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Abstract
Using the techniques of measures of noncompactness and Schauder fixed point theorem, we present some existence results

for mild solutions of a class of nonlocal evolution equations involving causal operators. Moreover, we obtain the compactness
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1. Introduction

The importance of nonlocal initial value problem based on the fact that it is more general and has bet-
ter effects than the classical initial condition alone. A nonlocal initial condition for a class of autonomous
semilinear evolution equations was first time introduce by Byszewski [13] and has been developed by var-
ious authors, see [3–6, 8, 9, 11, 12, 25, 39, 56, 58] and references therein. Byszewski and Lakshmikantham
[14] obtained the existence and uniqueness of the mild solution for an autonomous semilinear evolution
equation in the case that a Lipschitz type condition is satisfied. The study of existence and uniqueness
of mild solution for different classes of semilinear evolution equations under various conditions was de-
veloped in many papers, such as [2, 16, 17, 24, 28, 32, 37, 38, 47, 48, 58, 59]. Also, for some results on
the existence and uniqueness of solutions for autonomous fractional evolution equations with nonlocal
conditions, see [7, 10, 18, 19, 22, 26, 27, 43–46] and references therein.

Let R be the set of real numbers and let R+ be the set of non-negative real numbers. Let E be a
real Banach space endowed with the norm ‖·‖. We denote by C([0,a],E) the Banach space of continuous
functions from [0,a] into E endowed with the norm ‖u(·)‖ = sup

06t6a
‖u (t)‖. The space of all (equivalence

classes of) strongly measurable functions u(·) : [0,a]→ E such that

‖u(·)‖p :=

(∫a
0
‖u(t)‖p

)1/p

<∞,
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for 1 6 p < ∞ and ‖u(·)‖∞ := ess supt∈[0,a] ‖u(t)‖ < ∞, will be denoted by Lp([0,a],E). This is
a Banach space with respect to the norm ‖u(·)‖p. Let us denote by F1([0,a],X) the space of all the
functions from [0,a] into X, and by F2([0,a], Y) the space of all the functions from [0,a] into Y. Then
an operator C : F1([0,a],X) → F2([0,a], Y) is called a causal operator, if for each τ ∈ (0,a) and for all
u (·) , v (·) ∈ F1([0,a],X) such that u (t) = v (t) for t ∈ [0, τ], we have that (Cu) (t) = (Cv) (t) for t ∈ [0, τ].
Two significant examples of causal operators are: the Niemytzki operator

(Cu)(t) = f(t,u(t)),

and the Volterra integral operator

(Cu)(t) =

∫t
0
k(t, s)f(s,u(s))ds.

Also, the Fredholm operator

(Qu)(t) =

∫b
a

K(t, s,u(s))ds,

is a causal operator, if and only if K(t, s,u(s)) = 0, for t < s < a. This paper is concerned with the
following non-autonomous evolution equation with causal operator and nonlocal condition:{

u′(t) = A(t)u(t) + F(t,u(t), (Cu)(t), for t ∈ [0,a],
u(0) = g(u(·)),

where {A(t) : D(A(t)) ⊂ E → E; t ∈ [0,a]} is a family of closed densely defined unbounded linear
operators generating an evolution system {T(t, s) : 0 6 s 6 t 6 a}, C : C([0,a],E) → Lp([0,a],Z) is
a causal operator and F(·, ·, ·) : [0,a]× E× Z −→ E is a given function. The general non-autonomous
integro-differential evolution equation u′(t) = A(t)u(t) + F

(
t,u(t),

∫t
0
K(t, s,u(s))ds

)
,

u(0) = g(u(·)),

and the evolution equation with “maxima”:

u′(t) = A(t)u(t) + F

(
t,u(t), max

06s6t
u(s)

)
, u(0) = g(u(·)),

are example of non-autonomous causal evolution equations with nonlocal initial conditions. From the
above examples it is clear that the fractional evolution with causal operators cover a large variety of
nonlocal evolution equations. Casual operators represent a class of operators which allows us to study
unitarily many types of differential equations and integral equations. For theoretical aspects and applica-
tions of causal operators see the monographs [20, 35, 36, 42]. The study of a class of evolution equations
with causal operators was approached in [1, 15]. For some recent contribution to the study of autonomous
fractional evolution equations with causal operators we refer to the following papers [29, 30, 54].

