967, Bregman [4] used the so-called Bregman distance function to design and

analyze feasibility and optimization algorithms. After that, many authors found that the so-called Breg-
man distance function could be applied in different ways in order to construct iterative algorithms for
solving not only feasibility and optimization problems, but also variational inequality problems, equilib-
ria problems, fixed points problems and so on (see, e.g., [1, 3, 7–11, 16, 17, 19, 20, 26–28] and the references
therein). The fixed point theory with respect to Bregman distance has been studied in the last decade and
a lot of good results were published intensively in the last five years. Many authors concentrated their en-
ergies on constructing the fixed point of Bregman nonlinear operators by utilizing the Bregman distance
and the Bregman projection, see [23, 25] and the references therein. In 2015, Wang [25] studied a new hy-
brid Bregman projection iterative algorithm for Bregman quasi-strictly pseudo-contractive mapping and
proved strong convergence result in reflexive Banach spaces. In particularly, he proposed the following
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iterative method:

x0 ∈ C chosen arbitrarily,
C1 = C,
x1 = PC1x0,
Cn+1 = {v ∈ Cn : Df(xn, Txn) 6 1

1−κ 〈∇f(xn) −∇f(Txn), xn − v〉},
xn+1 = PCn+1x0,

(1.7)

where κ ∈ [0, 1). Then the sequence {xn} converges strongly to p = PFix(T)x0, PFix(T) is the Bregman
projection of E onto Fix(T).

In this paper, motivated and inspired by the above research work going on in this field, we propose
a new hybrid projection method for solving split feasibility and fixed point problems (1.1) involved in
Bregman quasi-strictly pseudo-contractive mapping in p-uniformly convex and uniformly smooth real
Banach spaces. Our modification is mainly based on the schemes (1.5), (1.6) and (1.7). Furthermore, we
will prove the strong convergence theorem for the proposed algorithm.

2. Preliminaries

Let 1 < q 6 2 6 p with 1/p+ 1/q = 1. Let E be a real Banach space.
The modulus of convexity of E is the function δE : (0, 2]→ [0, 1] defined by

δE(ε) = inf
{

1 −
‖x+ y‖

2
: x,y ∈ S(E), ‖x− y‖ > ε

}
,

for any x,y on the unit sphere S(E) = {x ∈ E : ‖x‖ = 1}. E is called uniformly convex, if δE(ε) > 0 for any
ε ∈ (0, 2]; p-uniformly convex, if there exists cp > 0 such that δE(ε) > cpεp for any ε ∈ (0, 2].

The modulus of smoothness of E is the function ρE : [0,∞)→ [0,∞) defined by

ρE(t) = sup
{

1
2
(‖x+ y‖− ‖x− y‖) − 1 : x ∈ S(E), ‖y‖ = t

}
.

E is called uniformly smooth, if limt→0 ρE(t)/t = 0. By setting 1 < q 6 2 6 p, a Banach space E is
called q-uniformly smooth, if there exists Cq > 0 such that ρE(t) 6 Cqt

q for all t > 0. We assume that
E is p-uniformly convex and uniformly smooth, which implies that its dual space, E∗, is q-uniformly
smooth and uniformly convex. In this situation, it is known that the duality mapping JpE is one-to-one,
single-valued and satisfies JpE =

(
J
q
E∗
)−1 , where JqE∗ is the duality mapping of E∗.

The q-uniformly smooth spaces have the following conclusion.

Lemma 2.1 ([24]). If E is a q-uniformly smooth space, then there is a constant Cq > 0 such that

‖x− y‖q 6 ‖x‖q − q〈y, JqE(x)〉+Cq‖y‖
q,

for all x,y ∈ E, where Cq > 0 is the q-uniformly smoothness constant of E and JqE is the duality mapping from E

into 2E
∗

defined by

J
q
E(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖q, ‖x∗‖ = ‖x‖q−1}, ∀x,y ∈ E.

