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Abstract

The paper is devoted to solve multidimensional backward doubly stochastic differential equations under integral non-
Lipschitz conditions in general spaces. By stochastic analysis and constructing approximation sequence, a new set of sufficient
conditions for multidimensional backward doubly stochastic differential equations is obtained. The results generalize the recent
results on this issue. Finally, an example is given to illustrate the advantage of the main results. (©2017 all rights reserved.
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1. Introduction

Motivated by the probabilistic interpretation of solutions to a class of quasilinear parabolic partial
differential equations (PDEs in short), Pardoux and Peng [14] introduced nonlinear backward stochastic
differential equations (BSDEs in short). In the past decades, the theory of BSDEs have been extensively
developed and gradually become an important tool in financial problems [2, 3], stochastic control [1] and
stochastic games [7] and so on. One highlight of the theory is relaxing the conditions of existence and
uniqueness of the solutions. Mao [13] has proved the existence and uniqueness of the multidimensional
BSDEs with non-Lipschitz coefficients. Lepeltier and San Martin [10] have relaxed the generator with
continuous conditions. Hamadene [6] investigated the existence of the multidimensional BSDEs where
the generator satisfies uniformly continuous conditions. Recently, Fan et al. [5] discussed the existence
and uniqueness of the multidimensional BSDEs with Osgood hypothesis where the method is different
from [13]. Hu and Tang [9] studied the same problem with diagonally quadratic generators.

In 1994, Pardoux and Peng [15] studied the backward doubly stochastic differential equations (BDS-
DEs in short). They proved the existence and uniqueness under Lipschitz conditions, and also, discussed
the probabilistic representation of solution of quasilinear stochastic PDEs. Furthermore, Shi et al. [16]
obtained the existence of the BDSDEs with continuous coefficients. Lin [11, 12] made further efforts to
establish the existence or uniqueness of solutions with non-Lipschitz. Even recently, Wang et al. [17]
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obtained the result where the first generator satisfied Osgood hypothesis, the second non-Lipschitz con-
ditions. As a matter of fact, those results are obtained which the generators are uniform on t. To the best
of our knowledge, the multidimensional BDSDEs with generators of integral non-Lipschitz assumptions
in general spaces have rarely been reported.

The structure of this paper is organized as follows. In Section 2, we present some basic notions and
assumptions which will be needed in the sequel. Section 3 is devoted to investigate the existence and
uniqueness of solutions for multidimensional BDSDEs in general space. Finally, we give an example to
show the effectiveness of the main result.

2. Notations

Let T > 0 be a fixed terminal time. | - | denotes the Euclidean norm of IR¥, and (x,y) denotes the inner
R**4, its norm is defined by |z|| = y/Trace(zz*). Let (Q,F,P) be a
complete probability space, {B}icp,1) and {Wi}ieo, 1) are two mutually independent standard Brownian

motions with values in R! and R9, respectively, and N denotes the totality of P-null sets of F. For any
te[0,T],

product of x,y € R¥. For any z €

Fe =F% \/ FL,

where for any process 1y, ?Elt = O'{T]T —MNs, s <1 < t} V' N, &"P = ?Rt. For a deterministic square

integrable function a(t), we define A(t) = f; a?(s)ds.
Let us introduce some spaces for 3 > 0 which will be carried out in the following parts.

e 1%(B,a,T,R) denotes the set of all Fr—measurable R*-valued random variables & such that

2 2
] = E(ePA M) < oo

Lz([:’,, a) denotes the collection of the Fi—adapted, R¥—valued continuous processes (Yt) tel0,T] such
that

)
IV = IEJ eBAM |y, [2dt < +oo.
0

[29(B, a) denotes the set of the JFi—adapted, R*-valued continuous processes (Yt) ] such that

te(0,T

.
Y1l = IEJO eBAM Q2(1)[Y,[*dt < 400,

8%(B, a) denotes the space of the Fi—adapted, Rk-valued continuous processes (Yt)

VIR — (

tel0,T] such that

sup eBA(t)‘Yt‘Z < +o0.
telo,T]