In this paper we bring some contributions to the study of a class of non-autonomous evolution equa-
tions involving causal operators. To best of our knowledge, this is the first paper devoted to the study of
such class of problems and it can be viewed as an attempt to unify and generalize the non-autonomous
versions of some known results in the autonomous case from the works [20, 32, 37, 38, 55, 56, 58, 59] and
other ones. In Section 2, we will recall some necessary results on evolution system of linear operators
and some properties of the Hausdorff measure of noncompactness. In Section 3, we will obtain the exis-
tence of the mild solution for non-autonomous causal evolution equations under a noncompact evolution
system. In Section 4, we will give an application.
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2. Preliminaries

We denote the space of all bounded linear operators acting on a Banach space E by L(E). A two
parameter family of bounded linear operators {T(t, s), 0 6 s 6 t 6 a} on E is called an evolution system,
if the following three conditions are satisfied:

(a) T(s, s) = I, the identity operator on E;

(b) T(t, r)T(r, s) = T(t, s) for 0 6 s 6 r 6 t 6 a;

(c) (t, s) 7→ T(t, s) : ∆→ L(E) is strongly continuous for 0 6 s 6 t 6 a;

(d) t 7→ T(t, s) : (s,a]→ L(E) is differentiable, ∂∂tT(t, s) ∈ L(E), and

∂

∂t
T(t, s) = A(t)T(t, s), 0 6 s < t 6 a,

where ∆ := {(t, s) ∈ [0,a]× [0,a] : 0 6 s 6 t 6 a}.

Since the evolution system T : [0,a]× [0,a]→ L(E) is strongly continuous on the compact set [0,a]× [0,a],
there exists M > 0 such that ‖T(t, s)‖ 6M for any (t, s) ∈ [0,a]× [0,a]. For the existence and construction
of an evolution system with the above properties see [40], [57, Chapter 3]. More details as regards this
evolution system can be found in [50].

We denote by β(B) the Hausdorff measure of non-compactness of a nonempty bounded set B ⊂ E,
and it is defined by (see [31]):

β(B) = inf{ε > 0; B admits a finite cover by balls of radius 6 ε}.

We recall some properties of β (see [31]). If A,B are bounded subsets of E, then

(β1) β(B) = 0, if and only if B is compact;

(β2) β(B) = β(B) = β(conv(B));

(β3) β(λB) = |λ|β(B), for every λ ∈ R;

(β4) β(B) 6 β(C), if B ⊂ C;

(β5) β({x}∪B) = β(B), for every x ∈ E;

(β6) β(B+C) = β(B) +β(C).

(β7) Generalized Cantor’s intersection property (see [34]):
If {Bn}n>1 is a decreasing sequence of bounded closed nonempty subsets of E and lim

n→∞β(Bn) = 0,

then
⋂∞
n=1 Bn is a nonempty and compact subset of E.

Remark 2.1. If dim(B) = sup{||x− y||; x,y ∈ B} is the diameter of the bounded set A, then we have that
β(B) 6 dim(B) and β(B) 6 2d, if supx∈B ||x|| 6 d.

In the following, we denote by βc the Hausdorff measure of non-compactness in the space C([0,a],E).
Then it is well-known that for every bounded set B ⊂ C([0,a],E) we have (see [31])

β(B(t)) 6 βc(B),

for every t ∈ [0,a], where B(t) := {u(t) : u ∈ B}. Moreover, for every bounded and equicontinuous set
B ⊂ C([0,a],E) we have (see [31])

βc(B) = sup
06t6a

β(B(t)). (2.1)
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Lemma 2.2 ([33, Lemma 2.2]). Let {un(·);n > 1} be a subset in L1([0,a],E) for which there exists m(·) ∈
L1([0,a], R+) such that ‖un(t)‖ 6 m(t) for each n > 1 and for a.e. t ∈ [0,a]. Then the function t 7→ β(t) :=
β({un(t);n > 1}) is integrable on [0,a] and for each t ∈ [0,a], we have

β

({∫t
0
un(s)ds;n > 1

})
6
∫t

0
β(s)ds.