Given a Gâteaux differentiable convex function f : E → R, the Bregman distance with respect to f is
defined by

∆f(x,y) = f(y) − f(x) − 〈f ′(x),y− x〉, ∀x,y ∈ E.
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It is noteworthy that the duality mapping Jp is the derivative of the function fp = 1
p‖x‖

p. Then the
Bregman distance with respect to fp is given by

∆p(x,y) =
1
q
‖x‖p − 〈JpEx,y〉+ 1

p
‖y‖p

=
1
p
(‖y‖p − ‖x‖p) + 〈JpEx, x− y〉

=
1
q
(‖x‖p − ‖y‖p) − 〈JpEx− J

p
Ey, x〉.

From the definition of ∆p(·, ·), we get

∆p(x,y) = ∆p(x, z) +∆p(z,y) +
〈
z− y, JpEx− J

p
Ez
〉

, (2.1)

and
∆p(x,y) +∆p(y, x) =

〈
x− y, JpEx− J

p
Ey
〉

,

for any x,y, z ∈ E. All in all, the Bregman distance is not a metric because of the lack of symmetry. For
the p-uniformly convex space, the metric and Bregman distance has the following relation

τ‖x− y‖p 6 ∆p(x,y) 6
〈
x− y, JpEx− J

p
Ey
〉

, (2.2)

where τ > 0. Obviously, if {xn} and {yn} are both bounded sequences of a p-uniformly convex and
uniformly smooth space E, then xn − yn → 0 as n→∞ implies that ∆p(xn,yn)→ 0 as n→∞.

Projections are an important tool for our work in this paper. We can define metric projection PC as
follows

PCx = argminy∈C‖x− y‖, x ∈ E.

Metric projection PC can be characterized by the following variational inequality〈
J
p
E(x− PCx), z− PCx

〉
6 0, z ∈ C. (2.3)

Likewise, one can define the Bregman projection

ΠCx = argminy∈C∆p(x,y), x ∈ E,

is the unique minimizer of the Bregman distance. The Bregman projection can also be characterized by
the following variational inequality〈

J
p
Ex− J

p
EΠCx, z−ΠCx

〉
6 0, z ∈ C, (2.4)

from which one has
∆p(ΠCx, z) 6 ∆p(x, z) −∆p(x,ΠCx), z ∈ C. (2.5)

The metric projection and the Bregman projection with respect to f2 are coincident in a Hilbert space,
but in a more general framework, they are totally different. What is important is that the metric projection
can not share property (2.5) as the Bregman projection in Banach spaces.

Following [2], we study the function Vp : E∗ × E→ [0,∞) associated with fp, which is defined by

Vp(x, x) =
1
q
‖x‖q − 〈x, x〉+ 1

p
‖x‖p, x ∈ E, x ∈ E∗.

Then Vp is nonnegative and

Vp(x, x) = ∆p(J
q
E∗x, x), x ∈ E, x ∈ E∗.
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Moreover, by the subdifferential inequality, we have

Vp(x, x) +
〈
y, JqE∗x− x

〉
6 Vp(x+ y, x), x ∈ E, x,y ∈ E∗.

In addition, Vp is convex in the first variable. Thus, for all z ∈ E,

∆p

(
J
q
E∗

(
N∑
i=1

tiJ
p
E(xi)

)
, z

)
6

N∑
i=1

ti∆p(xi, z), (2.6)

where {xi}
N
i=1 ⊂ E and {ti}

N
i=1 ⊂ (0, 1) with

∑N
i=1 ti = 1. For more details about Vp, please see [2].

Very recently, Ugwunnadi et al. [23] introduced the concept of Bregman quasi-strictly pseudo-
contractive mapping and proved the strong convergence by using hybrid Bregman projection iterative
algorithm for a Bregman quasi-strictly pseudo-contractive mapping.

