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Abstract

In this paper, we consider and study split feasibility and fixed point problems involved in Bregman quasi-strictly pseudo-
contractive mapping in Banach spaces. It is proven that the sequences generated by the proposed iterative algorithm converge
strongly to the common solution of split feasibility and fixed point problems. (©2017 All rights reserved.
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1. Introduction

Throughout this paper, let E; and E; be two p-uniformly convex real Banach spaces which are also
uniformly smooth. Let C and Q be nonempty closed convex sets of E; and E, respectively. Let A be a
bounded linear operator from E; to E; with its adjoint A*. Let T be a nonlinear mapping from C to itself.
We use Fix(T) to denote the set of all fixed points of the mapping T, that is, Fix(T) ={x € C: Tx = x}.

This paper is concerned with studying the following split feasibility and fixed point problems:

Find x* € CNFix(T) such that Ax* € Q. (1.1)

Let I' = {x* : x* € CNFix(T) such that Ax* € Q} be the set of all solutions of (1.1). In the sequel, we
assume I" # (). A special case of (1.1) is the following split feasibility problem (in short, SFP):

Find x* € C such that Ax* € Q. (1.2)

Let Iy = {x* : x* € C such that Ax* € Q} be the set of all solutions of (1.2). Then, we have that I} is a
closed and convex subset of E;.
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The theory of the SFP was first introduced and learned by Censor and Elfving [13] in finite-dimensional
space for modeling inverse problems which arise from phase retrievals and in image reconstruction has
been discussed in the last two decades and much intensively in the last ten years. A large number of
algorithms related to the SFP have been studied, see, for example [5, 6, 14] and the references therein.
Recently, it has been found that the SFP can be used in intensity modulated radiation therapy, please see
[12, 14, 15] and the references therein. The algorithm suggested by Censor and Elfving in [13] involves
the computation of the inverse A1, so it can not be widely used. A seemingly more popular algorithm
is the CQ algorithm [5]:

Xn+1 = Pc (I—YA*(I=PQ)A)xn, >0, (1.3)

where xo € H; (a Hilbert space) and v € (0, ), with A being the largest eigenvalue of the matrix A*A.
Recently, the SFP was studied in a more general framework, for example, Banach spaces. More specifically,
Schopfer et al. [21] proposed the following algorithm in p-uniformly convex and uniformly smooth real
Banach spaces:

Xn41 = Mc)* (Jxn —YA*J(I—Pq)Axn), (1.4)

where Tl denotes the Bregman projection and ] the duality mapping, they established weak conver-
gence of algorithm (1.4) under some mild conditions. Obviously the above algorithm (1.4) covers the CQ
algorithm (1.3) as a special case.

It is worth pointing out that only weak convergence result is established in [21]. However, the strong
convergence is more acceptable than the weak convergence in some practical applications. Wang [24]
considered the following iterative algorithm for multiple-sets split feasibility problem in p-uniformly
convex and uniformly smooth real Banach spaces:

Yn = Thxn,
Dn ={ve k1 : Ap(yn,v) <Aplxn,v)} (15)
En={VeE: (xn—V]JpX—Jpxn) =0},

Xn+1 =1Tp, nEX-

Using the idea in the work of Nakajo and Takahashi [18], Wang proved the strong convergence of iterative
algorithm (1.5). Subsequently, Takahashi [22] proposed the following hybrid projection algorithm for the
SFP in uniformly convex and uniformly smooth real Banach spaces:

Zn = xn —7Jg, A*JE, (Axn —PQAXn),
Ch={velk:(zn—VJg (xn—2zn)) >
Qn={vel: xn—VJ x1—xn)) >

Xn+t1 = PCn N anl'

0},
. (1.6)

Iz

Basing mainly on the hybrid method, he proved the strong convergence of iterative algorithm (1.6).