3. Existence result

Consider the following evolution equation with causal operator and nonlocal condition:{
u′(t) = A(t)u(t) + F(t,u(t), (Cu)(t), for t ∈ [0,a],
u(0) = g(u(·)), (3.1)

where {A(t) : D(A(t)) ⊂ E → E, t ∈ [0,a]} is a family of closed densely defined unbounded linear
operators generating an evolution system {T(t, s) : 0 6 s 6 t 6 a}, C : C([0,a],E) → Lp([0,a],Z) is a
causal operator, and F(·, ·, ·) : [0,a]× E×Z −→ E is a given function. A function u(·) : [0,a]→ E, is a mild
solution of (3.1), if it satisfies

u(t) = T(t, 0)g(u(·)) +
∫t
o

T(t, s)F(s,u(s), (Cu)(s))ds, (3.2)

for all t ∈ [0,a].
Let us introduce the following conditions:

(H1) {A(t) : D(A(t)) ⊂ E→ E; t ∈ [0,a]} is a family of closed densely defined unbounded linear operators,
(D(A(t)) = D(A) not depending on t and dense subset of E), such that there exists an evolution
system {T(t, s); 0 6 s 6 t 6 a} with the property that∥∥∥∥ ∂∂tT(t, s)

∥∥∥∥
L(E)

= ‖A(t)T(t, s)‖L(E) 6 C (t− s)−1 ,

with C > 0 and 0 6 s < t 6 a.

(H2) (a) C : C([0,a],E)→ Lp([0,a],Z) is a continuous causal operator such that there exists an increasing
function Λ(·) : R+ → R+ with

‖(Cu)(t)‖ 6 Λ(‖u(t)‖) a.e. on [0,a], (3.3)

for all u(·) ∈ C([0,a],E).

(b) There exists a positive constant k1 ∈ R+ such that

β(CV)(t) 6 k1β(V(t)),

for each bounded set V ⊂ C([0,a],E).

(H3) g (·) : C([0,a],E) −→ D(A) and there exists a constant lg > 0 such that Mlg < 1 and

‖g(u (·)) − g(v (·))‖ 6 lg ‖u (·) − v (·)‖ , u (·) , v (·) ∈ C([0,a],E),

where M = sup(t,s)∈∆ ‖T(t, s)‖L(E).

(H4) F(·, ·, ·) : [0,a]× E×Z −→ E satisfies:

(a) t 7−→ F(t,u, z) is strongly measurable for each u ∈ E, z ∈ Z.
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(b) (u, z) 7−→ F(t,u, z) is continuous for a.e. t ∈ [0,a].
(c) There exists ξ(·, ·) : [0,a]×R+ → R+ such that ξ(·,σ) ∈ Lp([0,a], R+), for every σ ∈ R+, ξ(t, ·)

is continuous and increasing for a.e. t ∈ [0,a],

lim sup
σ→∞

MΛ(σ)

σ

∫a
0
ξ(s,σ)ds < 1 −Mlg, (3.4)

for t ∈ [0,a], and
‖F(t,u, z)‖ 6 ξ(t, ‖u‖) ‖z‖ , for a.e. t ∈ [0,a], (3.5)

for all u ∈ E, z ∈ Z.
(d) There exists a positive constant k0 ∈ R+ such that for bounded subset B1 ⊂ E and B2 ⊂ Z, we

have
βE(F(t,B1,B2)) 6 k0 [βE(B1) +βZ(B2)] ,

for a.e. t ∈ [0,a].

Theorem 3.1. If hypothesis (H1)-(H4) are satisfied and

ak0(1 + k1) <
1 −Mlg
M

, (3.6)

then the solution set of (3.1) is nonempty and compact in C([0,a],E).