Definition 2.2. A mapping T : C→ C is said to be Bregman quasi-strictly pseudo-contractive mapping, if
there exists a constant κ ∈ [0, 1) and Fix(T) 6= ∅ such that

∆p(Tx, x∗) 6 ∆p(x, x∗) + κ∆p(Tx, x), ∀x ∈ C, x∗ ∈ Fix(T).
Definition 2.3. A mapping T : C → C is said to be Bregman quasi-nonexpansive mapping, if Fix(T) 6= ∅
such that

∆p(Tx, x∗) 6 ∆p(x, x∗), ∀x ∈ C, x∗ ∈ Fix(T).
Definition 2.4. A mapping T : C→ C is said to be closed, if for any sequence {xn} ⊂ C with xn → x ∈ C
and Txn → y ∈ C as n→∞, then Tx = y.

We shall adopt the notation xn → x means that {xn} converges strongly to x. Now, we give some
examples of a Bregman quasi-strictly pseudo-contractive mapping.

Example 2.5 ([25]). Let E be a smooth space, and define f(x) = ‖x‖2 for all x ∈ E. Let x0 6= 0 be any
element of E, T : E→ E be defined as follows:

T(x) =

{
(1/2 + 1/2n+1)x0, x = (1/2 + 1/2n)x0,
−x, x 6= (1/2 + 1/2n)x0,

for all n > 1. Then T is a Bregman quasi-strictly pseudo-contractive mapping.

Example 2.6 ([23]). Let E = R and define T , f : [−1, 0] → R by f(x) = x and T(x) = 2x for all x ∈ [−1, 0].
Then T is a Bregman quasi-strictly pseudo-contractive mapping.

3. Main results

In this section, we introduce the following algorithm and prove strong convergence theorem for find-
ing the common solution of split feasibility and fixed point problems.

Theorem 3.1. Let E1 and E2 be two p-uniformly convex real Banach spaces which are also uniformly smooth. Let
C and Q be nonempty closed convex sets of E1 and E2, respectively. Let A: E1 → E2 be a bounded linear operator
with its adjoint A∗: E∗2 → E∗1 . Let T be a closed Bregman quasi-strictly pseudo-contractive mapping from C to itself.
Let the sequence {xn} be iteratively generated by x1 = x0 ∈ C, D1 = C1 = C,

x1 ∈ C,

yn = ΠCJ
q
E∗1

(
J
p
E1
xn − λnA

∗JpE2

(
Axn − PQAxn

))
,

zn = JqE∗1

(
αnJ

p
E1
yn + (1 −αn)J

p
E1
Txn

)
,

Dn+1 = {w ∈ Dn : ∆p(yn,w) 6 ∆p(xn,w)} ,

Cn+1 =
{
w ∈ Cn : ∆p(zn, xn) 6 κ

1−κ

〈
w− xn, JpE1

Txn − JpE1
xn

〉
+
〈
w− xn, JpE1

zn − JpE1
xn

〉}
,

xn+1 = ΠDn+1
⋂
Cn+1

x0, n > 1,

(3.1)
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where κ ∈ [0, 1). Assume that {αn} ⊂ [c,d] ⊂ (0, 1) and {λn} ⊂ [a,b] ⊂
(

0,
(

q
Cq‖A‖q

) 1
q−1
)

. Then the sequence

{xn} defined by (3.1) converges strongly to ΠΓx0.

Proof. By taking x∗ ∈ Γ , x ′ ∈ C, by the definition of T , we have

∆p(Tx
′, x∗) 6 ∆p(x ′, x∗) + κ∆p(Tx ′, x ′).

From (2.1), we get

∆p(Tx
′, x∗) = ∆p(Tx ′, x ′) +∆p(x ′, x∗) +

〈
x ′ − x∗, JpE1

Tx ′ − JpE1
x ′
〉

,

which implies that

∆p(Tx
′, x ′) 6

1
1 − κ

〈
x∗ − x ′, JpE1

Tx ′ − JpE1
x ′
〉

. (3.2)

Let {xn} be a sequence in Fix(T) such that xn → z as n→∞. From (3.2), we obtain

∆p(Tz, z) 6
1

1 − κ

〈
xn − z, JpE1

Tz− JpE1
z
〉

.

