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Abstract
In this paper, we present a novel idea of unification of anti-periodic and multi-point boundary conditions and develop the

existence theory for sequential fractional differential equations supplemented with these new conditions. We apply fixed point
theorems due to Banach, Krasnoselskii, Leray-Schauder alternative criterion, and Leray-Schauder degree theory to obtain the
desired results. Our results are well-illustrated with the aid of examples and correspond to some new special cases for particular
choices of parameters involved in the problem. c©2017 All rights reserved.
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1. Introduction

In this paper, we study a nonlinear anti-periodic type multi-point boundary value problems of se-
quential fractional differential equations given by

(cDq + k cDq−1)u(t) = f(t,u(t)), 2 < q 6 3, 0 < t < T ,

α1u(0) +
m∑
i=1

aiu(ηi) + γ1u(T) = β1,

α2u
′(0) +

m∑
i=1

biu
′(ηi) + γ2u

′(T) = β2,

α3u
′′(0) +

m∑
i=1

ciu
′′(ηi) + γ3u

′′(T) = β3,

(1.1)

where cDq denotes the Caputo fractional derivative of order q, αj,βj,γj ∈ R (j = 1, 2, 3),ai,bi, ci ∈
R (i = 1, 2, . . . ,m), k ∈ R+ and f is an appropriately chosen continuous function. The new boundary
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conditions in (1.1) can be interpreted as the values of the unknown function and its first and second-order
derivatives at the end points of the interval under consideration relate to the linear combination of the
values of the unknown function, and its first and second-order derivatives at interior points ηi ∈ (0, T).

There has been a great interest in developing theoretical analysis for a variety of boundary value prob-
lems of nonlinear fractional order differential equations in the recent years. Anti-periodic and multi-point
boundary value problems are two important classes of such problems, which have received considerable
attention. Anti-periodic boundary conditions appear in the mathematical modeling of certain physical
processes and phenomena, for example, see [6] and the references cited therein. Nonlocal multi-point
conditions are regarded as more plausible than the classical initial/boundary conditions as these condi-
tion can describe peculiarities of chemical, physical or other processes happening inside the domain, for
instance, see [9]. For some recent works on fractional-order anti-periodic and multi-point boundary value
problems, we refer the reader to a series of papers ([1–5, 7, 8, 10, 12, 14–16, 18–20] and the references cited
therein.

The objective of the present paper is to investigate the existence of solutions for sequential fractional
differential equations equipped with a new kind of boundary conditions consisting of a combination of
anti-periodic and multi-point boundary conditions. The rest of the paper is organized as follows. Section
2 contains some preliminary concepts of fractional calculus and an auxiliary lemma, which plays a key
role in the forthcoming analysis. In Section 3, we prove the uniqueness of solutions for the given problem,
while the existence results are presented in Section 4. Illustrative examples are discussed in Section 5.
The paper concludes some interesting remarks described in Section 6.

2. Preliminary work

First of all, we recall some basic definitions [13, 21].

Definition 2.1. The fractional integral of order r with the lower limit zero for a function f is defined as

Irf(t) =
1
Γ(r)

∫t
0

f(s)

(t− s)1−rds, t > 0, r > 0,

provided the right hand-side is point-wise defined on [0,∞), where Γ(·) is the gamma function, which is
defined by Γ(r) =

∫∞
0 t

r−1e−tdt.

Definition 2.2. The Riemann-Liouville fractional derivative of order r > 0, n − 1 < r < n, n ∈ N, is
defined as

Dr0+f(t) =
1

Γ(n− r)

(
d

dt

)n ∫t
0
(t− s)n−r−1f(s)ds,

where the function f(t) has absolutely continuous derivative up to order (n− 1).

Definition 2.3. The Caputo derivative of order r for a function f : [0,∞)→ R can be written as

cDrf(t) = Dr

(
f(t) −

n−1∑
k=0

tk

k!
f(k)(0)

)
, t > 0, n− 1 < r < n.

Remark 2.4. If f(t) ∈ Cn[0,∞), then

cDrf(t) =
1

Γ(n− r)

∫t
0

f(n)(s)

(t− s)r+1−nds = I
n−rf(n)(t), t > 0, n− 1 < q < n.