Proof. First, we show that there exists r0 > 0 such that ‖u(·)‖ 6 r0, for all possible mild solutions of (3.1).
Let u(·) : [0,a]→ E be a mild solution of (3.1). Then by (3.2) we have

‖u(t)‖ 6 ‖T(t, 0)g(u(·))‖+
∫t

0
‖T(t, s)F(s,u(s), ((Cu)(s)))‖ds

6M‖g(u(·))‖+M
∫t

0
‖F(s,u(s), (Cu)(s))‖ds

6M(lg‖u(·)‖+ ‖g(0)‖) +M
∫t

0
ξ(s, ‖u(s)‖ ‖(Cu)(s)‖)ds

6M(lg‖u(·)‖+ ‖g(0)‖) +MΛ(‖u(·)‖)
∫t

0
ξ(s, ‖u(·)‖)ds,

so that
(1 −Mlg) ‖u(·)‖ 6M‖g(0)‖+MΛ(‖u(·)‖)

∫a
0
ξ(s, ‖u(·)‖)ds.

From the last inequality and (3.4) it follows that there exists r0 > 0 such that ‖u(·)‖ 6 r0. Indeed, if this
is not true, then we can find a sequence {un(·)}n>1 of mild solutions of (3.1) such that ‖un(·)‖ → ∞ as
n→∞. Then from the last inequality we obtain

1 −Mlg 6 lim sup
n→∞

(
M‖g(0)‖
‖un(·)‖

+
MΛ(‖un(·)‖)
‖un(·)‖

∫a
0
ξ(s, ‖un(·)‖)ds

)
6 lim sup

n→∞
MΛ(‖un(·)‖)
‖un(·)‖

∫a
0
ξ(s, ‖un(·)‖)ds

6 lim sup
σ→∞

MΛ(σ)

σ

∫a
0
ξ(s,σ)ds,

in contradiction with (3.4). Consequently, there exists r0 > 0 such that ‖u(·)‖ 6 r0 for all mild solution of
(3.1). Also, we remark that for every r > r0 we have

‖g(0)‖+Λ(r)
∫a

0
ξ(s, r)ds <

1 −Mlg
M

r. (3.7)
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Let
ψ(t) := ξ(t, r)Λ(r), t ∈ [0,a], (3.8)

where Λ(·) : R+ → R+ is a continuous increasing function and ξ(·, ·) : [0,a]×R+ satisfies (H3) (c). Then
ψ(·) ∈ Lp([0,a], R+) and from (3.3), (3.5) and (3.8), it follows that

‖F(t,u(t), (Cu)(t))‖ 6 ψ(t), for a.e. t ∈ [0,a].

Next, let r > r0 and
B0 := {u(·) ∈ C([0,a],E); ‖u(·)‖ 6 r}.

A mild solution of (3.1) will be a fixed point of an operator A defined by

(Au)(t) = T(t, 0)g(u(·)) +
∫t

0
T(t, s)F(s,u(s), (Cu)(s))ds,

for t ∈ [0,a]. Since ξ(t, ·) is increasing on R+ for a.e. t ∈ [0,a], by using (3.7) we have

‖Au(t)‖ 6 ‖T(t, 0)g(u(·))‖+
∫t

0
‖T(t, s)F(s,u(s), (Cu)(s))‖ds

6M(lg‖u‖+ ‖g(0)‖) +M
∫t

0
ξ(s, ‖u(s)‖)Λ(‖u(s)‖)ds

6M(lg‖u‖+ ‖g(0)‖) +MΛ(‖u(·)‖)
∫t

0
ξ(s, ‖u(·)‖)ds

6M(lgr+ ‖g(0)‖) +MΛ(r)
∫a

0
ξ(s, r)ds 6 r,

for every u(·) ∈ B0 and thus AB0 ⊂ B0. Now we prove that A is a continuous operator. For this, let
{un(·)}n>1 be a convergent sequence in B0 such that limn→∞ un(·) = u(·). Then we have,

‖(Aun)(t) − (Au)(t)‖ 6 ‖T(t, 0) [g(un(·)) − g(u(·))] ‖

+

∫t
0
‖T(t, s) (F(s,un(s), (Cun)(s)) − F(s,u(s), (Cu)(s))) ‖ds

6M‖g(un(·)) − g(u(·))‖

+M

∫t
0
‖ (F(s,un(s), (Cun)(s)) − F(s,u(s), (Cu)(s))) ‖ds

6Mlg‖un(·) − u(·)‖

+M

∫t
0
‖F(s,un(s), (Cun)(s)) − F(s,u(s), (Cu)(s))‖ds.