By setting n → ∞ in the above inequality, we have ∆p(Tz, z) 6 0, it follows from (2.2) that Tz = z.
Therefore, Fix(T) is closed.

Next, let z1, z2 ∈ Fix(T), for given t ∈ (0, 1) and put z = tz1 + (1 − t)z2. From (3.2), we obtain respec-
tively,

∆p(Tz, z) 6
1

1 − κ

〈
z1 − z, J

p
E1
Tz− JpE1

z
〉

, (3.3)

and
∆p(Tz, z) 6

1
1 − κ

〈
z2 − z, J

p
E1
Tz− JpE1

z
〉

. (3.4)

By multiplying (3.3) by t and (3.4) by 1 − t, we have

∆p(Tz, z) 6
1

1 − κ

〈
z− z, JpE1

Tz− JpE1
z
〉

,

and by setting n → ∞ in the above inequality, we have ∆p(Tz, z) 6 0. It follows from (2.2) that Tz = z.
Therefore, Fix(T) is convex. Since Γ0 is a closed convex subset of E1, we obtain that Γ is closed convex.

Now from (3.1), we know Dn is closed for each n > 1. Note that ∆p(yn,w) 6 ∆p(xn,w) is equivalent
to 〈

J
p
E1
xn − JpE1

yn,w
〉
6

1
q
(‖xn‖p − ‖yn‖p) ,

so that Dn is a halfspace. Therefore, we get Dn is convex immediately.
For n = 1, C1 = C is closed convex essentially. Assume that Cn is closed convex for n > 1. For

w ∈ Cn+1, we obtain

∆p(zn, xn) 6
κ

1 − κ

〈
w− xn, JpE1

Txn − JpE1
xn

〉
+
〈
w− xn, JpE1

zn − JpE1
xn

〉
,

since
〈
·, JpE1

Txn − JpE1
xn

〉
and

〈
·, JpE1

zn − JpE1
xn

〉
are continuous and linear in E1, we get Cn is closed

convex.
Let x∗ ∈ Γ and let vn = Axn − PQAxn. It follows from (2.3) that〈

J
p
E2
vn,Axn −Ax∗

〉
= ‖Axn − PQAxn‖p +

〈
J
p
E2
vn,PQAxn −Ax∗

〉
> ‖Axn − PQAxn‖p.
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By applying Lemma 2.1, we have

∆p(yn, x∗) 6 ∆p
(
J
q
E∗1

(
J
p
E1
xn − λnA

∗JpE2
vn

)
, x∗
)

=
1
q

∥∥∥JpE1
xn − λnA

∗JpE2
vn

∥∥∥q − 〈JpE1
xn, x∗

〉
+ λn

〈
J
p
E2
vn,Ax∗

〉
+

1
p
‖x∗‖p

6
1
q

∥∥∥JpE1
xn

∥∥∥q − λn 〈Axn, JpE2
vn

〉
+
Cq (λn‖A‖)q

q

∥∥∥JpE2
vn

∥∥∥q
−
〈
J
p
E1
xn, x∗

〉
+ λn

〈
J
p
E2
vn,Ax∗

〉
+

1
p
‖x∗‖p

=
1
q
‖xn‖p −

〈
J
p
E1
xn, x∗

〉
+

1
p
‖x∗‖p + λn

〈
J
p
E2
vn,Ax∗ −Axn

〉
+
Cq (λn‖A‖)q

q

∥∥∥JpE2
vn

∥∥∥q
= ∆p(xn, x∗) + λn

〈
J
p
E2
vn,Ax∗ −Axn

〉
+
Cq (λn‖A‖)q

q

∥∥∥JpE2
vn

∥∥∥q
6 ∆p(xn, x∗) −

(
λn −

Cq (λn‖A‖)q

q

)
‖vn‖p.