M?(B, a) denotes the space of the Fy—adapted, R** 4—valued processes (Zt)reo,T) such that
2 T 2
12| = IEJ ePA) | Z,|Pdt < +oo.
0

e M>%: = [29(B,a) x M?(B, a) denotes the Banach space with the norm

Y.zl = IVl o + 12l
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o M?C: = (82(6, a) N L2(B, a)) x M?(B, a) denotes the Banach space with the norm

pe = IVll5e +IV1IG o + 1205

In this paper, we consider the backward doubly stochastic differential equations

T T T
= E,‘l‘J f(S, Ys, Zs)dS +J g(S,Ys/ ZS)dBS _J stWsr te[0,T], (21)
t

t t

where the integral with respect to By is the classical backward It6 integral and the integral with respect
to W, is standard forward It6 integral. The equations are often abbreviated by BDSDEs (&, f, g).
With the above preparations, we introduce the definition of solution of (2.1).

Definition 2.1. A pair of processes (Yt, Zt) € M?>¢ is a solution to (2.1), if it satisfies (2.1).

te(0,T]

In order to get the solution of (2.1), we propose the following assumptions:
(H1) The terminal value & € L?(B,a, T,R);

H2) (i) The coefficients f : Q x [0, T] x R* x R**d — R¥,g : Q x [0,T] x RF x Rk*4 — Rkx are
g
progressively measurable for any (y,z) € R* x R**¢ such that f((;’(o. ’? ), (-,0,0) € L%(B, a).

(i) There exist some integrable functions p(t), q(t), u(t) : [0,T] — R* such that for any t €
[OIT]I Y1, Y2 S IRkIleZZ S IRkXd/

[f(t,y1,21) — f(t,y2,22) | < p(BD)p(ly1 —y2l) + q(V)]|z1 — 22|,
<p

l9(t,y1,21) — 9(t,y2, 22)||” < P(O)ly1 — yalo(ly1 — val) + ult)|z1 — 2%,

where p(x) is a concave and nondecreasing function with p(0) = 0 and f0+ p‘gl‘i) = +4o00.
(iii) There exists a constant 0 < « < 1 such that u(t) < «, for all t > 0.
Remark 2.2. For the above given spaces, if a(t) = C, C is a nonnegative constant, we can easily find that
the spaces degenerate into the classical spaces.
Before giving our main results, we introduce some technical tools. The first lemma appears in [4].

du __ :
o(u) — T there exists

a concave nondecreasing function ¢(u) with ¢(0) = 0 and f0+ ﬁ = 400, moreover, ay/up(v/u) < ¢(u) <
2a+/up(y/u), where a > 0 is a constant.

Lemma 2.3. If p(u) is a concave and nondecreasing function with p(0) = 0 and fo+

Lemma 2.4. Assume that the generator f satisfies (H2). Let fV) denote the 1th component of the generator f(i =
1,2,--- k), we define a series of functions f, = (fg), fﬁf),- ., fg‘)) with fn as follows

i (t,y,2) = inf {f1")(t,w2)+ (n+A)p(tly —ul}.
ue

Then, it satisfies
(i) forany (y,z) € R* x R4, |f(t,y,z) — f(t,y,z)| < kp(t)p(22).

n
(ii) for any (yi,zi) € R* x R**4, 1 =1, 2, we have

}fn (t/yll Zl) —fn (t Y2, ZZ)‘

< (n+A ) [P(Oy1 —yal + q(t)||z1 — 22]l],
[fn(t,y1,21) — fn(t, Y2, 22)| < kp(t

)p(ly1 —yal) + kq(t)[|zy — 22 |-

(iii) 20 € 129(B, ).

Proof. The proof is similar to the process Step 1 of Theorem 1 in [5], so we omit it. O
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3. Existence and uniqueness

In this section, we begin with establishing a priori estimate on the solutions of (2.1). Because p(x)
is a concave, there exists a nonnegative constant A such that p(x) < A(x +1). Furthermore, we let
a?(t) = p(t) + g?(t) in the following parts.