Since C : C([0,a],E) → Lp([0,a],E) is continuous, (Cun)(·) → (Cu)(·) in Lp([0,a],E), so that (Cun)(·) →
(Cu)(·) a.e. on [0,a]. Thus by the fact that F(·, ·., ·) is a Carathéodory function, it follows that

F(·,un(·), (Cun(·)) −→ F(·,u(·), (Cu(·))a.e. on[0,a].

Also, since ‖F(s,un(s), (Cun)(s)) − F(t,u(t),Cu(t))‖ 6 2ψ(t) a.e. on [0,a] by the Lebesgue dominated
convergence theorem, we obtain

lim
n→∞

∫t
0
F(s,un(s), (Cun)(s))ds =

∫t
0
F(s,u(s), (Cu)(s))ds,
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for all t ∈ [0,a]. It follows that (Aun)(·) −→ (Au)(·) on [0,a] as n −→ ∞, and so A is a continuous
operator on C([0,a],E). Next, by (H1) and Theorem 3.2 in [49], it follows that the set

AB0 = {(Au)(·);u(·) ∈ B0} ⊂ C([0,a],E),

is equicontinuous.
Now define Bn+1 = conv(ABn), n = 0, 1, 2, · · · . From AB0 ⊂ B0, it follows that

B1 = conv(AB0) ⊂ conv(B0) = B0,

and thus, B1 ⊂ C([0,a],E) is bounded, closed, convex and equicontinuous. By the mathematical induction
it is easy to see that Bn+1 ⊂ Bn and Bn ⊂ C([0,a],E) are bounded, closed, convex and equicontinuous
for n = 0, 1, 2, · · · . Next, since C([0,a],E) is separable for each n = 0, 1, 2, · · · , there exists a countable set
Un = {unk (·);k = 1, 2, · · · } ⊂ Bn such that Un = Bn. Using properties of the measure of noncompactness,
we have

β(Bn+1(t)) = β(conv((ABn)(t))) = β((ABn)(t)) = β((AUn)(t))

6 β((AUn)(t)) = β((AUn)(t)).

Since by (H3) we have β (T(t, 0)g(Un)) 6 Mlgβc (U
n), using properties of the measure of noncompact-

ness and Lemma 2.2, we have

β(Bn+1(t)) 6 β (T(t, 0)g(Un)) +
∫t

0
β (T(t, s)F(s,Un(s), (CUn)(s)))ds

6Mβ (g(Un)) +

∫t
0
Mβ (F(s,Un(s), (CUn)(s)))ds

6Mlgβc (U
n) +Mk0

∫t
0
[β (Un(s)) +β ((QUn)(s))]ds

6Mlgβc (Bn) +Mk0(1 + k1)

∫t
0
β (Bn(s))ds.

(3.9)

This implies
βc(Bn+1) 6M [lg + ak0(1 + k1)]βc(Bn).

Since Bn+1 ⊂ Bn, n = 0, 1, 2, · · · , it is easy to see that

βc(Bn) 6 k
nβc(B0), n = 0, 1, 2, · · · ,

where k := M [lg + ak0(1 + k1)]. Since by (3.6) we have 0 < k < 1, the last inequality implies that
limn→0 βc(Bn) = 0. Since {Bn}n>1 is decreasing sequence of bounded and closed sets, using property
(β7) of the measure of noncompactness it follows that B :=

⋂∞
n=0 Bn is a compact and convex set in

C([0,a],E) and AB ⊂ B. Consequently, by the Schauder fixed point theorem it follows that the operator
A has at least one fixed point u (·) ∈ B, which is a mild solution of (3.1).