(3.5)

By the assumption of {λn}, we have
∆p(yn, x∗) 6 ∆p(xn, x∗), (3.6)

so that Γ ⊂ Dn+1 for all n > 1. Next, we show Γ ⊂ Cn+1. Note that Γ ⊂ C1 = C. Suppose Γ ⊂ Cn for
n > 1, then for all x∗ ∈ Γ ⊂ Cn, from (2.6), (3.1), (3.2) and (3.6), we obtain

∆p(zn, x∗) = ∆p
(
J
q
E∗1

(
αnJ

p
E1
yn + (1 −αn)J

p
E1
Txn

)
, x∗
)

6 αn∆p(yn, x∗) + (1 −αn)∆p(Txn, x∗)
6 αn∆p(yn, x∗) + (1 −αn) (∆p(xn, x∗) + κ∆p(Txn, xn))
6 ∆p(xn, x∗) + κ∆p(Txn, xn)

6 ∆p(xn, x∗) +
κ

1 − κ

〈
x∗ − xn, JpE1

Txn − JpE1
xn

〉
.

(3.7)

From (2.1), we get

∆p(zn, x∗) = ∆p(zn, xn) +∆p(xn, x∗) +
〈
xn − x∗, JpE1

zn − JpE1
xn

〉
. (3.8)

By (3.7) and (3.8), we obtain

∆p(zn, xn) 6
κ

1 − κ

〈
x∗ − xn, JpE1

Txn − JpE1
xn

〉
+
〈
x∗ − xn, JpE1

zn − JpE1
xn

〉
.

This shows that x∗ ∈ Cn+1, which implies Γ ⊂ Cn+1 for all n > 1. Thus, Dn+1
⋂
Cn+1 is nonempty. So

{xn} is well-defined.
From (3.1) and (2.4), we have 〈

J
p
E1
x0 − J

p
E1
xn, z− xn

〉
6 0, z ∈ Cn.

Since Γ ⊂ Cn, we have 〈
J
p
E1
x0 − J

p
E1
xn, x∗ − xn

〉
6 0, x∗ ∈ Γ . (3.9)

By (2.5) and for all x∗ ∈ Γ , we have

∆p(xn, x0) 6 ∆p(x
∗, x0) −∆p(x

∗, xn)
6 ∆p(x

∗, x0).
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This shows that {∆p(xn, x0)} is bounded. Hence, {xn} is bounded. By the construction of Cn, we get
xm ∈ Cm ⊂ Cn and xn = ΠCnx0, for any m > n. From (2.5), we obtain

∆p(xm, xn) = ∆p(xm,ΠCnx0) 6 ∆p(xm, x0) −∆p(ΠCnx0, x0)

= ∆p(xm, x0) −∆p(xn, x0).
(3.10)

Since xn = ΠCnx0 and xm = ΠCmx0 ∈ Cm ⊂ Cn, we have ∆p(xn, x0) 6 ∆p(xm, x0) for all m > n. This
implies that {∆p(xn, x0)} is nondecreasing and hence the limit limn→∞∆p(xn, x0) exists. From (3.10) we
obtain ∆p(xn, xm) → 0 as m,n → ∞. From (2.2) we have ‖xn − xm‖ → 0 as m,n → ∞. Hence, {xn} is a
Cauchy sequence in C ⊂ E1, so there exists x ∈ E1 such that xn → x as n→∞.

By using (2.1) and (2.4), we have

∆p(x0,ΠΓx0) > ∆p(x0, xn+1)

= ∆p(x0, xn) +∆p(xn, xn+1) +
〈
xn − xn+1, JpE1

x0 − J
p
E1
xn

〉
> ∆p(x0, xn) +∆p(xn, xn+1)

> ∆p(x0, xn−1) +∆p(xn−1, xn) +∆p(xn, xn+1)

...

>
n∑
i=0

∆p(xi, xi+1).

Consequently,
∑∞
i=0∆p(xi, xi+1) <∞, which from (2.2) yields

∑∞
i=0 ‖xn− xn+1‖p <∞. This implies that

lim
n→∞ ‖xn − xn+1‖ = 0. (3.11)

Since xn+1 = ΠCn+1x0 ∈ Cn+1, we have,

∆p(zn, xn) 6
κ

1 − κ

〈
xn+1 − xn, JpE1

Txn − JpE1
xn

〉
+
〈
xn+1 − xn, JpE1

zn − JpE1
xn

〉
.