To define a solution for the given problem, we need the following lemma.
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Lemma 2.5. Let h ∈ C[0, T ],u ∈ C3[0, T ]. Then the following linear problem

(cDq + k cDq−1)u(t) = h(t), 2 < q 6 3, 0 < t < T ,

α1u(0) +
m∑
i=1

aiu(ηi) + γ1u(T) = β1,

α2u
′(0) +

m∑
i=1

biu
′(ηi) + γ2u

′(T) = β2,

α3u
′′(0) +

m∑
i=1

ciu
′′(ηi) + γ3u

′′(T) = β3,

(2.1)

is equivalent to the fractional integral equation

u(t) = ν1(t) +

∫t
0
e−k(t−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
h(x)dx

)
ds

+

m∑
i=1

ωi(t)

∫ηi
0
e−k(ηi−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
h(x)dx

)
ds+ ν2(t)

∫T
0
e−k(T−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
h(x)dx

)
ds

+

m∑
i=1

ψi(t)

∫ηi
0

(ηi − s)
q−2

Γ(q− 1)
h(s)ds+ ν3(t)

∫T
0

(T − s)q−2

Γ(q− 1)
h(s)ds (2.2)

+

m∑
i=1

ϕi(t)

∫ηi
0

(ηi − s)
q−3

Γ(q− 2)
h(s)ds+ ν4(t)

∫T
0

(T − s)q−3

Γ(q− 2)
h(s)ds,

where

ν1(t) =
β1

λ1
−
(∑m

i=1 aiηi + γ1T

λ1λ2

)
β2 −

β3

k2λ1λ2δ3

(
λ2δ1 + kδ2(

m∑
i=1

aiηi + γ1T)
)
+
β3e

−kt

k2δ3

+
t

λ2

(
β2 +

β3δ2

kδ3

)
,

ωi(t) =
ciδ1

δ3λ1
−
ai
λ1

−
(k(∑mi=1 aiηi + γ1T)

λ1λ2δ3

)(
biδ3 − δ2ci

)
−
cie

−kt

δ3
+
kt

λ2δ3

(
biδ3 − δ2ci

)
,

ν2(t) =
γ3δ1

δ3λ1
−
γ1

λ1
−
(k(∑mi=1 aiηi + γ1T)

λ1λ2δ3

)(
γ2δ3 − δ2γ3

)
−
γ3e

−kt

δ3
+
kt

λ2δ3

(
γ2δ3 − δ2γ3

)
,

ψi(t) =
−δ1ci
kλ1δ3

−
(∑m

i=1 aiηi + γ1T

λ1λ2δ3

)(
δ2ci − biδ3

)
+
cie

−kt

kδ3
+

t

λ2δ3

(
δ2ci − biδ3

)
,

ν3(t) =
−δ1γ3

kλ1δ3
−
(∑m

i=1 aiηi + γ1T

λ1λ2δ3

)(
δ2γ3 − γ2δ3

)
+
γ3e

−kt

kδ3
+

t

λ2δ3

(
δ2γ3 − γ2δ3

)
, (2.3)

ϕi(t) =
ci

k2δ3λ1λ2

(
λ2δ1 + δ2k(

m∑
i=1

aiηi + γ1T)
)
−
cie

−kt

k2δ3
−
ciδ2t

kδ3λ2
,

ν4(t) =
γ3

k2δ3λ1λ2

(
λ2δ1 + δ2k(

m∑
i=1

aiηi + γ1T)
)
−
γ3e

−kt

k2δ3
−
γ3δ2t

kδ3λ2
,

δ1 = α1 +

m∑
i=1

aie
−kηi + γ1e

−kT , δ2 = α2 +

m∑
i=1

bie
−kηi + γ2e

−kT ,

δ3 = α3 +

m∑
i=1

cie
−kηi + γ3e

−kT 6= 0, λ1 = α1 +

m∑
i=1

ai + γ1 6= 0, λ2 = α2 +

m∑
i=1

bi + γ2 6= 0.

Proof. We know that the general solution of (2.1) can be expressed in term of an integral equation as
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u(t) = A0e
−kt +A1 +A2t+

∫t
0
e−k(t−s)Iq−1h(s)ds, (2.4)

where A0,A1 and A2 are arbitrary constants and

Iq−1h(t) =

∫t
0

(t− x)q−2

Γ(q− 1)
h(x)dx.

By differentiating (2.4) with respect to t, we obtain

u ′(t) = −kA0e
−kt +A2 − k

∫t
0
e−k(t−s)Iq−1h(s)ds+ Iq−1h(t), (2.5)

u ′′(t) = k2A0e
−kt + k2

∫t
0
e−k(t−s)Iq−1h(s)ds− kIq−1h(t) + Iq−2h(t). (2.6)

By using the boundary conditions given by (2.1) in (2.4), (2.5), (2.6), together with the notations (2.3), we
get

δ1A0 + λ1A1 +A2(

m∑
i=1

aiηi + γ1T) +

m∑
i=1

ai

∫ηi
0
e−k(η−s)Iq−1h(s)ds

+ γ1

∫T
0
e−k(T−s)Iq−1h(s)ds = β1,

(2.7)

− kδ2A0 + λ2A2 +

m∑
i=1

bi

(
− k

∫ηi
0
e−k(ηi−s)Iq−1h(s)ds+ Iq−1h(ηi)

)

+ γ2

(
− k

∫T
0
e−k(T−s)Iq−1h(s)ds+ Iq−1h(T)

)
= β2,

(2.8)

A0k
2δ3 +

m∑
i=1

ci

(
k2
∫ηi

0
e−k(ηi−s)Iq−1h(s)ds− kIq−1h(ηi) + I

q−2h(ηi)
)

+ γ3

(
k2
∫T

0
e−k(T−s)Iq−1h(s)ds− kIq−1h(T) + Iq−2h(T)

)
= β3.

