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Abstract
In this paper, the Adomain decomposition methods and double Laplace transform methods are combined to study linear

and nonlinear singular one dimensional system of hyperbolic equations. In addition, we check the convergence of double
Laplace transform decomposition method applied to our problems. Furthermore, we illustrate our proposed methods by using
some examples. c©2017 All rights reserved.
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1. Introduction

Many applications in sciences are modeled by linear and nonlinear partial differential equations. The
hyperbolic partial differential equations as one of these applications arise in physical sciences as models
of waves, such as acoustic, elastic, electromagnetic, or gravitational waves. However, it is very difficult to
find explicit solutions of nonlinear partial differential equations generally. The Adomain decomposition
method is the most transparent method for solutions of linear and nonlinear problem (see [3, 5, 7, 16, 17]);
however, this method is involved in the calculation of complicated Adomain’s polynomials which narrow
down its application. Recently, many researchers and engineers have done excellent work, such as Laplace
decomposition algorithm [12, 18]. The convergence of Adomian’s method has been studied by several
authors [1, 2, 4, 6]. The aim of this article is to find the solution of linear and nonlinear singular one
dimensional system hyperbolic equations by using the combined domain decomposition techniques and
double Laplace transform methods and also we study the sufficient condition of convergence of our
methods. The gold of this method is that it can be used directly without using restrictive assumptions or
linearization. Throughout this article, we will use the following notation. We let LxLt be a double Laplace
transform with respect to x,t and let double inverse Laplace transform be defined by L−1

p L
−1
s .

Now, by calling the definitions which are given by [8, 13, 14]. The double Laplace transform of the
functions f(x, t), ∂ψ∂x , ∂

2ψ
∂x2 and ∂2ψ

∂t2 are given by
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LxLt [f(x, t)] = F(p, s) =
∫∞

0
e−px

∫∞
0
e−stf(x, t)dtdx, (1.1)

LxLt

[
∂ψ

∂x

]
= pψ(p, s) −ψ(0, s), (1.2)

LxLt

[
∂2ψ

∂x2 (x, t)
]
= p2ψ(p, s) − pψ(0, s) −

∂ψ

∂x
,

LxLt

[
∂2ψ

∂t2
(x, t)

]
= s2ψ(p, s) − sψ(p, 0) −ψt.

(1.3)

The following basic lemma of the double Laplace transform is given and is used in this paper.

Lemma 1.1. Double Laplace transform of the non-constant coefficient second order partial derivative xr ∂
2ψ
∂t2 and

the function xrf(x, t) are given by

LxLt

(
xr
∂2ψ

∂t2

)
= (−1)r

dr

dpr

[
s2ψ(p, s) − sψ(p, 0) −ψt

]
,

and
LxLt (x

rf(x, t)) = (−1)r
dr

dpr
[LxLt (f(x, t))] = (−1)n

drF (p, s)
dpr

,

where r = 1, 2, 3, · · · .

One can prove this lemma by applying equations, (1.1), (1.2) and (1.3). In this study we present the
modified double Laplace decomposition method for solving singular one dimensional coupled system of
hyperbolic equations.

2. Statement of the problem

We consider a singular one dimensional system hyperbolic equations with initial conditions in the
form

∂2ψ

∂t2
−

1
x

(
x
∂ψ

∂x

)
x

−ϕ = f (x, t) ,

∂2ϕ

∂t2
−

1
x

(
x
∂ϕ

∂x

)
x

−ψ = g (x, t) , (2.1)

subject to

ψ (x, 0) = f1 (x) , ψt (x, 0) = f2 (x) ,
ϕ (x, 0) = g1 (x) , ϕt (x, 0) = g2 (x) , (2.2)

where, the linear term, 1
x
∂
∂x

(
x∂ψ∂x

)
and 1

x

(
x∂ϕ∂x

)
x

are called Bessel’s operators and f (x, t), g (x, t), f1 (x) ,
f2 (x) , g1 (x) and g2 (x) are known functions. In order to obtain the solution of (2.1), we use modified
double Laplace decomposition methods as follows.