Proposition 3.1. Assume that (H1) and (H2) hold, and (Yt, Zt) is a solution of (2.1), then for a large enough 3,
there exists a constant dg 1 which depends on (3 and T such that

E | sup eBA(S)‘YS}Z

t<s<T

Proof. Applying It6 formula to ePAt ‘Yt

it yields that, for any t € [0, T]
Ay, +5J'eﬁA h’|ds+J ePAG)| 2, 2ds

:eBA”wg|+zj

.
ePAGIYf(s, Vs, Zs)ds +2J ePAS)Y g(s, Vs, Z5)dBs (3.1)
t

t

T T
+J ePA)||g(s, Vs, Z5)|Pds — 2J ePAY 7 dW.
t t
Following the assumptions (H1) and (H2), and elementary inequality, we have

2YeF(t, Vi, Z0) = 2V [f(1, Y0, Z0) = £(t, Y1, 0) + £(, Vi, 0) — £(1,0,0) +(t,0,0)]

< 2|Ye|[f(t, Ye, Ze) — £(t, Y, 0) If(t, Yt,O) —(t,0,0)

2
< (o + By + 2z + s (V) +

1f(t0,0)[ (32

8
Ba2(t)

HQ(t;Yt;Zt)HZ — Hg(t/Yt/Zt) - g(tlolo) + g(tIOIO)HZ

3.3
< oc(1+i)HZtH2+ (1+i)a2(t)¢(‘Yt‘2) +(1+v)|g(t,0,0) 2 (33)

where v is a nonnegative constant.
Take expectation on both sides of (3.1), by (3.2) and (3.3), we have

EePAL \vq.+gEJ'eﬁA h’\d&+EJ eBAE)]|Z,|%ds

T B T
< EePAMg 4 <2+ ﬁ) ]EJ ePALIa2(s)|Y, 'ds + [M+°¢(1+1)] IEJ S P
1-— 8 t 2 Y t

T pacs [f(s \2 T 2
+1EJ eP 7ds+(1 —H/)lEJ eBA(S)’g(S,O,O)‘ ds
t

8
B t a?(s)

.
+(2+ 1)IEJ ePAS) @2(5) b (|Ys|*)ds
Y t
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Lety = , we deduce

7 2 T 1—ap (!
EePAt \Yt| (S?_H)IEL eBA(s)az(s)|Ys\2ds+4_(x]EJ eBA(S)HZSHZdS
2

T
<ERBA”WaF+41+vm;[eBA ]gsO(J\d&+8EJ eW““HEQZQLds
t B¢ a?(s)
-
(24 B[ AT (Y, )ds
t
Let B be large enough, there exists a nonnegative constant Cg 1 such that
EePA) |y, |? +JEJ ePA)a?(s)|Yq \ds+4EJ ePAG)||Zg|Pds < Cp 1Xe. (3.4)
t

where

(s) [f(s,
a ( )
By the Burkholder-Davis-Gundy inequality, we have

‘ 2

T
X, —]EeﬁA(T)‘E,}Z‘FIEJ e dS+IEJ e A(S)‘Q(S,O,O){zdS—FEJ eBA(S)az(s)d)(‘Ys‘z)d&
t t

T BA(r) T 2 1z
2FE | sup J' eBA(S)YSg(s,YS,Zs)clBS < 12E | sup {e 2 YT} J ePAls Hg(s Ys, Zs)||"ds
relt,T] relt,T] t (3.5)
-
< 1IE sup [eBA(T)\YrIZ} +144IEJ ePAls Hg s,Ys,Zg || ds.
4 relt,T]
T 1 » T
2E | sup J e —E{ sup [eBAm‘YT| } —|—144]EJ ePALs HZ H ds. (3.6)
reft,T] 4 relt,T]

From (3.1), (3.5), and (3.6), it follows that

E | sup eBAm‘YT‘Z

T T
+BE [ NI fas B [ 00z s
Telt,T] t t

:
< BePATe 2k [ ePANr(s, Yo, Ze)as + €8N0 g(s, Ve, 20) s

T T
+2E || sup J Py g(s, Ys, Z5)dBs J ePAL)Y 7 dw

Te(t,T]

}

.
%145(14VNEJ1 ePA(5)|g(s,0,0)|*ds (37)
t

+ ZIE{ sup

re(t,T]

<]EeBA[T)‘£|2+%]E sup ePAy,|?