On the other hand, in 1967, Bregman [4] used the so-called Bregman distance function to design and
analyze feasibility and optimization algorithms. After that, many authors found that the so-called Breg-
man distance function could be applied in different ways in order to construct iterative algorithms for
solving not only feasibility and optimization problems, but also variational inequality problems, equilib-
ria problems, fixed points problems and so on (see, e.g., [1, 3, 7-11, 16, 17, 19, 20, 26-28] and the references
therein). The fixed point theory with respect to Bregman distance has been studied in the last decade and
a lot of good results were published intensively in the last five years. Many authors concentrated their en-
ergies on constructing the fixed point of Bregman nonlinear operators by utilizing the Bregman distance
and the Bregman projection, see [23, 25] and the references therein. In 2015, Wang [25] studied a new hy-
brid Bregman projection iterative algorithm for Bregman quasi-strictly pseudo-contractive mapping and
proved strong convergence result in reflexive Banach spaces. In particularly, he proposed the following
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iterative method:

xp € C chosen arbitrarily,

C:1=¢C,

x1 = Py xo, (1.7)
Cni1={veCy:Ds(xn, Txn) < 11|< (Vf(xn) — VI(Txn), xn —V)},

Xnt1 = Pc,. %o,

where k € [0,1). Then the sequence {x,} converges strongly to p = Priy(1)X0, Prix(T) is the Bregman
projection of E onto Fix(T).

In this paper, motivated and inspired by the above research work going on in this field, we propose
a new hybrid projection method for solving split feasibility and fixed point problems (1.1) involved in
Bregman quasi-strictly pseudo-contractive mapping in p-uniformly convex and uniformly smooth real
Banach spaces. Our modification is mainly based on the schemes (1.5), (1.6) and (1.7). Furthermore, we
will prove the strong convergence theorem for the proposed algorithm.

2. Preliminaries

Let1 < q<2<pwithl/p+1/q=1. LetE be a real Banach space.
The modulus of convexity of E is the function &g : (0,2] — [0, 1] defined by

sete)=int {128y e s0m) e —yi > o).

for any x,y on the unit sphere S(E) = {x € E : ||x|| = 1}. E is called uniformly convex, if 5¢ (¢) > 0 for any
€ € (0,2]; p-uniformly convex, if there exists c,, > 0 such that g (€) > cp€eP for any € € (0,2].
The modulus of smoothness of E is the function pg : [0, 00) — [0, c0) defined by

pe(t) =sup { (I ull ~ k=)~ 1:x € S(E) Iyl =t

E is called uniformly smooth, if lim¢_,o pe(t)/t = 0. By setting 1 < q < 2 < p, a Banach space E is
called g-uniformly smooth, if there exists C4 > 0 such that pg(t) < C4t9 for all t > 0. We assume that
E is p-uniformly convex and uniformly smooth, which implies that its dual space, E*, is g-uniformly
smooth and uniformly convex. In this situation, it is known that the duality mapping J¥ is one-to-one,

single-valued and satisfies J¥ = (]g*)il , where J{. is the duality mapping of E*.
The g-uniformly smooth spaces have the following conclusion.

Lemma 2.1 ([24]). If E is a q-uniformly smooth space, then there is a constant Cq > 0 such that

x—yl|9 < [Ix]|* = q(y, JE(x)) + Cqllyll9,

for all x,y € E, where Cq > 0 is the q-uniformly smoothness constant of € and J§ is the duality mapping from E
into 28" defined by

JEo) =" € B (o x") = [Ix[|9, x*[ = [x[|97"), vxy e E.

Given a Gateaux differentiable convex function f : E — IR, the Bregman distance with respect to f is
defined by

A(x,y) = fly) —f(x) — (f'(x),y —x), ¥xyekt
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It is noteworthy that the duality mapping ], is the derivative of the function f, = %HXHP. Then the
Bregman distance with respect to f}, is given by

1 1
Ap(x,y) = —[Ix|IP = (JEx,y) + —[[ylP
q P
1
=5 (lIP = [Ix[IP) + (TEx x —y)
1
=3 (I = lylIP) = (Tx — TRy, x).

From the definition of A, (-, -), we get

Ap(x,Y) = Ap(x,2) + Bp(z,y) + (z—y, JEx — TR z), (2.1)

and
Ap(x%,y) +Ap(y,x) = (x—y,JEx—JRy),

for any x,y,z € E. All in all, the Bregman distance is not a metric because of the lack of symmetry. For
the p-uniformly convex space, the metric and Bregman distance has the following relation

Tx—y|P < Ap(x,y) < (x—y,JEx—JRy), (2.2)

where T > 0. Obviously, if {xn} and {yn} are both bounded sequences of a p-uniformly convex and
uniformly smooth space E, then x,, —yn — 0 as n — oo implies that Ap(xn, yn) — 0 as n — oo.