Step 1: Multiplying (2.1) by x.
Step 2: By using Lemma 1.1 and definition of the double Laplace transform of partial derivatives for
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equations in Step 1 and single Laplace transform for initial condition, we get

dψ (p, s)
dp

=
1
s

dF1 (p)

dp
+

1
s2
dF2 (p)

dp
+

1
s2
dF (p, s)
dp

−
1
s2LxLt

[
∂

∂x

(
x
∂ψ

∂x

)
+ xϕ

]
,

(2.3)

and

dϕ (p, s)
dp

=
1
s

dG1 (p)

dp
+

1
s2
dG2 (p)

dp
+

1
s2
dG (p, s)
dp

−
1
s2LxLt

[
∂

∂x

(
x
∂ϕ

∂x

)
+ xψ

]
,

(2.4)

where F1 (p) , F2 (p), F (p, s) , G1 (p) , G2 (p)and G (p, s) are Laplace transform of the functions f1 (x) ,
f2 (x) , f (x, t), g1 (x) ,g2 (x) and g (x, t), respectively.
Step 3: By integrating both sides of (2.3) and (2.4) from 0 to p with respect to p, we have

ψ (p, s) =
F1 (p)

s
+
F2 (p)

s2 +
F (p, s)
s2 −

1
s2

∫p
0
LxLt

[
∂

∂x

(
x
∂ψ

∂x

)
+ xϕ

]
dp,

ϕ (p, s) =
G1 (p)

s
+
G2 (p)

s2 +
G (p, s)
s2

−
1
s2

∫p
0
LxLt

[
∂

∂x

(
x
∂ϕ

∂x

)
+ xψ

]
dp.

(2.5)

Step 4: Using double Laplace Adomain decomposition methods to define the solution of the system as
follows

ψ (x, t) =
∞∑
n=0

ψn (x, t) , ϕ (x, t) =
∞∑
n=0

ϕn (x, t) . (2.6)

Step 5: By operating the inverse transformation of double Laplace on (2.5) and use (2.6), we obtain

∞∑
n=0

ψn (x, t) = f1 (x) + tf2 (x) + L
−1
p L

−1
s

[
F (p, s)
s2

]

− L−1
p L

−1
s

[
1
s2

∫p
0
LxLt

[
∂

∂x

(
x
∂

∂x

∞∑
n=0

ψn

)]
dp

]

− L−1
p L

−1
s

[
1
s2LxLt

[∫p
0

(
x

∞∑
n=0

ϕn

)
dp

]]
,

and
∞∑
n=0

ϕn (x, t) = g1 (x) + tg2 (x) + L
−1
p L

−1
s

[
G (p, s)
s2

]

− L−1
p L

−1
s

[
1
s2

∫p
0
LxLt

[
∂

∂x

(
x
∂

∂x

∞∑
n=0

ϕn

)]
dp

]

− L−1
p L

−1
s

[
1
s2LxLt

[∫p
0

(
x

∞∑
n=0

ψn

)
dp

]]
.
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In particular, we have

ψ0 = f1 (x) + tf2 (x) + L
−1
p L

−1
s

[
F (p, s)
s2

]
,

ϕ0 = g1 (x) + tg2 (x) + L
−1
p L

−1
s

[
G (p, s)
s2

]
,

(2.7)

and the rest terms can be written as follows

ψn+1 = −L−1
p L

−1
s

[
1
s2

∫p
0
LxLt

[
∂

∂x

(
x
∂

∂x

∞∑
n=0

ψn

)]
dp

]

− L−1
p L

−1
s

[
1
s2LxLt

[∫p
0

(
x

∞∑
n=0

ϕn

)
dp

]]
,

(2.8)

and

ϕn+1 = −L−1
p L

−1
s

[
1
s2

∫p
0
LxLt

[
∂

∂x

(
x
∂

∂x

∞∑
n=0

ϕn

)]
dp

]

− L−1
p L

−1
s

[
1
s2LxLt

[∫p
0

(
x

∞∑
n=0

ψn

)
dp

]]
.

(2.9)

The above equations (2.7), (2.8) and (2.9) provide an inverse transformation of double Laplace.
In order to confirm our method for solving the singular one dimensional coupled hyperbolic equa-

tions, we consider the following example.

Example 2.1. Consider the following nonhomogeneous form of a singular one dimensional system of
hyperbolic equations

∂2ψ

∂t2
−

1
x

(
x
∂ψ

∂x

)
x

−ϕ = −x2 sin t− 4 sin t− x2 cos t,

∂2ϕ

∂t2
−

1
x

(
x
∂ϕ

∂x

)
x

−ψ = −x2 cos t− 4 cos t− x2 sin t,

with the following conditions

ψ (x, 0) = 0, ψt (x, 0) = x2, ϕ (x, 0) = x2, ϕt (x, 0) = 0.