Telt,T]

.
+fM4+4——f+Lﬁ (1+ 1)115: PG| Zg|Pds
Y t

[£(s,0,0)
a?(s)

+(146+§) J eBA(S)az(s)d)(‘Yslz)ds
t

]EJ ePALs) ds + ( 2 —|—B)IEJ ePALs) \Y\ds

1—ax 8

_|_
™|

From (3.4) and (3.7), we can derive the result. O
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Theorem 3.2. Assume (H1) and (H2) hold. Then, there exists a unique solution (Yy, Zy) € M>© satisfying (2.1).
Proof. Uniqueness. Let (Y, Z}) € M*¢ (i = 1,2) be solutions of (2.1), we have

T T

905,71, 28) — (s, V2, 22) B, — | (21— Z2)aw.

t

.
Yl y2 = J [f(s,Yg,zi) —f(s,Yg,zi)}ds +J

t t

Applying It formula to ePA M) |y] — 2

Ayl _v2[2 +[5J ePA() 2 (s) Y1 - V2| ds+J ePAG)| 2L — 22|ds

:

:2J ePAL) (Yl - )[f(s,Yi,Zl)—f(s,Yi,Zi)}dS

t N (3.8)

JeBA (gls, V2, 2E) — (s, V3, 22) [Pds —2 | ePAE) (v 12) (2~ 22)aw
t

)
+2J A (V- ¥2) [g(s, Y2, 2L) — g(s, Y2, 22) | aB..
t

Taking expectation on both sides of (3.8), from (H1), (H2) and elementary inequality 2ab < 6a?+ §b% 0 >
0, we have

-
EePAW|Y] —v2)? +[31EJ eBA(S)aZ(S){Yg—YgfdsHEJ ePALS)||ZL — 22| ds
t
-
:2]EJ ePA) (V- ¥2)[#(5, Y], ZL) — £(5, Y2, 23) ] ds
t
-
FE | eBASTgls i, 2E) - gls, V2 22| ds
T
<3]EJ eBA(S)aZ(sm(\Yg—Yg\z)ds+ZEJ ePAB)2(5)| YL — ¥2|*ds
t
4 ' BA(s 1 21|12
+(B+oc)lEJ ePAE) 21— 22|Pds.
t
By Lemma 2.3, and taking 3 large enough, there exists a nonnegative constant C; such that

T T
IEJ ePABI2(5)[ YL — V2| ds+IEJ ePALS)||ZL — zﬁszsgcllEJ ePASIQ2(s)p(|YE — Y2[*)ds.  (3.9)
t t t

From (3.8), (3.9) and Burkholder-Davis-Gundy inequality, there exists a nonnegative constant C; such that

.
E| sup ePA|YI 2] +]EJ eﬁA(sJaz(s)\vg_vgfdsHEJ eBAE)||Z] — 72| Pds
t<r<T t
T 5 T
<C21EJ ePASI a2 (s) g (| Ve — V2 )ds<C2J a®(s)¢ | E sup ePAM]yl— YZ}
t t s<r<T

By Bihari inequality, we can obtain Y! = Y2,Z! = 72 dP — a.s.

Existence. By the definition of f,,, Lemma 2.3, and Lemma 2.4, we can easily deduce BDSDEs(§, fr,, g)
is a special case in [8] Therefore, BDSDEs (¢, f,, g) have a unique solution denoted by (Y{*, Z{'). Applying
Itd formula to ePAM Y — Y P2,

T T
ePA|yn Y;“|2+[3J ePAS) Q2(s)| Y1 — Y;“\zds+J ePALS) |z — 7| ds
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-
_ ZJ eﬁA(S)(Y? _y;n) [fn (s,Y?, z;‘) —fm(s,Y;“, Z;“)}ds
t
-
2| PR (v v [gls, 2, 22) — o5, Y2, 2,
t

3
—2 [ BN (v ) (22 - 2 aw
t

J H (s, Y&, Z3) —g(s, Y, Z?‘)szs.