Projections are an important tool for our work in this paper. We can define metric projection Pc as
follows

Pex =argmin, - [x—yl|, x€E.
Metric projection P¢ can be characterized by the following variational inequality
(JR(x—Pcx),z—Pcx) <0, z€eC. (2.3)
Likewise, one can define the Bregman projection
Mex = argminygcAp (x,y), x€E,

is the unique minimizer of the Bregman distance. The Bregman projection can also be characterized by
the following variational inequality

<]Ex— ]Eﬂcx,z—ﬂcx> <0, ze€(C, (2.4)

from which one has
Ap(TTex, z) < Ap(x,z) — Ap(x,Tcx), ze€ C. (2.5)

The metric projection and the Bregman projection with respect to f, are coincident in a Hilbert space,
but in a more general framework, they are totally different. What is important is that the metric projection
can not share property (2.5) as the Bregman projection in Banach spaces.

Following [2], we study the function V}, : E* x E — [0, 00) associated with f,,, which is defined by

1 1
Vo) = IR = (R + SIxIP, xEE X EE

Then V,, is nonnegative and

Vp(x,x) =Ap(J.X,x), x€E, x€E™
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Moreover, by the subdifferential inequality, we have
Vp (%, x)+ (U, Jg.x—x) < Vp(x+7,x), x€E X,7yeE™

In addition, V}, is convex in the first variable. Thus, for all z € E,

N N
Ap (IICI_I* (Z tlﬂé (Xi)> /Z> < Z tiAp (Xi/ Z’)I (26)
i=1

i=1

where {Xi}]iil C Eand {ti}]i\':1 C (0,1) with ZiN:1 t; = 1. For more details about V},, please see [2].

Very recently, Ugwunnadi et al. [23] introduced the concept of Bregman quasi-strictly pseudo-
contractive mapping and proved the strong convergence by using hybrid Bregman projection iterative
algorithm for a Bregman quasi-strictly pseudo-contractive mapping.

Definition 2.2. A mapping T : C — C is said to be Bregman quasi-strictly pseudo-contractive mapping, if
there exists a constant k € [0,1) and Fix(T) # () such that

Ap (Tx, x") < Ap(x,x™) + kAR (Tx,x), Vx € C, x* € Fix(T).

Definition 2.3. A mapping T : C — C is said to be Bregman quasi-nonexpansive mapping, if Fix(T) # 0
such that

Ap(Tx, x") < Ap(x,x*), Vx e C, x* € Fix(T).

Definition 2.4. A mapping T : C — C is said to be closed, if for any sequence {x,} C C withx, = x € C
and Tx,, >y € Casn — oo, then Tx = y.

We shall adopt the notation x, — x means that {x,,} converges strongly to x. Now, we give some
examples of a Bregman quasi-strictly pseudo-contractive mapping.

Example 2.5 ([25]). Let E be a smooth space, and define f(x) = |x||? for all x € E. Let xg # 0 be any
element of E, T : E — E be defined as follows:

T = [ V21727 %0, x= (1724172,
L x# (1/241/2%)x,
for alln > 1. Then T is a Bregman quasi-strictly pseudo-contractive mapping.

Example 2.6 ([23]). Let E = R and define T,f : [-1,0] = R by f(x) = x and T(x) = 2x for all x € [-1,0].
Then T is a Bregman quasi-strictly pseudo-contractive mapping.

3. Main results

In this section, we introduce the following algorithm and prove strong convergence theorem for find-
ing the common solution of split feasibility and fixed point problems.

Theorem 3.1. Let Eq and E; be two p-uniformly convex real Banach spaces which are also uniformly smooth. Let
C and Q be nonempty closed convex sets of E1 and E,, respectively. Let A: E1 — Eo be a bounded linear operator
with its adjoint A*: E5 — EJ. Let T be a closed Bregman quasi-strictly pseudo-contractive mapping from C to itself.
Let the sequence {xn} be iteratively generated by x; =x9 € C, D1 =C; =C,

x1 € C,
yn =TeJf (JB,xn = AA"TE, (Axn — PoAXn) ),
Zn = Jg; <0‘n]€;19n +(1— (xn)IElTXn> ’
Dny1 ={weDn:Ap(yn, W) < Ap(xn, W)}, (3.1)
Chny1 = {w € Cn 1 Ap(zn,xn) < T <w — Xn, ]ElTxn — ]Elxn>
+ <w —Xn, ]Elzn — ]Elxn>} ,