From (3.11) and (2.2), we obtain
lim
n→∞ ‖xn − zn‖ = 0. (3.12)

Since xn+1 = ΠDn+1x0 ∈ Dn+1, we get

∆p(yn, xn+1) 6 ∆p(xn, xn+1).

From (3.11), we have

lim
n→∞ ‖yn − xn+1‖ = 0,

so,
lim
n→∞ ‖xn − yn‖ = 0. (3.13)

Since JpE1
is norm-to-norm uniformly continuous, from (3.1), we get

‖JpE1
zn − JpE1

xn‖ = ‖αn(JpE1
yn − JpE1

xn) + (1 −αn)(J
p
E1
Txn − JpE1

xn)‖
> (1 −αn)‖JpE1

Txn − JpE1
xn‖−αn‖JpE1

yn − JpE1
xn‖.

This implies that

(1 −αn)‖JpE1
Txn − JpE1

xn‖ 6 αn‖JpE1
yn − JpE1

xn‖+ ‖JpE1
zn − JpE1

xn‖. (3.14)
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Since JqE∗1 is norm-to-norm uniformly continuous, by setting n → ∞ in (3.14), from (3.12), (3.13) and
{αn} ⊂ [c,d] ⊂ (0, 1), we have

lim
n→∞ ‖Txn − xn‖ = 0.

By the closedness of T , from xn → x, we obtain

Tx = x.

From (2.2) and (2.4), we have

∆p(x,ΠCx) 6
〈
x−ΠC, JpE1

x− JpE1
ΠCx

〉
=
〈
x− xn, JpE1

x− JpE1
ΠCx

〉
+
〈
xn − yn, JpE1

x− JpE1
ΠCx

〉
+
〈
yn −ΠCx, JpE1

x− JpE1
ΠCx

〉
6
〈
x− xn, JpE1

x− JpE1
ΠCx

〉
+
〈
xn − yn, JpE1

x− JpE1
ΠCx

〉
.

Setting n→∞ yields ∆p(x,ΠCx) = 0, we get x ∈ C.
From (3.5), we have (

λn −
Cq (λn‖A‖)q

q

)
‖vn‖p 6 ∆p(xn, x∗) −∆p(yn, x∗).

This together with vn = Axn − PQAxn and (3.13) implies that

lim
n→∞ ‖Axn − PQAxn‖ = 0. (3.15)

By (2.3), we have

‖Ax− PQAx‖p =
〈
J
p
E2

(
Ax− PQAx

)
,Ax− PQAx

〉
=
〈
J
p
E2

(
Ax− PQAx

)
,Ax−Axn

〉
+
〈
J
p
E2

(
Ax− PQAx

)
,Axn − PQAxn

〉
+
〈
J
p
E2

(
Ax− PQAx

)
,PQAxn − PQAx

〉
6
〈
J
p
E2

(
Ax− PQAx

)
,Ax−Axn

〉
+
〈
J
p
E2

(
Ax− PQAx

)
,Axn − PQAxn

〉
.

From (3.15) and Axn → Ax as n→∞, setting n→∞ yields ‖Ax− PQAx‖p = 0, we have Ax ∈ Q. Thus,
we conclude that xn → x ∈ Γ .

By setting n→∞ in (3.9), we obtain〈
J
p
E1
x0 − J

p
E1
x, x∗ − x

〉
6 0, x∗ ∈ Γ .

By (2.4), we have x = ΠΓx0.

Remark 3.2. Compared with the known results in the literature, our result is very different from those in
the following aspects.