By using the above steps, we obtain

∞∑
n=0

ψn = x2 sin t+ 4 sin t+ x2 cos t− 4t− x2

− L−1
p L

−1
s

[
1
s2

∫p
0
LxLt

[(
x

( ∞∑
n=0

ψnx (x, t)

)
x

)
x

]
dp

]

− L−1
p L

−1
s

[
1
s2

∫p
0
LxLt

[( ∞∑
n=0

ϕnx (x, t)

)]
dp

]
,

and
∞∑
n=0

ϕn = x2 cos t+ 4 cos t+ x2 sin t− 4 − x2t
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− L−1
p L

−1
s

[
1
s2

∫p
0
LxLt

[(
x

( ∞∑
n=0

ϕnx (x, t)

)
x

)
x

]
dp

]

− L−1
p L

−1
s

[
1
s2

∫p
0
LxLt

[( ∞∑
n=0

ψnx (x, t)

)]
dp

]
.

By using (2.7), (2.8) and (2.9) the components are given by

ψ0 = x2 sin t+ 4 sin t+ x2 cos t− 4t− x2,

ϕ0 = x2 cos t+ 4 cos t+ x2 sin t− 4 − x2t,

and

ψ1 = −L−1
p L

−1
s

[
1
s2

∫p
0
LxLt

[
∂

∂x

(
x
∂

∂x
ψ0

)
+ xϕ0

]
dp

]
= L−1

p L
−1
s

[
4

ps2 (s2 + 1)
+

8
ps (s2 + 1)

+
2

p3s (s2 + 1)
+

4
p3s2 (s2 + 1)

−
8
ps3 −

2
p3s4

]
,

ψ1 = 4t− 4 sin t− 8 cos t+ x2 − x2 cos t+ 8 + x2 + x2t− x2 sin t− 4t2 −
1
6
x2t3,

and

ϕ1 = −L−1
p L

−1
s

[
1
s2

∫p
0
LxLt

[
∂

∂x

(
x
∂

∂x
ϕ0

)
+ xψ0

]
dp

]
,

ϕ1 = 4 − 8 sin t− 4 cos t+ x2 − x2 cos t+ 8t+ x2 + x2t− x2 sin t−
4
3
t3 −

1
2
x2t2.

In the same manner, we obtain that

ψ2 = 4t2 + 8 cos t− 8 + 12 sin t− 12t+ 2t3 −
1

10
t5

+
1
2
x2t2 − x2t+ x2 cos t− x2 + x2 sin t+

1
6
x2t3 −

1
24
x2t4,

and

ϕ2 =
4
3
t3 + 8 sin t− 8t+ 12 cos t− 12 + 6t2 −

1
2
t4

+
1
2
x2t2 − x2t+ x2 cos t− x2 + x2 sin t+

1
6
x2t3 −

1
120

x2t5.

By adding all components, we obtain the exact solution in the following form,

ψ (x, t) = x2 sin t and ϕ (x, t) = x2 cos t.

3. Singular nonlinear one dimensional system of hyperbolic equations

In this part of study, we are concerned about how to use the modified double Laplace method to solve
the singular nonlinear one dimensional system of hyperbolic equations which is given by

∂2ψ

∂t2
−

1
x

(
x
∂ψ

∂x

)
x

−ϕ
∂ψ

∂x
= f (ψ) ,

∂2ϕ

∂t2
−

1
x

(
x
∂ϕ

∂x

)
x

−ψ
∂ϕ

∂x
= g (ϕ) ,

(3.1)
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subject to (2.2) where f (ψ) and g (ψ) are nonlinear functions. In order to get the solution of (3.1), we use
the following steps:
Step 1: Multiplying equation (3.1) by x.
Step 2: Using Lemma 1.1 and definition of the double Laplace transform of partial derivatives for equa-
tions in Step 1 and single Laplace transform for initial condition.
Step 3: Integrating the obtained equations with respect to p, from 0 to p.
Step 4: By operating the inverse double Laplace transform for equations, we obtain

ψ (x, t) = f1 (x) + tf2 (x) − L
−1
p L

−1
s

[
1
s2

∫p
0
LxLt [xf (ψ)]dp

]
− L−1

p L
−1
s

[
1
s2LxLt

[∫p
0

∂

∂x

(
x
∂ψ

∂x

)
+ xϕ

∂ψ

∂x
dp

]]
,

(3.2)

and

ϕ (x, t) = g1 (x) + tg2 (x) − L
−1
p L

−1
s

[
1
s2

∫p
0
LxLt [xg (ϕ)]dp

]
− L−1

p L
−1
s

[
1
s2LxLt

[∫p
0

∂

∂x

(
x
∂ϕ

∂x

)
+ xψ

∂ϕ

∂x
dp

]]
.