Xn41 = ﬂDnH NCni1 X0, T =1,
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1

where k € [0,1). Assume that {xn} C [c,d] C (0,1) and {An} C [a,b] C <0, (%) ql) Then the sequence
{xn} defined by (3.1) converges strongly to TTrx,.
Proof. By taking x* € T, x’ € C, by the definition of T, we have
Ap (Tx/, x*) < Ap (x',x*) + kAR (Tx', x).
From (2.1), we get
Ap (Tx/, x*) = Ap (T, X") + Ap (X', x*) + <x' —x*,]ElTx' — ]Elx’> ,

which implies that

Ap (Tx',x") < T <x* —x/, ]ElTx’ —]Elx’>. (3.2)

Let {xn} be a sequence in Fix(T) such that x,, = z as n — oco. From (3.2), we obtain

1
Ap(Tz,z) < 1

<xn —z, ]ElTZ — ]Elz> )

By setting n — oo in the above inequality, we have A,(Tz,z) < 0, it follows from (2.2) that Tz = z.
Therefore, Fix(T) is closed.

Next, let z1,z, € Fix(T), for given t € (0,1) and put z = tz; + (1 — t)z,. From (3.2), we obtain respec-
tively,

1
P P
Ap(Tz,z) < T« <21 -2z, IElTZ— ]E1Z> , (3.3)

and ,
Ap(Tz,z) < T <zz —z, IElTZ — ]Elz> ) (3.4)

By multiplying (3.3) by t and (3.4) by 1 —t, we have

1
Ap(T2,2) < 7 (z=2 )8 Tz- 2 2),
and by setting n — oo in the above inequality, we have A, (Tz,z) < 0. It follows from (2.2) that Tz = z.
Therefore, Fix(T) is convex. Since [} is a closed convex subset of E;, we obtain that I is closed convex.
Now from (3.1), we know Dy, is closed for each n > 1. Note that A, (yn, w) < Ap(xn, W) is equivalent
to

1
(JEn = TEynw) < o (xnll” = yalP),

so that Dy, is a halfspace. Therefore, we get D, is convex immediately.
For n =1, C; = C is closed convex essentially. Assume that C,, is closed convex for n > 1. For
w € Cp 1, we obtain

K
1—«

Ap (zn,xn) < <W — Xn, IE]TXn - IE]Xn> + <W —Xn, IE]Zn - IE]Xn> ,

since <-,]ElTXn — ]Elxn> and <-,]Elzn — ]Elxn> are continuous and linear in E;, we get Cy, is closed
convex.
Let x* € I' and let v, = Ax;y — PgAxy. It follows from (2.3) that
<]Ezvn,Axn - Ax*> = [|Axn — PoAXn [P + <1}22vn, PoAXn — Ax*>
> [|Axn — PoAx,|P.
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By applying Lemma 2.1, we have
Ap(yn, x*) < Ap <]g* (]Elxn —AnA*]Ezvn) ,x*)
q 1
*TP P * P * *
= <R A AT | = (T 0 ) + A (T AR £ P
Cq (AnJIALD
e (o) IR

= () 420 (IR, vn,Ax*> Ll

= lean — < Elxn,x > —Hx IIP +An < E,Vn, AX® —Axn> 6.5)
A
:Ap(xn,x*)—i-?\n <]Ezvn,Ax*—Axn> M H] H
< Byl = (A — LI e
By the assumption of {A,}, we have
Ap (Yn, x*) < Ap(xn, x"), (3.6)

so that ' C Dy 41 for all m > 1. Next, we show I' C Cy,+1. Note that ' C C; = C. Suppose I' C C, for
n > 1, then for all x* € I' C Cy, from (2.6), (3.1), (3.2) and (3.6), we obtain