(2.9)

By solving the system (2.7), (2.8), (2.9) for A0,A1 and A2, we obtain

A0 =
1
k2δ3

{
β3 −

m∑
i=1

ci

(
k2
∫ηi

0
e−k(ηi−s)Iq−1h(s)ds− kIq−1h(ηi) + I

q−2h(ηi)
)

− γ3

(
k2
∫T

0
e−k(T−s)Iq−1h(s)ds− kIq−1h(T) + Iq−2h(T)

)}
,

A1 =
β1

λ1
−
(∑m

i=1 aiηi + γ1T

λ1λ2

)
β2 −

( δ1

k2δ3λ1
+
δ2(
∑m
i=1 aiηi + γ1T)

kδ3λ1λ2

)
β3

+

m∑
i=1

(δ1ci
δ3λ1

−
(∑m

i=1 aiηi + γ1T

λ1

)(bik
λ2

−
kδ2ci
δ3λ2

)
−
ai
λ1

) ∫ηi
0
e−k(ηi−s)Iq−1h(s)ds

+
(δ1γ3

δ3λ1
−
(∑m

i=1 aiηi + γ1T

λ1

)(γ2k

λ2
−
kδ2γ3

δ3λ2

)
−
γ1

λ1

) ∫T
0
e−k(T−s)Iq−1h(s)ds
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−

m∑
i=1

( δ1ci
kδ3λ1

+
(∑m

i=1 aiηi + γ1T

λ1

)(δ2ci
δ3λ2

−
bi
λ2

))
Iq−1h(ηi)

−
( δ1γ3

kδ3λ1
+
(∑m

i=1 aiηi + γ1T

λ1

)(δ2γ3

δ3λ2
−
γ2

λ2

))
Iq−1h(T)

+

m∑
i=1

( δ1ci
k2δ3λ1

+
δ2ci(

∑m
i=1 aiηi + γ1T)

kδ3λ1λ2

)
Iq−2h(ηi)

+
( δ1γ3

k2δ3λ1
+
δ2γ3(

∑m
i=1 aiηi + γ1T)

kδ3λ1λ2

)
Iq−2h(T),

A2 =
β2

λ2
+
δ2β3

kδ3λ2
+

m∑
i=1

(bik
λ2

−
kδ2ci
δ3λ2

) ∫ηi
0
e−k(ηi−s)Iq−1h(s)ds

+
(γ2k

λ2
−
kδ2γ3

δ3λ2

) ∫T
0
e−k(T−s)Iq−1h(s)ds+

m∑
i=1

(δ2ci
δ3λ2

−
bi
λ2

)
Iq−1h(ηi)

+
(δ2γ3

δ3λ2
−
γ2

λ2

)
Iq−1h(T) −

m∑
i=1

δ2ci
kδ3λ2

Iq−2h(ηi) −
δ2γ3

kδ3λ2
Iq−2h(T).

By substituting the values of A0,A1 and A2 in (2.4), we get the desired solution (2.2). The converse of the
lemma follows by direct computation. This completes the proof.

3. Uniqueness result

Let P = C([0, T ], R) denote the Banach space of all continuous functions from [0, T ] into R endowed
with the norm defined by ‖u‖ = sup{|u(t)|, t ∈ [0, T ]}.
In view of Lemma 2.5, we transform problem (1.1) into an equivalent fixed point problem as

u = Hu, (3.1)

where H : P→ P is defined by

(Hu)(t) = ν1(t) +

∫t
0
e−k(t−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
f(x,u(x))dx

)
ds

+

m∑
i=1

ωi(t)

∫ηi
0
e−k(ηi−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
f(x,u(x))dx

)
ds

+ ν2(t)

∫T
0
e−k(T−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
f(x,u(x))dx

)
ds (3.2)

+

m∑
i=1

ψi(t)

∫ηi
0

(ηi − s)
q−2

Γ(q− 1)
f(s,u(s))ds+ ν3(t)

∫T
0

(T − s)q−2

Γ(q− 1)
f(s,u(s))ds

+

m∑
i=1

ϕi(t)

∫ηi
0

(ηi − s)
q−3

Γ(q− 2)
f(s,u(s))ds+ ν4(t)

∫T
0

(T − s)q−3

Γ(q− 2)
f(s,u(s))ds.