Now, let S(g) ⊂ C([0,a],E) be the nonempty set of mild solutions of (3.1) and let {un (·)}n>1 be a
sequence in S(g), that is,

un(t) = T(t, 0)g(un(·)) +
∫t
o

T(t, s)F(s,un(s), (Cun)(s))ds,

for all t ∈ [0,a] and all n > 1. Since un (·) ∈ B for all n > 1, it follows that {un (·)}n>1 is equicontinuous.
Also, it is easy to see that

βc ({un(t);n > 1}) 6Mlgβc ({un(·);n > 1})
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+Mk0(1 + k1)

∫t
0
β ({un(s);n > 1})ds,

so that βc ({un(·);n > 1}) 6 kβc ({un(·);n > 1}). Thus βc ({un(·);n > 1}) = 0, and so {un (·)}n>1 is rel-
atively compact in C([0,a],E). Since S(g) is a closed set in C([0,a],E) we can conclude that S(g) is a
compact set in C([0,a],E).

Theorem 3.2. Suppose that (H1), (H2), (H4)(a-b) are satisfied, g(·) : C([0,a],E) → D(A) is continuous and
compact, and there exist b > 0, c > 0 such that Mb < 1 and

‖g (u(·))‖ 6 b ‖u (·)‖+ c,

for all u (·) ∈ C([0,a],E). Also, assume that

(H4 − c) there exists ξ(·, ·) : [0,a]×R+ → R+ such that ξ(·,σ) ∈ Lp([0,a], R+) for every σ ∈ R+, ξ(t, ·) is
continuous and increasing for a.e. t ∈ [0,a],

lim sup
σ→∞

MΛ(σ)

σ

∫a
0
ξ(s,σ)ds < 1 −Mb,

for t ∈ [0,a], and (3.5) holds for all u ∈ E, z ∈ Z;

(H4 − d) there exists k (·) ∈ L([0,a], R+) such that

βE(F(t,B1,B2)) 6 k(t) [βE(B1) +βZ(B2)] ,

for a.e. t ∈ [0,a].

Then the solution set of (3.1) is nonempty and compact in C([0,a],E).

Proof. With the same notations and with the same reasoning as in the proof of Theorem 3.1 and using
(H4-c), it is easy to show that there exists an r0 > 0 such that ‖u(·)‖ 6 r0, for all possible mild solutions
of (3.1). If we take r > r0 and put

B0 := {u(·) ∈ C([0,a],E); ‖u(·)‖ 6 r},

then AB0 ⊂ B0 and A is a continuous operator on B0. Also, by (H1), Corollary 1 in [17] and Theorem 3.2
in [49], it follows that the set

AB0 = {(Au)(·);u(·) ∈ B0} ⊂ C([0,a],E),

is equicontinuous. Consequently, Bn+1 := conv(ABn), n = 0, 1, 2, · · · , are bounded, closed, convex
and equicontinuous, and Bn+1 ⊂ Bn for n = 0, 1, 2, · · · . Next, since C([0,a],E) is separable for each
n = 0, 1, 2, · · · , there exists a countable set Un = {unk (·);k = 1, 2, · · · } ⊂ Bn such that Un = Bn. Since g (·)
is compact, β (g(Un)) = 0 and with the same reasoning as in (3.9) and using (H4-d) we obtain

β(Bn+1(t)) 6M(1 + k1)

∫t
0
k(s)β (Bn(s))ds.

As {β (Bn)}n>1 is a decreasing and monotone sequence, there exists w(t) := lim
n→∞β (Bn(t)), for all t ∈

[0,a]. Taking the limit in both sides of the above inequality, it follows that

w(t) 6M(1 + k1)

∫t
0
k(s)w(s)ds, t ∈ [0,a].

Also, since Bn, n = 1, 2, · · · , are bounded and equicontinuous, it follows that w (·) is continuous on
[0,a], so that by Gronwall-Bellman’s inequality from the last inequality we obtain w (t) = 0 for t ∈ [0,a].
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Hence, by using (2.1) we obtain that limn→∞βc (Bn) = 0. Therefore, using property (β7) of the measure
of noncompactness, it follows that B :=

⋂∞
n=0 Bn is a compact convex set in C([0,a],E) and AB ⊂ B.