Ap(zn,x*) = Ap (T (nJB,yn + (1= an)JE, Txn ) x7)
< OCnA (ynr ) (1 - o‘n)Ap(TxnIX*)
< onAp (Yn, X) + (1 —an) (Ap (xn, X)) + kAR (Txn, Xn)) (3.7)
<Ay (%n, x*) + p(TXn/Xn)
< Ap(xn, x*) + 2 <*— P T —JP >
X AplXn, X 1—« X Xn/]El Xn ]Elxn .
From (2.1), we get
Ap (zn,x*) = Ap (zn,Xn) + A (X, x*) + < —x" IE]Zn IE]Xn> . (3.8)
By (3.7) and (3.8), we obtain
Ap(zn,xn) < € <x*—x JP Tx —]px>+<x*—x Pz —]px>.
plen ) X 0 ns ), X E X ns)E AN E,Xn

This shows that x* € C,, 1, which implies ' C Cy,41 for all n > 1. Thus, Dy 41() Cn41 is nonempty. So
{xn}is well-defined.
From (3.1) and (2.4), we have

< E_]XU — ]Elxn,z—xn> <0, zeC,.

Since I' C C,,, we have
<]E1x0 TR X, X" —xn> <0, x*erl. (3.9)
By (2.5) and for all x* € ', we have
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This shows that {A,(xn,%o)} is bounded. Hence, {x,,} is bounded. By the construction of C,,, we get
Xm € Cm C Cn and x,, =TI, Xp, for any m > n. From (2.5), we obtain

Ap (Xm, Xn) = Ap (xm, M, xo0) < Ap(xm/ X0) — Ap(ﬂCnXO/ X0)

3.10
= Ap (xm,x0) _A'p (Xn,X0)- ( )

Since xn = Tc,xp and x;m = Tlc, X0 € Cin C Cyy, we have A, (xn,X0) < Ap(xm, %) for all m > n. This
implies that {Ap, (xn, X0)} is nondecreasing and hence the limit limy o Ap (Xn, X0) exists. From (3.10) we
obtain A, (xn,Xm) — 0 as m,n — oco. From (2.2) we have ||[x, —Xm| — 0 as m,n — oo. Hence, {x,} is a
Cauchy sequence in C C Ey, so there exists x € E; such that x,, = x asn — oo.

By using (2.1) and (2.4), we have

Ap (x0,TTrxo) = Ap (X0, Xn41)
=Ap (x0,%Xn) + Ap (Xn, Xn41) + <Xn —Xn+1, ]Elxo - ]11;1Xn>
= A'p (x0,Xn) + Ap (Xn, Xn+1)
Z Ap (X0, Xn—1) + Ap (Xn—1,%Xn) + Ap (Xr, Xn+1)

mn
> Z Ap(Xi, Xi41)-

Consequently, 22 5 Ap(xi,Xi+1) < oo, which from (2.2) yields Y ;2 [[Xn —Xn1]|P < oo. This implies that

lim [|xn, —xny1] = 0. (3.11)

n—oo

Since xn41 =Tc_ . xg € C,,11, we have,

n+1

K
1_« <Xn+1 —Xn, ]ElTXn - ]Elxn> + <Xn+1 —Xn, ]Elzn - ]Elxn> .

Ap (zn,xn) <

From (3.11) and (2.2), we obtain
lim |[xn —zn| =0. (3.12)

n—o0

Since xn4+1 =TTp, ., X0 € D41, we get

n+1
Ap (yn/ Xn+1) < Ap (Xn/ Xn+1)-

From (3.11), we have

nlgréo Hyn _Xn+1H = 0/

so,
Jim [Jxn —yn| =0. (3.13)
Since ]El is norm-to-norm uniformly continuous, from (3.1), we get
| Elzn - Elan = [lon Elyn - Elxn) +(1— “n)(]ElTXn - Elxn)”

> (1- O‘n)H]ElTXn - ]Elxn” - “nH]ElUn - ]EIXnH-

This implies that

(1— O‘n)H]ElTXn - ]Elxn|| < O‘nH]ElUn - ]EIXnH + ||]Elzn - ]Elxn”- (3.14)
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Since IET is norm-to-norm uniformly continuous, by setting n — oo in (3.14), from (3.12), (3.13) and
{an} C [c,d] € (0,1), we have

lim ||[Txn —xnl| =0.
n—,oo
By the closedness of T, from x,, — X, we obtain
Tx = x.