• The corresponding iterative algorithms in [16, Theorem 3.2], [18, Theorem 3.1], [19, Theorem 3.1]
are extended for developing our algorithm which couples modified CQ method with Nakajo’s iter-
ation involved in Bregman quasi-strictly pseudo-contractive mapping in Theorem 3.1. Our iterative
scheme in Theorem 3.1 can be viewed as a merger between corresponding iterative algorithms in
[16, Theorem 3.2], [18, Theorem 3.1], [19, Theorem 3.1].
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• The construction of sets such as Cn+1 =
{
w ∈ Cn : ∆p(zn, xn) 6 κ

1−κ

〈
w− xn, JpE1

Txn − JpE1
xn

〉
+〈

w− xn, JpE1
zn − JpE1

xn

〉}
in our iterative scheme is very different from the iterative algorithm in

[16, Theorem 3.2], because our construction is mainly based on the definition of Bregman quasi-
strictly pseudo-contractive mapping. Moreover, we attain strong convergence result in a broader
framework, the p-uniformly convex and uniformly smooth Banach spaces.

• The technique of proving strong convergence in Theorem 3.1 is different from those in [16, Theorem
3.2], [19, Theorem 3.1], because our technique depends on Lemma 2.1 in Banach spaces.

• The problem of finding a common element of the set of solutions of split feasibility problem and
the set of fixed points of a Bregman quasi-strictly pseudo-contractive mapping in our Theorem 3.1
is more general than the problem of finding a solution of split feasibility problem in [16, Theorem
3.2] and the problem of finding an element of the set of fixed points of a Bregman quasi-strictly
pseudo-contractive mapping in [19, Theorem 3.1].

Since the class of Bregman quasi-nonexpansive mappings is Bregman quasi-strict pseudo-contractive,
the following corollary is obtained by using Theorem 3.1.

Corollary 3.3. Let E1 and E2 be two p-uniformly convex real Banach spaces which are also uniformly smooth. Let
C and Q be nonempty closed convex sets of E1 and E2, respectively. Let A: E1 → E2 be a bounded linear operator
with its adjoint A∗: E∗2 → E∗1 . Let T be a closed Bregman quasi-nonexpansive mapping from C to itself. Let sequence
{xn} be iteratively generated by x1 = x0 ∈ C, D1 = C1 = C,

x1 ∈ C,

yn = ΠCJ
q
E∗1

(
J
p
E1
xn − λnA

∗JpE2

(
Axn − PQAxn

))
,

zn = JqE∗1

(
αnJ

p
E1
yn + (1 −αn)J

p
E1
Txn

)
,

Dn+1 = {w ∈ Dn : ∆p(yn,w) 6 ∆p(xn,w)} ,

Cn+1 =
{
w ∈ Cn : ∆p(zn, xn) 6

〈
w− xn, JpE1

zn − JpE1
xn

〉}
,

xn+1 = ΠDn+1
⋂
Cn+1

x0, n > 1.

(3.16)

Assume that {αn} ⊂ [c,d] ⊂ (0, 1) and {λn} ⊂ [a,b] ⊂
(

0,
(

q
Cq‖A‖q

) 1
q−1
)

. Then the sequence {xn} defined by

(3.16) converges strongly to ΠΓx0.

Typical examples of both uniformly convex and uniformly smooth Banach spaces are Lp, where p > 1.
Then we have the following corollary.

Corollary 3.4. Let E1 and E2 be two Lp spaces with 2 6 p < ∞, C ⊂ E1 and Q ⊂ E2 be two nonempty closed
convex sets. Let A: E1 → E2 be a bounded linear operator with its adjoint A∗: E∗2 → E∗1 . Let T be a closed
Bregman quasi-strictly pseudo-contractive mapping from C to itself. Let sequence {xn} be iteratively generated by
x1 = x0 ∈ C, D1 = C1 = C,