Consequently, by the Schauder fixed point theorem it follows that the operator A has at least one fixed
point u (·) ∈ B, which is a mild solution of (3.1). Next, let S(g) ⊂ C([0,a],E) be the nonempty set of mild
solutions of (3.1) and let {un (·)}n>1 be a sequence in S(g), that is,

un(t) = T(t, 0)g(un(·)) +
∫t
o

T(t, s)F(s,un(s), (Cun)(s))ds,

for all t ∈ [0,a] and all n > 1. Since un (·) ∈ B for all n > 1, it follows that {un (·)}n>1 is equicontinuous,
and so v(t) := β ({un(t);n > 1}), t ∈ [0,a], is a continuous function from [0,a] into R. Also, it is easy to
see that

β ({un(t);n > 1}) 6M(1 + k1)

∫t
0
k(s)β ({un(s);n > 1})ds,

so that

v(t) 6M(1 + k1)

∫t
0
k(s)v(s)ds, t ∈ [0,a].

Thus by Gronwall-Bellman’s inequality from the last inequality we obtain v(t) = 0 for all t ∈ [0,a]. Con-
sequently, by Arzelà-Ascoli theorem, we can conclude that {un (·)}n>1 is relatively compact in C([0,a],E).
Since S(g) is a closed set in C([0,a],E) it follows that S(g) is a compact set in C([0,a],E).

4. An example

As an application of Theorem 3.1, consider the following heat equation with time-varying coefficients.
Let a(·) ∈ C([0, 1], R) be a Lipschitz continuous function such that a(t) > 0 for all t ∈ [0, 1].

∂
∂tw(t, x) =

∂2

∂x2w(t, x) − a(t)w(t, x) + f(t,w(t, x),Z(t, x)),
w(t, 0) = w(t,π) = 0, t ∈ [0, 1],
w(0, x) =

∑ν
i=1 ci(x)

∫π
0 w(ti,η)dη, x ∈ [0,π],

(4.1)

where

Z(t, x) :=
∫t

0
k(t, s)w(s, x)ds, 0 6 t 6 1, 0 6 x 6 π,

ci(·) : R→ R, 1 6 i 6 ν, are given functions and 0 < t1 < t2 < ... < tν < 1. We assume that the following
conditions hold.

(Hf) t 7→ f(t,u,y) is a Lebesgue measurable for all u,y ∈ R; (u,y) 7→ f(t,u,y) is continuous for a.e.
t ∈ [0, 1] and there exists ξ(·, ·) : R+ ×R+ → R+ such that ξ(·,σ) ∈ L2([0, 1], R+) for every σ ∈ R+,
ξ(t, ·) is continuous increasing for a.e. t ∈ [0, 1], and

|f(t,u,y)| 6 ξ(t, |u|)|y|, for a.e. t ∈ [0, 1],

and for all u,y ∈ R.

(Hk) k(·, ·) : [0, 1]× [0, 1]→ R is continuous.

(Hc) ci(·) : R→ R, 1 6 i 6 ν are continuous functions such that supx∈[0,π]

(∑ν
i=1 c

2
i(x)

)1/2
:= c0 <∞.

Consider E := L2([0,π], R) endowed with the usual inner product 〈·, ·〉. We will show that the problem
(3.1) can be written in the abstract form (4.1) on the space E as follows.

Define the operator A0 : D(A0) ⊂ E→ E by

A0y :=
∂2y

∂x2 , y ∈ D(A0),
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D(A0) := {y(·) ∈ E : y(·),y′(·) are absolutely continuous y′′(·) ∈ E and y(0) = y(1) = 0}.

Then the operator A0 is the infinitesimal generator of a compact C0-semigroup (see [50], [51]). More-
over, the operator A0 has eigenvalues −n2; n = 1, 2, · · · with the corresponding eigenvectors yn(x) =

(
√

2
π) sinnx; n = 1, 2, · · · , and it can be written as (see [52, Problem 4.2])

A0y (·) = −

∞∑
n=1

n2〈y (·) ,yn (·)〉yn (·) , y (·) ∈ D(A0).