From (2.2) and (2.4), we have

(x,TTcx) < <x ”C'IE]X_J 1ﬂcx>
X —Xn, IElx — ]Elﬂcx> + <xn —Yn, ]Elx — ]Elﬂcx>
+ (yn —Tlex, JB x = 7, Tex)
< <x —Xn, ]Elx — ]Elﬂcx> + <xn —Yn, ]Elx— ]Elﬂcx> )

Setting n — oo yields A, (x,TTcx) = 0, we get x € C.
From (3.5), we have

Cq (An]|ADT
(An— "(T;””)) [VnllP < Ap (e x™) = Ap (g, x7).

This together with v, = Ax, — PgAxy, and (3.13) implies that

lim [|[Axn —PgAxq,| =0. (3.15)

n—o0

By (2.3), we have
|Ax — PQAX|[” = (JE, (Ax— PAX) , Ax — PAX )
= (I8, (Ax—PAX) , Ax = Axn ) + (JE, (Ax — PQAX) , Axyn — PAXn )
+(JE, (Ax—PqAx) , PoAxy — PoAX)
< (I}, (Ax—PQAX) , Ax — Axn ) + (JE, (Ax = PQAX) , Axn — PAXn )

From (3.15) and Ax, — Ax as n — oo, setting n — oo yields ||[Ax —PqoAx|? =0, we have Ax € Q. Thus,
we conclude that x,, - x ¢ T.
By setting n — oo in (3.9), we obtain

<JE1X0 — ]Elx,x* —x> <0, x"eT.
By (2.4), we have x = Tlrxo. O

Remark 3.2. Compared with the known results in the literature, our result is very different from those in
the following aspects.

e The corresponding iterative algorithms in [16, Theorem 3.2], [18, Theorem 3.1], [19, Theorem 3.1]
are extended for developing our algorithm which couples modified CQ method with Nakajo’s iter-
ation involved in Bregman quasi-strictly pseudo-contractive mapping in Theorem 3.1. Our iterative
scheme in Theorem 3.1 can be viewed as a merger between corresponding iterative algorithms in
[16, Theorem 3.2], [18, Theorem 3.1], [19, Theorem 3.1].
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e The construction of sets such as C, 1 = {w € Cn 1 Apl(zn,xn) < 17 <w—xn, ]ElTxn — ]Elxn> +

<w — Xn, ]Elzn — ]Elxn>} in our iterative scheme is very different from the iterative algorithm in
[16, Theorem 3.2], because our construction is mainly based on the definition of Bregman quasi-

strictly pseudo-contractive mapping. Moreover, we attain strong convergence result in a broader
framework, the p-uniformly convex and uniformly smooth Banach spaces.

e The technique of proving strong convergence in Theorem 3.1 is different from those in [16, Theorem
3.2], [19, Theorem 3.1], because our technique depends on Lemma 2.1 in Banach spaces.

e The problem of finding a common element of the set of solutions of split feasibility problem and
the set of fixed points of a Bregman quasi-strictly pseudo-contractive mapping in our Theorem 3.1
is more general than the problem of finding a solution of split feasibility problem in [16, Theorem
3.2] and the problem of finding an element of the set of fixed points of a Bregman quasi-strictly
pseudo-contractive mapping in [19, Theorem 3.1].

Since the class of Bregman quasi-nonexpansive mappings is Bregman quasi-strict pseudo-contractive,
the following corollary is obtained by using Theorem 3.1.

Corollary 3.3. Let £y and E, be two p-uniformly convex real Banach spaces which are also uniformly smooth. Let
C and Q be nonempty closed convex sets of E1 and Ey, respectively. Let A: E1 — Eo be a bounded linear operator
with its adjoint A*: €5 — Ef. Let T be a closed Bregman quasi-nonexpansive mapping from C to itself. Let sequence
{xn} be iteratively generated by x; =x9 € C, D1 =C; =C,

X1 € C,

yn =TeJf (T8, xn —AnATJE, (Axn — PoAXn)),

Zn = JET ((Xn]glyn +(1— “n)]ElTXn) ,

Dny1={weDn: Ap (Yn,w) < Ap (xn, W)},

Chy1= {W €Cn:ly (zn,%n) < <W_xn/ ]Elzn - Ig_lxn>};

Xntl = nDnH NCns1X0r T > 1.

(3.16)

1

Assume that {xn} C [c,d] C (0,1) and {An} C [a,b] C <O, (%) ql) Then the sequence {xn} defined by
(3.16) converges strongly to TTrxo.