Observe that problem (1.1) has solutions if the operator equation (3.1) has fixed points.
For computational convenience, we set

Q = sup
t∈[0,T ]

{tq−1(1 − e−kt)

kΓ(q)
+

|
∑m
i=1ωi(t)η

q−1
i (1 − e−kηi)|

kΓ(q)
+

|ν2(t)|T
q−1(1 − e−kT )

kΓ(q)

+
|
∑m
i=1ψi(t)η

q−1
i |

Γ(q)
+

|ν3(t)|T
q−1

Γ(q)
+

|
∑m
i=1ϕi(t)η

q−2
i |

Γ(q− 1)
+

|ν4(t)|T
q−2

Γ(q− 1)

}
.

(3.3)
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Now we are in a position to discuss the existence of a unique solution for the problem (1.1) via
Banach’s contraction mapping principle.

Theorem 3.1. Assume that f : [0, T ]×R→ R is a continuous function satisfying the Lipschitz condition:

(A1) there exists a positive number ` such that |f(t,u) − f(t, v)| 6 `|u− v|, ∀t ∈ [0, T ], u, v ∈ R.

Then the boundary value problem (1.1) has a unique solution on [0, T ] if ` < 1/Q, where Q is given by (3.3).

Proof. Consider a set Br = {u ∈ P : ‖u‖ 6 r}, where r >
QM+ ‖ν1‖

1 − `Q
, sup
t∈[0,T ]

|f(t, 0)| = M, and Q,ν1 are

respectively given by (3.3) and (2.3). In the first step, we show that HBr ⊂ Br, where the operator H is
defined by (3.2). For any u ∈ Br, t ∈ [0, T ], observe that

|f(t,u(t))| = |f(t,u(t)) − f(t, 0) + f(t, 0)| 6 |f(t,u(t)) − f(t, 0)|+ |f(t, 0)|
6 `‖u‖+M 6 `r+M.

Then, for u ∈ Br, we obtain

‖(Hu)‖ 6 sup
t∈[0,T ]

{
|ν1(t)|+

∫t
0
e−k(t−s)

( ∫s
0

(s− x)α−2

Γ(α− 1)
|f(x,u(x))|dx

)
ds

+ |

m∑
i=1

ωi(t)|

∫ηi
0
e−k(ηi−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
|f(x,u(x))|dx

)
ds

+ |ν2(t)|

∫T
0
e−k(T−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
|f(x,u(x))|dx

)
ds

+ |

m∑
i=1

ψi(t)|

∫ηi
0

(ηi − s)
q−2

Γ(q− 1)
|f(s,u(s))|ds+ |ν3(t)|

∫T
0

(T − s)α−2

Γ(α− 1)
|f(s,u(s))|ds

+ |

m∑
i=1

ϕi(t)|

∫ηi
0

(ηi − s)
q−3

Γ(q− 2)
|f(s,u(s))|ds+ |ν4(t)|

∫T
0

(T − s)q−3

Γ(q− 2)
|f(s,u(s))|ds

}
6 (`r+M) sup

t∈[0,T ]

{ ∫t
0
e−k(t−s)

( ∫s
0

(s− x)α−2

Γ(α− 1)
dx
)
ds

+ |

m∑
i=1

ωi(t)|

∫ηi
0
e−k(ηi−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
dx
)
ds+ |ν2(t)|

∫T
0
e−k(T−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
dx
)
ds

+ |

m∑
i=1

ψi(t)|

∫ηi
0

(ηi − s)
q−2

Γ(q− 1)
ds+ |ν3(t)|

∫T
0

(T − s)α−2

Γ(α− 1)
ds+ |

m∑
i=1

ϕi(t)|

∫ηi
0

(ηi − s)
q−3

Γ(q− 2)
ds

+ |ν4(t)|

∫T
0

(T − s)q−3

Γ(q− 2)
ds
}
+ ‖ν1‖

6 (`r+M)Q+ ‖ν1‖ 6 r.

This shows that HBr ⊂ Br. Next we show that the operator H is a contraction. Let u, v ∈ P. Then

‖Hu−Hv‖ 6 sup
t∈[0,T ]

{ ∫t
0
e−k(t−s)

( ∫s
0

(s− x)α−2

Γ(α− 1)
|f(x,u(x)) − f(x, v(x))|dx

)
ds

+ |

m∑
i=1

ωi(t)|

∫ηi
0
e−k(ηi−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)

∣∣∣f(x,u(x)) − f(x, v(x))
∣∣∣dx)ds

+ |ν2(t)|

∫T
0
e−k(T−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)

∣∣∣f(x,u(x)) − f(x, v(x))
∣∣∣dx)ds
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+ |

m∑
i=1

ψi(t)|

∫ηi
0

(ηi − s)
q−2

Γ(q− 1)

∣∣∣f(s,u(s)) − f(s, v(s))∣∣∣ds
+ |ν3(t)|

∫T
0

(T − s)q−2

Γ(q− 1)