(3.3)

The modified double Laplace decomposition methods (MDLDM) which define the solution of the
singular one dimensional system of hyperbolic equations that can be represented as a power series are
defined by (2.6). The nonlinear operators can be defined as follows

N1 =

∞∑
n=0

An, and N2 =

∞∑
n=0

Bn, (3.4)

where An and Bn are given by

An =
1
n!

(
dn

dλn

[
N1

∞∑
i=0

(λnψn)

])
λ=0

,

Bn =
1
n!

(
dn

dλn

[
N2

∞∑
i=0

(λnϕn)

])
λ=0

.

(3.5)

Here, Adomain’s polynomials An and Bn are given by

A0 = ϕ0ψ0x,
A1 = ϕ0ψ1x +ϕ1ψ0x,
A2 = ϕ0ψ2x +ϕ1ψ1x +ϕ2ψ0x,

and

B0 = ψ0ϕ0x,
B1 = ψ0ϕ1x +ψ1ϕ0x,
B2 = ψ0ϕ2x +ψ1ϕ1x +ψ2ϕ0x.

By substituting (3.4) and (3.5) into (3.2) and (3.3) we obtain

ψ0 = f1 (x) + tf2 (x) , ϕ0 = g1 (x) + tg2 (x) ,
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and the rest terms can be written as follows

ψn+1 = −L−1
p L

−1
s

[
1
s2

∫p
0
LxLt

[
xf

( ∞∑
n=0

ψn

)]
dp

]

− L−1
p L

−1
s

[
1
s2

∫p
0
LxLt

[
∂

∂x

(
x
∂

∂x

∞∑
n=0

ψn

)]
dp

]

− L−1
p L

−1
s

[
1
s2LxLt

[∫p
0

(
x

∞∑
n=0

An

)
dp

]]
,

(3.6)

and

ϕn+1 = −L−1
p L

−1
s

[
1
s2

∫p
0
LxLt

[
x

( ∞∑
n=0

ψn

)]
dp

]

− L−1
p L

−1
s

[
1
s2

∫p
0
LxLt

[
∂

∂x

(
x
∂

∂x

∞∑
n=0

ϕn

)]
dp

]

− L−1
p L

−1
s

[
1
s2LxLt

[∫p
0

(
x

∞∑
n=0

Bn

)
dp

]]
.

(3.7)

The inverse Laplace transform is denoted by L−1
p L

−1
s with respect to p, s. Here, we provide double

inverse Laplace transform with respect to p and s which are given by (3.6) and (3.7).

4. Convergence analysis of the method

Finally, we discuss the convergence analysis of the modified double Laplace decomposition methods
for the singular nonlinear one dimensional system of hyperbolic equations which is given by

∂2ψ

∂t2
−

1
x

(
x
∂ψ

∂x

)
x

−ϕ
∂ψ

∂x
= f (ψ) ,

∂2ϕ

∂t2
−

1
x

(
x
∂ϕ

∂x

)
x

−ψ
∂ϕ

∂x
= g (ϕ) .

(4.1)

We propose to extend this idea given in [15], for all ψ,ϕ ∈ H. We define H as H = L2
µ((a,b)× [0, T ]),

x ∈ (a,b) and

ψ : (a,b)× [0, T ]→ R×R, with ‖ψ‖2
H =

∫
Q

xψ2 (x, t)dxdt,

(ψ,ϕ) =
∫
Q

xψ (x, t)ϕ (x, t)dxdt,

where Q = (a,b)× [0, T ] and

H =

{
(ψ,ϕ) : (a,b)× [0, T ], with

L−1
p L

−1
s

[ 1
s2

∫p
0 LxLt [ψ (x, t)] (p, s)dp

]
(x, t) <∞

}
.