Typical examples of both uniformly convex and uniformly smooth Banach spaces are LP?, where p > 1.
Then we have the following corollary.

Corollary 3.4. Let £y and E; be two LP spaces with 2 < p < oo, C C By and Q C Ep be two nonempty closed
convex sets. Let A: E1 — By be a bounded linear operator with its adjoint A*: €5 — E]. Let T be a closed
Bregman quasi-strictly pseudo-contractive mapping from C to itself. Let sequence {xn} be iteratively generated by
x1=%x€C, D1 =C=¢(,
x1 € C,
yn =TS (T2~ AnATTE, (Axn — PAxn) )
ZIn = Ig; (“nlglyn +(1— OCnHElTXn) ,
Dpi1={weDn: Ap (Yn,w) < Ap (xn, W)}, (3.17)
Cny1= {w € Cn:Aplzn, xn) < 12¢ <w —xn,]ElTxn — ]Elxn>

+ <w —Xn, ]Elzn — ]Elxn>} ,

Xntl = nDnH NCnsrX0r T 21,

1

where k € [0,1). Assume that {o,} C [c,d] C (0,1) and {An} C [a,b] C (O, (ﬁ\lq/W) ql) Then the sequence
{xn} defined by (3.17) converges strongly to TTrxo.



J.-Z. Chen, H.-Y Hu, L.-C. Ceng, ]J. Nonlinear Sci. Appl., 10 (2017), 192-204 202

Finally, we consider the following special case in Hilbert spaces.

Corollary 3.5. Let Hy and Hj be two real Hilbert spaces and C C Hy and Q C Hy be two nonempty closed
convex sets. Let A: Hy — Hy be a bounded linear operator with its adjoint A*. Let T be a closed quasi-strictly
pseudo-contractive mapping from C to itself. Let the sequence {xn} be iteratively generated by x; = xo9 € C,
D1 =C; =C,

x1 € C,

Yn = Pc (xn —AnA* (Axn —PQAXn)),
Zn = onYn + (1 —on)Txn,
Dni1={weDn:llyn —wl < [xn —wl},

Chi1= {W € Cn: Hzn—anz < 12_KK

(3.18)

(W —%n, Txn — Xn) +2 (W —Xn,zn —Xn)},

Xn+1 = PDn+1 ﬂ Cn+1xo’ n > 1’

where k € [0,1). Assume that {«n} C [c,d] C (0,1) and {An} C [a,b] C (O, H/%Hz)' Then the sequence {xn}
defined by (3.18) converges strongly to Prx.

4. Numerical example

In this section, in order to demonstrate the effectiveness, realization and convergence of algorithm of
Theorem 3.1, we consider the following simple example in (IR, | - ||2). All codes were written in Matlab
R2014a and run on Lenovo i-5 Dual-Core laptop.

Example 4.1 (Numerical Example). Let E; = E; = R with the standard norm || = || - || for all x,y € R.
Let C =[0,400), and Q = (—o0,0]. In (3.1), we take an, =6/7, k =1/9, An =2, Tx = 2x, for all x € C and
Ax =1/2x, for all x € R.

Then the scheme (3.1) can be simplified as

x1 € C,

yn = Pc (Xn - (I_ PQ) %Xn) ’

Zn = gyn + %Xn/

D _ D. - < X%L*Uﬁ
T1+1 — w 6 n - w X ZXn—Zyn 7

. 3x2 —422
Chi1= {W €ECn:wg 7,(:_82;L } ,

Xn+1 = PDTL+1 N Cn+1X1’ nz 1.

Choosing initial values x; = 6 and x; = 3, respectively, we see that figure and numerical results
demonstrate Theorem 3.1. Table 1 and Figure 1 show that the sequence {x,,} generated by the above
algorithm converges to 0.

seduence value 3

Figure 1: The convergence of x, with initial values 6 and 3, respectively.
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Table 1: The values of the sequence xn

n Xn Xn
1 6.000000000000000 | 3.000000000000000
2 4.476190476190476 | 2.238095238095238
3 3.339380196523054 | 1.669690098261527
4 2.491283638675928 | 1.245641819337964
5 1.858576682821724 | 0.929288341410862
27 0.002950130794513 | 0.001475065397256
28 0.002200891227652 | 0.001100445613826
29 0.001641934725392 | 0.000820967362696
30 0.001224935430054 | 0.000612467715027
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