∣∣∣f(s,u(s)) − f(s, v(s))∣∣∣ds
+ |

m∑
i=1

ϕi(t)|

∫ηi
0

(ηi − s)
q−3

Γ(q− 2)

∣∣∣f(s,u(s)) − f(s, v(s))∣∣∣ds
+ |ν4(t)|

∫T
0

(T − s)q−3

Γ(q− 2)

∣∣∣f(s,u(s)) − f(s, v(s))∣∣∣ds}
6 ` ‖ u− v ‖ sup

t∈[0,T ]

{ ∫t
0
e−k(t−s)

( ∫s
0

(s− x)α−2

Γ(α− 1)
dx
)
ds

+ |

m∑
i=1

ωi(t)|

∫ηi
0
e−k(ηi−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
dx
)
ds+ |ν2(t)|

∫T
0
e−k(T−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
dx
)
ds

+ |

m∑
i=1

ψi(t)|

∫ηi
0

(ηi − s)
q−2

Γ(q− 1)
ds+ |ν3(t)|

∫T
0

(T − s)α−2

Γ(α− 1)
ds+ |

m∑
i=1

ϕi(t)|

∫ηi
0

(ηi − s)
q−3

Γ(q− 2)
ds

+ |ν4(t)|

∫T
0

(T − s)α−3

Γ(α− 2)
ds
}

6 `Q ‖ u− v ‖,

where we have used (3.3). By the given assumption: ` < 1/Q, it follows that the operator H is a contrac-
tion. Thus, by Banach’s contraction mapping principle, we deduce that the operator H has a fixed point,
which corresponds to a unique solution of the problem (1.1) on [0, T ].

4. Existence results

In this section, we obtain different criteria for the existence of solutions for the problem (1.1) under
different constraints on the nonlinearity involved in the problem. The first result relies on Krasnoselskii’s
fixed point theorem.

Lemma 4.1 (Krasnoselskii’s fixed point theorem [17]). Let Y be a closed bounded, convex and nonempty subset
of a Banach space X. Let B1,B2 be the operators such that

(i) B1y1 +B2y2 ∈ Y whenever y1,y2 ∈ Y;

(ii) B1 is compact and continuous; and

(iii) B2 is a contraction mapping.

Then there exists z ∈ Y such that z = B1z+B2z.

Theorem 4.2. Let f : [0, T ]×R → R be continuous functions satisfying the condition (A1) and that |f(t, x)| 6
g(t), ∀(t, x) ∈ [0, T ]×R with g ∈ C([0, T ], R+), and supt∈[0,T ] |g(t)| = ‖g‖. In addition, it is assumed that
`Q1 < 1, where

Q1 = sup
t∈[0,T ]

{ |∑mi=1ωi(t)η
q−1
i (1 − e−kηi)|

kΓ(q)
+

|ν2(t)|T
q−1(1 − e−kT )

kΓ(q)

+
|
∑m
i=1ψi(t)η

q−1
i |

Γ(q)
+

|ν3(t)|T
q−1

Γ(q)
+

|
∑m
i=1ϕi(t)η

q−2
i |

Γ(q− 1)
+

|ν4(t)|T
q−2

Γ(q− 1)

}
.

(4.1)

Then the problem (1.1) has at least one solution on [0, T ].
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Proof. Consider Br̄ = {u ∈ P : ‖u‖ 6 r̄}, where r̄ > Q‖g‖+ ‖ν1‖ and Q is given by (3.3). Introduce the
operators H1 and H2 on Br̄ as

(H1u)(t) =

∫t
0
e−k(t−s)

( ∫s
0

(s− x)α−2

Γ(α− 1)
f(x,u(x))dx

)
ds,

(H2u)(t) = ν1(t) +

m∑
i=1

ωi(t)

∫ηi
0
e−k(ηi−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
f(x,u(x))dx

)
ds

+ ν2(t)

∫T
0
e−k(T−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
f(x,u(x))dx

)
ds

+

m∑
i=1

ψi(t)

∫ηi
0

(ηi − s)
q−2

Γ(q− 1)
f(s,u(s))ds+ ν3(t)

∫T
0

(T − s)q−2

Γ(q− 1)
f(s,u(s))ds

+

m∑
i=1

ϕi(t)

∫ηi
0

(ηi − s)
q−3

Γ(q− 2)
f(s,u(s))ds+ ν4(t)

∫T
0

(T − s)q−3

Γ(q− 2)
f(s,u(s))ds.

For u, v ∈ Br̄, it is easy to verify that ‖H1u+H2v‖ 6 Q‖g‖+ ‖ν1‖. Thus, H1u+H2v ∈ Br̄. By using
the assumption (A1) and (4.1), we can get ‖H2u −H2v‖ 6 `Q1 ‖ u − v ‖, which implies that H2 is a
contraction in view of the given condition: `Q1 < 1.