Multiply (4.1) by x, and write the equation in the operator form as follows

L (ψ) = x
∂2ψ

∂t2
=
∂ψ

∂x
+ x

∂ψ

∂x
+ xϕ

∂ψ

∂x
+ xf (ψ) ,

L (ϕ) = x
∂2ϕ

∂t2
=
∂ϕ

∂x
+ x

∂2ϕ

∂x2 + xψ
∂ϕ

∂x
+ xg (ϕ) .

(4.2)

For L is hemicontinuous operator, consider the following hypotheses:
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(H1) (L (ψ) − L (w) ,ψ−w) > k ‖ψ−w‖2 and (L (ϕ) − L (w) ,ϕ−w) > k ‖ϕ−w‖2 ; k > 0, ∀ψ,ϕ,w ∈ H;

(H2) whatever may be M∗ > 0, there exists a constant C (M∗) > 0 such that for ψ,w ∈ H with ‖ψ‖ 6
M∗, ‖ϕ‖ 6M∗, ‖w‖ 6M∗ we have

(L (ψ) − L (w) , z) 6 C (M∗) ‖ψ− z‖ ‖w‖ , and (L (ϕ) − L (z) ,w) 6 C (M∗) ‖ϕ− z‖ ‖w‖ ,

for every w, z ∈ H.

In the next theorem we follow [9–11].

Theorem 4.1 (Sufficient condition of convergence). The Modified double Laplace decomposition methods ap-
plied to the singular nonlinear one dimensional system of hyperbolic equations (4.2) without initial and boundary
conditions, converges towards a particular solution.

Proof. First, we check the hypothesis (H1) for the operator L(ψ), L(ϕ) of (4.2). we use the definition of our
operator L, and then we have

L (ψ) − L (w) =

(
∂ψ

∂x
−
∂w

∂x

)
+

(
x
∂ψ

∂x
− x

∂w

∂x

)
+

(
xϕ
∂ψ

∂x
− xϕ

∂w

∂x

)
+ x (f (ψ) − f(w))

= (ψ−w)x + x
∂2

∂x2 (ψ−w)

+ xϕ
∂

∂x
(ψ−w) + x (f (ψ) − f(w)) ,

and

L (ϕ) − L (w) =

(
∂ϕ

∂x
−
∂w

∂x

)
+

(
x
∂2ϕ

∂x2 − x
∂w

∂x

)
+

(
xψ
∂ϕ

∂x
− xψ

∂w

∂x

)
+ x (g (ϕ) − f(w))

=
∂

∂x
(ϕ−w) + x

∂2

∂x2 (ϕ−w)

+ xψ
∂

∂x
(ϕ−w) + x (g (ϕ) − f(w)) ,

therefore,

(L (ψ) − L (w) ,ψ−w) =

(
∂

∂x
(ψ−w) ,ψ−w

)
+

(
x
∂2

∂x2 (ψ−w) ,ψ−w

)
+

(
xϕ

∂

∂x
(ψ−w) ,ψ−w

)
+ (x (f (ψ) − f(w)) ,ψ−w) ,

(4.3)

and

(L (ϕ) − L (w) ,ϕ−w) =

(
∂

∂x
(ϕ−w) ,ϕ−w

)
+

(
x
∂2

∂x2 (ϕ−w) ,ϕ−w

)
+

(
xψ

∂

∂x
(ϕ−w) ,ϕ−w

)
+ (x (g (ϕ) − f(w)) ,ϕ−w) .

(4.4)
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According to the coercive operator, ∂∂x and ∂2

∂x2 in H, then there exist constants α,β, δ > 0 such that(
∂

∂x
(ψ−w) ,ψ−w

)
> α ‖ψ−w‖2 , (4.5)

and

−

(
x
∂2

∂x2 (ψ−w) ,ψ−w

)
6 |x| ‖(ψ−w)xx‖ ‖ψ−w‖

6 bβ ‖ψ−w‖2 ,
⇔(

x
∂2

∂x2 (ψ−w) ,ψ−w

)
> −bβ ‖ψ−w‖2 ,

(4.6)

where ‖ψ‖ 6M∗, ‖ϕ‖ 6M∗, ‖w‖ 6M∗, and according to the Schwarz inequality, we get

−

(
xϕ

∂

∂x
(ψ−w) ,ψ−w

)
6 |x| ‖ϕ‖ ‖(ψ−w)x‖ ‖ψ−w‖

6 bM∗δ ‖ψ−ϕ‖ ‖ψ−ϕ‖

6 bM∗δ ‖ψ−w‖2

6 bδM∗ ‖ψ−w‖2 ,

(4.7)

hence, (
xϕ

∂

∂x
(ψ−w) ,ψ−w

)
> −bδM∗ ‖ψ−w‖2 . (4.8)