x1 ∈ C,

yn = ΠCJ
q
E∗1

(
J
p
E1
xn − λnA

∗JpE2

(
Axn − PQAxn

))
,

zn = JqE∗1

(
αnJ

p
E1
yn + (1 −αn)J

p
E1
Txn

)
,

Dn+1 = {w ∈ Dn : ∆p(yn,w) 6 ∆p(xn,w)} ,

Cn+1 =
{
w ∈ Cn : ∆p(zn, xn) 6 κ

1−κ

〈
w− xn, JpE1

Txn − JpE1
xn

〉
+
〈
w− xn, JpE1

zn − JpE1
xn

〉}
,

xn+1 = ΠDn+1
⋂
Cn+1

x0, n > 1,

(3.17)

where κ ∈ [0, 1). Assume that {αn} ⊂ [c,d] ⊂ (0, 1) and {λn} ⊂ [a,b] ⊂
(

0,
(

q
Cq‖A‖q

) 1
q−1
)

. Then the sequence

{xn} defined by (3.17) converges strongly to ΠΓx0.
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Finally, we consider the following special case in Hilbert spaces.

Corollary 3.5. Let H1 and H2 be two real Hilbert spaces and C ⊂ H1 and Q ⊂ H2 be two nonempty closed
convex sets. Let A: H1 → H2 be a bounded linear operator with its adjoint A∗. Let T be a closed quasi-strictly
pseudo-contractive mapping from C to itself. Let the sequence {xn} be iteratively generated by x1 = x0 ∈ C,
D1 = C1 = C,

x1 ∈ C,
yn = PC

(
xn − λnA

∗ (Axn − PQAxn
))

,
zn = αnyn + (1 −αn)Txn,
Dn+1 = {w ∈ Dn : ‖yn −w‖ 6 ‖xn −w‖} ,
Cn+1 =

{
w ∈ Cn : ‖zn − xn‖2 6 2κ

1−κ 〈w− xn, Txn − xn〉+ 2 〈w− xn, zn − xn〉
}

,
xn+1 = PDn+1

⋂
Cn+1

x0, n > 1,

(3.18)

where κ ∈ [0, 1). Assume that {αn} ⊂ [c,d] ⊂ (0, 1) and {λn} ⊂ [a,b] ⊂
(

0, 2
‖A‖2

)
. Then the sequence {xn}

defined by (3.18) converges strongly to PΓx0.

4. Numerical example

In this section, in order to demonstrate the effectiveness, realization and convergence of algorithm of
Theorem 3.1, we consider the following simple example in (R, ‖ · ‖2). All codes were written in Matlab
R2014a and run on Lenovo i-5 Dual-Core laptop.

Example 4.1 (Numerical Example). Let E1 = E2 = R with the standard norm | · | = ‖ · ‖ for all x,y ∈ R.
Let C = [0,+∞), and Q = (−∞, 0]. In (3.1), we take αn = 6/7, k = 1/9, λn = 2, Tx = 2x, for all x ∈ C and
Ax = 1/2x, for all x ∈ R.

Then the scheme (3.1) can be simplified as

x1 ∈ C,

yn = PC

(
xn −

(
I− PQ

) 1
2xn

)
,

zn = 6
7yn + 2

7xn,

Dn+1 =
{
w ∈ Dn : w 6 x2

n−y
2
n

2xn−2yn

}
,

Cn+1 =
{
w ∈ Cn : w 6 3x2

n−4z2
n

7xn−8zn

}
,

xn+1 = PDn+1
⋂
Cn+1

x1, n > 1.

Choosing initial values x1 = 6 and x1 = 3, respectively, we see that figure and numerical results
demonstrate Theorem 3.1. Table 1 and Figure 1 show that the sequence {xn} generated by the above
algorithm converges to 0.

Figure 1: The convergence of xn with initial values 6 and 3, respectively.
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Table 1: The values of the sequence xn
n xn xn
1 6.000000000000000 3.000000000000000
2 4.476190476190476 2.238095238095238
3 3.339380196523054 1.669690098261527
4 2.491283638675928 1.245641819337964
5 1.858576682821724 0.929288341410862
... ... ...
27 0.002950130794513 0.001475065397256
28 0.002200891227652 0.001100445613826
29 0.001641934725392 0.000820967362696
30 0.001224935430054 0.000612467715027
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