Notice that continuity of f implies that the operator H1 is continuous. Also, H1 is uniformly bounded
on Br̄ as

‖H1u‖ 6
(1 − e−kT )Tq−1‖g‖

kΓ(q)
.

In the last step, it will be shown that the operator H1 is compact. By fixing sup(t,u)∈[0,T ]×Br̄ |f(t,u)| =
fr̄ and for t1, t2 ∈ [0, T ], we obtain

|(H1u)(t2) − (H1u)(t1)|

= fr̄

∣∣∣∣(e−kt2 − e−kt1)

∫t1

0
eks
( ∫s

0

(s− x)q−2

Γ(q− 1)
dx
)
ds+

∫t2

t1

e−k(t2−s)
( ∫s

0

(s− x)q−2

Γ(q− 1)
dx
)
ds

∣∣∣∣
6

|1 − e−k(t2−t1)|

kΓ(q)

(
|t
q−1
1 (1 − e−kt1)|+ tq−1

2

)
fr̄ → 0 as t2 − t1 → 0,

independently of u ∈ Br̄. This implies that H1 is relatively compact on Br̄. Hence, by the Arzelá-Ascoli
Theorem, the operator H1 is compact on Br̄. Thus all the assumptions of Lemma 4.1 are satisfied. In
consequence, the conclusion of Lemma 4.1 is applied and hence the problem (1.1) has at least one solution
on [0, T ].

Our second existence result is based on the following (Schaefer like) fixed point theorem.

Lemma 4.3 ([17]). Let X be a Banach space. Assume that Ω : X→ X is a completely continuous operator and the
set Y = {u ∈ X | u = µΩu, 0 < µ < 1} is bounded. Then Ω has a fixed point in X.

Theorem 4.4. Let f : [0, T ]×R → R be a continuous function. Assume that there exists a positive constant L1
such that |f(t,u(t))| 6 L1 for t ∈ [0, T ], u ∈ R. Then the boundary value problem (1.1) has at least one solution on
[0, T ].

Proof. In the first step, we show that the operator H defined by (3.2) is completely continuous. Observe
that continuity of H follows from the continuity of f. For a positive constant r, let Br = {u ∈ P : ‖u‖ 6 r}

be a bounded ball in P. Then for t ∈ [0, T ], we have

‖(Hu)‖ 6 sup
t∈[0,T ]

{
|ν1(t)|+ L1

[ ∫t
0
e−k(t−s)

( ∫s
0

(s− x)α−2

Γ(α− 1)
dx
)
ds
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+ |

m∑
i=1

ωi(t)|

∫ηi
0
e−k(ηi−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
dx
)
ds

+ |ν2(t)|

∫T
0
e−k(T−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
dx
)
ds

+ |

m∑
i=1

ψi(t)|

∫ηi
0

(ηi − s)
q−2

Γ(q− 1)
|f(s,u(s))|ds+ |ν3(t)|

∫T
0

(T − s)α−2

Γ(α− 1)
ds

+ |

m∑
i=1

ϕi(t)|

∫ηi
0

(ηi − s)
q−3

Γ(q− 2)
ds+ |ν4(t)|

∫T
0

(T − s)q−3

Γ(q− 2)
ds
]}

6 ‖ν1‖+ L1Q,

where Q is defined by (3.3).
Next we show that the operator H maps bounded sets into equicontinuous sets of P. Let τ1, τ2 ∈ [0, T ]

with τ1 < τ2 and u ∈ Br. Then we have

|(Hu)(τ2) − (Hu)(τ1)| 6
∣∣∣ β3

k2δ3
(e−kτ2 − e−kτ1)

∣∣∣+ ∣∣∣(τ2 − τ1)

λ2

(
β2 +

β3δ2

kδ3

)∣∣∣
+

|1 − e−k(τ2−τ1)|

kΓ(q)

(
|τ
q−1
1 (1 − e−kτ1)|+ τq−1

2

)
L1

+

m∑
i=1

[∣∣∣ci(e−kτ2 − e−kτ1)

δ3

∣∣∣+ ∣∣∣k(τ2 − τ1)

λ2δ3

(
biδ3 − δ2ci

)∣∣∣]L1η
q−1
i

kΓ(q)

(
1 − e−kηi

)
+
[∣∣∣γ3(e

−kτ2 − e−kτ1)

δ3

∣∣∣+ ∣∣∣k(τ2 − τ1)

λ2δ3

(
γ2δ3 − δ2γ3

)∣∣∣]L1T
q−1

kΓ(q)

(
1 − e−kT

)
+ |

m∑
i=1

[∣∣∣ci(e−kτ2 − e−kτ1)

kδ3

∣∣∣+ ∣∣∣(τ2 − τ1)

λ2δ3

(
biδ3 − δ2ci

)∣∣∣]L1η
q−1
i

Γ(q)