By using Cauchy-Schwarz inequality, where σ > 0 and f is Lipschitzian function, we have

(−x (f (ψ) − f(w)) ,ψ−w) 6 |x| ‖f (ψ) − f (w)‖ ‖ψ−w‖
6 b ‖f (ψ) − f (w)‖ ‖ψ−w‖

6 bσ ‖ψ−w‖2

⇔
(x (f (ψ) − f(w)) ,ψ−ϕ) > −bσ ‖ψ−w‖2 .

(4.9)

Substituting (4.5), (4.6), (4.8) and (4.9) into equation (4.3) gives

(L (ψ) − L (w) ,ψ−w) > (α− bβ− bδM∗ − bσ) ‖ψ−w‖2 ,

(L (ψ) − L (w) ,ψ−w) > k ‖ψ−w‖2 ,

where
k = α− bβ− bδM∗ − bσ > 0.

By the same method for (4.4) there exist constants ζ,η, λ, ρ > 0 such that

(L (ϕ) − L (w) ,ϕ−w) > (ζ− bη− bλM∗ − bρ) ‖ϕ−w‖2 ,

(L (ϕ) − L (w) ,ϕ−w) > k1 ‖ϕ−w‖2 ,

where
k1 = ζ− bη− bλM∗ − bρ > 0.
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So the first part (H1) is checked. Now we are going to prove (H2) for the operator L(ψ) and L(ϕ). For
every M∗ > 0, there exists a constant C (M∗) > 0 such that for ψ,ϕ,w ∈ H with ‖ψ‖ 6M∗, ‖ϕ‖ 6M∗,

(L (ψ) − L (w) , z1) 6 C (M∗) ‖ψ−w‖ ‖z1‖ ,

for every z1, z2 ∈ H. Therefore we have,

(L (ψ) − L (w) , z1) = ((ψ−w)x , z1)

+

(
x
∂2

∂x2 (ψ−w) , z1

)
+

(
xϕ

∂

∂x
(ψ−w) , z1

)
+ (x (f (ψ) − f(w)) , z1) .

By using the Cauchy-Schwartz inequality and the fact that ψ and w are bounded, we obtain the following(
∂

∂x
(ψ−w) , z1

)
6 α1 ‖ψ−w‖ ‖z1‖ ,

(
x
∂2

∂x2 (ψ−w) , z1

)
6 bβ1 ‖ψ−w‖ ‖z1‖ ,

(
xϕ

∂

∂x
(ψ−w) , z1

)
6 α2 |x| ‖ϕ‖ ‖ψ−w‖ ‖z1‖

6 bα2M
∗ ‖ψ−w‖ ‖z1‖ ,

and
(x (f (ψ) − f(w)) , z1) 6 bσ1 ‖ψ−w‖ ‖z1‖ .

For the constants α1,β1,α2,σ1 > 0, we have:

(L (ψ) − L (w) , z1) 6 (α1 + bβ1 + bα2M
∗ + bσ1) ‖ψ−w‖ ‖z1‖

= C (M∗) ‖ψ−w‖ ‖z1‖ ,

where
C (M∗) = (α1 + bβ1 + bα2M

∗ + bσ1) ,

and

(L (ϕ) − L (w) , z2) =

(
∂

∂x
(ϕ−w) , z2

)
+

(
x
∂2

∂x2 (ϕ−w) , z2

)
+

(
xψ

∂

∂x
(ϕ−w) , z2

)
+ (x (g (ϕ) − f(w)) , z2) .

Similarly, we get,

(L (ϕ) − L (w) , z2) 6 (ζ1 + bη1 + bλ1M
∗ + bρ1) ‖ϕ−w‖ ‖z2‖

= C (M∗) ‖ϕ−w‖ ‖z2‖ ,

where C (M∗) = ζ1 + bη1 + bλ1M
∗ + bρ1 and ζ1,η1, λ1, ρ1 > 0. Therefore (H2) holds.
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Conclusion 4.2. A combination of double Laplace transform and decomposition method has been used in
this paper to seek a solution of the linear and nonlinear singular one dimensional system of hyperbolic
equations. Second, we presented a convergence proof of the (DLADM) applied to the nonlinear singular
one dimensional system of hyperbolic equations.
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