Next, let {A(t); t ∈ [0, 1]} be a family of operators given by:

D(A(t)) := D(A0), t ∈ [0, 1],

A(t)y(·) = A0y(·) − a(t)y(·), y(·) ∈ D(A(t)).

Then (see [21], [53]) {A(t); t ∈ [0, 1]} generates an evolution system {T(t, s), 0 6 s 6 t 6 a} which satisfies
(H1), namely

T(s, t)y(·) :=
∞∑
n=1

exp
[
−n2(t− s) −

∫t
s

a(τ)dτ

]
〈y (·) ,yn (·)〉yn (·) ,

for 0 6 s 6 t 6 1 and y(·) ∈ E. Next let us define u(·) : [0, 1] → E by u(t)(·) = w(t, ·), C : C([0, 1],E) →
L2([0, 1],E) by

(Cu)(t) =

∫t
0
k(t, s)u(s)ds, 0 6 s 6 t 6 1,

and g(·) : C([0, 1],E)→ E by

g(u(·))(x) =
ν∑
i=1

ci(x)

∫π
0
u(ti)(η)dη,

where 0 < t1 < t2 < ... < tν < 1.
From (Hk) and [23, Proposition 9.5.2] it follows that C : L2([0, 1],E) → L2([0, 1],E) is a continuous

causal operator and it satisfies (H1-b) (see [41]). Also, using the Minkowski’s inequality we have

|g(u(·))(x)| =

∣∣∣∣∣
ν∑
i=1

ci(x)

∫π
0
[u(ti)(η) − v(ti)(η)]dη

∣∣∣∣∣
6

(
ν∑
i=1

c2
i(x)

)1/2( ν∑
i=1

(∫π
0
[u(ti)(η) − v(ti)(η)]dη

)2
)1/2

6 c0

ν∑
i=1

(∫π
0
[u(ti)(η) − v(ti)(η)]

2dη

)1/2

6 c0

ν∑
i=1

‖u(ti)(·) − v(ti)(·)‖E

6 c0ν‖u(·) − v(·)‖C([0,1],E),

so that

‖g(u(·)) − g(u(·))‖2
E =

∫π
0
|g(u(·))(x) − g(u(·))(x)|2dx

6 c2
0ν

2‖u(·) − v(·)‖2
C([0,1],E),
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it follows that
‖g(u(·)) − g(u(·))‖ 6 lg‖u(·) − v(·)‖C([0,1],E),

where lg := .c0ν. Let M = sup(t,s)∈∆ ‖T(t, s)‖L(E). If we choose c0 > 0 such that Mc0ν < 1 and

lim sup
σ→∞

M

σ

(
‖g(0)‖+

∫ 1

0
ξ(s,σ)ds

)
< 1 −MC0ν,

then Mlg < 1 and (3.4) holds.
Next if we put

F(t,u(t), (Cu)(t))(·) = f(t,u(t)(·), (Cu)(t)(·)), t ∈ [0, 1],

then (4.1) can be written in the abstract form{
u′(t) = A(t)u(t) + F(t,u(t), (Cu)(t)), t ∈ [0, 1],
u(0) = g(u(·)). (4.2)

If we assume that (H4-d) and (3.6) hold, then by Theorem 3.1 it follows that (4.2) has at last a mild solution
on [0, 1].
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[41] V. Lupulescu, Causal functional differential equations in Banach spaces, Nonlinear Anal., 69 (2008), 4787–4795. 4
[42] M. Mahdavi, Y.-Z. Li, Linear and quasilinear equations with abstract Volterra operators, Volterra equations and applica-

tions, Arlington, TX, (1996), 325–330, Stability Control Theory Methods Appl., Gordon and Breach, Amsterdam,
(2000). 1

[43] G. M. Mophou, Existence and uniqueness of mild solutions to impulsive fractional differential equations, Nonlinear Anal.,
72 (2010), 1604–1615. 1
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