+
[∣∣∣γ3(e

−kτ2 − e−kτ1)

kδ3

∣∣∣+ ∣∣∣(τ2 − τ1)

λ2δ3

(
γ2δ3 − δ2γ3

)∣∣∣]L1T
q−1

Γ(q)

+

m∑
i=1

[∣∣∣ci(e−kτ2 − e−kτ1)

k2δ3

∣∣∣+ ∣∣∣ciδ2(τ2 − τ1)

kλ2δ3

∣∣∣] L1η
q−2
i

Γ(q− 1)

+
[∣∣∣γ3(e

−kτ2 − e−kτ1)

k2δ3

∣∣∣+ ∣∣∣γ3δ2(τ2 − τ1)

kλ2δ3

∣∣∣] L1T
q−2

Γ(q− 1)
.

As τ2 − τ1 → 0, the right-hand side of the above inequality tends to zero independently of u ∈ Br.
Therefore, by the Arzelá-Ascoli theorem, the operator H : P→ P is completely continuous.

Finally, we consider the set V = {u ∈ P : u = µHu, 0 < µ < 1} and show that V is bounded. For u ∈ V
and t ∈ [0, T ], we get

‖u‖ 6 L1Q+ ‖ν1‖.

Therefore, V is bounded. Hence, by Lemma 4.3, the problem (1.1) has at least one solution on [0, T ].

Now we show the existence of solutions for the problem (1.1) via Leray-Schauder nonlinear alternative
for single-valued maps.

Lemma 4.5 (Leray-Schauder alternative [11]). Let E be a Banach space, C a closed, convex subset of E, U an
open subset of C and 0 ∈ U. Suppose that H : U → C is a continuous, compact (that is, H(U) is a relatively
compact subset of C) map. Then either

(i) H has a fixed point in U; or

(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λH(u).
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Theorem 4.6. Let f : [0, T ]×R→ R be a continuous function. Assume that

(A3) there exist function p ∈ C([0, T ], R+), and nondecreasing function Ψ : R+ → R+ such that |f(t,u)| 6
p(t)Ψ(‖u‖), ∀(t,u) ∈ [0, T ]×R;

(A4) there exists a constant M > 0 such that

M

‖ν1‖+ ‖p‖Ψ(‖M‖)Q
> 1. (4.2)

Then the boundary value problem (1.1) has at least one solution on [0, T ].

Proof. We establish the proof in several steps. Firstly, we show that the operator H : P → P defined by
(3.2) maps bounded sets into bounded sets in C([0, T ], R). For the positive number r, let

Br = {u ∈ C([0, T ], R) : ‖u‖ 6 r}

be a bounded set in C([0, T ], R). Then

|Hu(t)| 6 |ν1(t)|+

∫t
0
e−k(t−s)

( ∫s
0

(s− x)α−2

Γ(α− 1)
p(x)Ψ(‖u‖)dx

)
ds

+ |

m∑
i=1

ωi(t)|

∫ηi
0
e−k(ηi−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
p(x)Ψ(‖u‖)dx

)
ds

+ |ν2(t)|

∫T
0
e−k(T−s)

( ∫s
0

(s− x)q−2

Γ(q− 1)
p(x)Ψ(‖u‖)dx

)
ds

+ |

m∑
i=1

ψi(t)|

∫ηi
0

(ηi − s)
q−2

Γ(q− 1)
p(s)Ψ(‖u‖)ds+ |ν3(t)|

∫T
0

(T − s)α−2

Γ(α− 1)
p(s)Ψ(‖u‖)ds

+ |

m∑
i=1

ϕi(t)|

∫ηi
0

(ηi − s)
q−3

Γ(q− 2)
p(s)Ψ(‖u‖)ds+ |ν4(t)|

∫T
0

(T − s)q−3

Γ(q− 2)
p(s)Ψ(‖u‖)ds

6 ‖ν1‖+ ‖p‖Ψ(‖u‖)Q,

which, on taking the norm for t ∈ [0, T ], yields ‖Hu‖ 6 ‖ν1‖+ ‖p‖Ψ(r)Q.
Next we show that H maps bounded sets into equicontinuous sets of C([0, T ], R). Let t1, t2 ∈ [0, T ]

with t1 < t2 and u ∈ Br, where Br is a bounded set of C([0, T ], R). Then we obtain

|Hu(t2) −Hu(t1)|

6 |ν1(t2) − ν1(t1)|+ ‖p‖Ψ(r)
[ ∫t1

0

∣∣∣e−k(t2−s) − e−k(t1−s)
∣∣∣ sq−1

Γ(q)
ds+

∫t2

t1

e−k(t2−s)
sq−1

Γ(q)
ds

+

m∑
i=1

|ωi(t2) −ωi(t1)|

∫ηi
0
e−k(ηi−s)

sq−1

Γ(q)
ds+ |ν2(t2) − ν2(t1)|

∫T
0
e−k(T−s)

sq−1

Γ(q)
ds

+

m∑
i=1

|ψi(t2) −ψi(t1)|
η
q−1
i

Γ(q)
+ |ν3(t2) − ν3(t1)|

Tq−1

Γ(q)

+

m∑
i=1

|ϕi(t2) −ϕi(t1)|
η
q−2
i

Γ(q− 1)
+ |ν4(t2) − ν4(t1)|

Tq−2

Γ(q− 1)

]
.