Taking suitable 3, by Lemma 2.3 and Burkholder-Davis-Gundy inequality, there exists a nonnegative
constant Cs such that

)
E| sup ePAD|yR —ym)? ]EJ eBA(s>a2(s)\v:—vp|2ds+]EJ eBAE) | Z8 — zm|Pds
t<r<T t t
T
<C31EJ eﬁA(S)az(s)w(‘Y;‘—Y;“‘z)ds (3.10)
t

]
<C3J (shh(E sup ePATI|vy— v ) ds,
t s<r<T

where \(u) is a concave and nondecreasing function with 1(0) = 0 and f0+ ﬁ = 400, kup(u) < Ppu) <
2kup(u),k > 0.

From Bihari inequality and (3.10), we have (Y{*, Z{') is a Cauchy sequence in M*°.

On the other hand,

-
J ePAls ]f (s,Y;‘,Z“)—f(s Y, Z, )]ds
t

.
glEJ eBALs) [kp(S)p(sz—P(S)p(Wn Ysl) +qls)|| Z0 — ZsH]dS

T 2A 2A T
BA(s BA(s n
<lELe kp()[ (n)~|—p(m+A)]ds+(m+A)]ELe (s)| Y2 —Ys|ds
T

+IEJ eBAG) g(s)|1ZD — Zds

i (3.11)

2A 2A
BA(s) A
< IEL e kp(s) [p( o ) +p(m—|—A)] ds
T IrT , 2
+E J CBA(S)GZ(S)dS] U eBA(S)HZ?—ZsH ds]
t t
| P 3
+(m+A)E J eﬁA(s)az(s)ds] “ ePALs) ‘Y“ Ys } ds ,
t t

T 2
]EJ ePA(s Hgn(s,Y?,Z?)—g(s,Ys,Zs)H ds

t

;
<IEJ A [y vs\p(s)p(\vg_vs\)}dsmmj ePAE) 2D — 7, ds (3.12)
t

-
sup ePAl ‘Y“ YT‘Z) ds—i—odEJ ePA(s HZ“ Zstds.

E
<j p(s)o(E
s<r<T

t
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From (3.11) and (3.12), we have

T T T
Yo = 5+J £(s, Yy, Z5)ds +J o(s,Ys, Z2)dB, _J Z.dWs, t € [0,T).
t t t
Then, (Y, Zt)eo,7) is a solution of (2.1). O]
Example 3.3. For convenience, let k = 1, and f(t,y,z) = %h(lyl) + %\/{Izl +[Bel, g(t,y,z) = %ﬁsin lyl +
ﬁlzl +|B¢l, and 6 is a enough small nonnegative constant,
—xInx, x <9,
h(x) =< R/ (6—)(x—8)+h(d), x>,
0, other cases.
We choose p(t) = ﬁ, q(t) = %,u(t) = 510, then
If(t,y1,21) — f(t, Y2, 22)| < p(t)h(ly1 —y2l) + q(t)llz1 — 22|,
lg(t,y1,21) — g(t,y2, 22)* < [ih}l — Yol + ¥HZ1 — 21> < 3p(t)lyr —yo* + lz1 — 2%
4 7 4 7 ~ % zm AN 2 +t2
Let p(x) = h(x) + 3%, we can deduce p(x) is a concave function, f0+ ﬁdx = +o00. According to above

analysis, the functions f(t,y, z), g(t,y, z) satisfy (H1) and (H2), the equation (2.1) has a unique solution.
Obviously, f(t,y,z),g(t,y,z) do not satisfy the assumptions in [11, 12, 15-17]. Let p(t), q(t) = C,u(t) =
x(0 < « < 1), C is a nonnegative constant, then, the results generalize the results in [15, 17]. Moreover, if
g(t,y,z) =0, [5, 13, 14] are special cases of our main results.
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