Obviously the right hand side of the above inequality tends to zero independently of u ∈ Br as t2 −
t1 → 0. As H satisfies the above assumptions, therefore it follows by the Arzelá-Ascoli theorem that
H : C([0, T ], R)→ C([0, T ], R) is completely continuous.
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The result will follow form the Leray-Schauder nonlinear alternative (Lemma 4.5) once we have proved
the boundedness of the set of all solutions to the equation u = λHu for λ ∈ [0, 1].

Let u be a solution. Then, for t ∈ [0, T ], and by using the computations in proving that H is bounded,
we have

|u(t)| = |λ(Hu)(t)| 6 ‖ν1‖+ ‖p‖Ψ(‖r‖)Q,

which implies that
‖u‖

‖ν1‖+ ‖p‖Ψ(r)Q
6 1.

In view of (A4), there exists M such that ‖u‖ 6=M. Let us set

U = {u ∈ C([0, T ], R) : ‖u‖ < M}.

Note that the operator H : U→ C([0, T ], R) is continuous and completely continuous. From the choice of
U, there is no u ∈ ∂U such that u = λH(u) for some λ ∈ (0, 1). Consequently, by the nonlinear alternative
of Leray-Schauder type (Lemma 4.5), we deduce that H has a fixed point u ∈ U which is a solution of the
problem (1.1). This completes the proof.

In our final existence result for the problem (1.1), we apply Leray-Schauder degree theory [11].

Theorem 4.7. Let f : [0, T ]×R → R. Assume that there exist constants 0 6 k < 1
Q , where Q is given by (3.3)

and M > 0 such that |f(t,u(t))| 6 k‖u‖+M for all t ∈ [0, T ],u ∈ R . Then the boundary value problem (1.1) has
at least one solution.

Proof. In view of the fixed point problem (3.1), we just need to show that there exists at least one solution
u ∈ R for (3.1). Define a suitable ball BR ⊂ C([0, T ] with radius R > 0 as

BR = {u ∈ C([0, T ] : ‖u‖ 6 R},

where R will be fixed later. Then, it is sufficient to show that H : BR → C satisfies

u 6= λHu, ∀u ∈ ∂BR and ∀λ ∈ [0, 1]. (4.3)

Let us set
Φ(λ,u) = λHu, u ∈ C, λ ∈ [0, 1].

Then, by the Arzelá-Ascoli Theorem, ωλ(u) = u−Φ(λ,u) = u−Hu is completely continuous. If (4.3)
is true, then the following Leray-Schauder degrees are well-defined and by the homotopy invariance of
topological degree, it follows that

deg(ωλ,BR, 0) = deg(I− λH,BR, 0) = deg(ω1,BR, 0)

= deg(ω0,BR, 0) = deg(I,BR, 0) = 1 6= 0, 0 ∈ BR,

where I denotes the unit operator. By the nonzero property of Leray-Schauder degree, ω1(t) = u−λHu =
0 for at least one u ∈ BR. To prove (4.3), we assume that u = λHu = 0 for some λ ∈ [0, 1] and for all
t ∈ [0, 1]. Then, as before, one can obtain

|u(t)| = |λ(Hu)(t)| 6 ‖ν1‖+ (k‖u‖+M)Q,

which implies that

‖u‖ 6 ‖ν1‖+MQ
1 − kQ

.

By letting R =
‖ν1‖+MQ

1−kQ
+ 1, (4.3) holds. This completes the proof.
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5. Examples

Consider the following anti-periodic multi-point fractional boundary value problem:

(cD5/2 + 2cD3/2)u(t) = f(t,u(t)), t ∈ [0, 2],

u(0) + u(1/4) + 1/2u(3/4) − u(5/4) + u(7/4) − u(2) = 1,

u ′(0) − u ′(1/4) + u ′(3/4) − 1/2u ′(5/4) + 1/4u ′(7/4) − 1/2u ′(2) = 2,

1/2u ′′(0) + 1/4u ′′(1/4) − u ′(3/4) + u ′′(5/4) + u ′′(7/4) + u ′′(2) = 1.

(5.1)

T = 2, 0 < η1 = 1/4, η2 = 3/4, η3 = 5/4, η4 = 7/4 < T , k = 2, α1 = 1, γ1 = −1, α2 = 1, γ2 = −1/2, α3 =
1/2, γ3 = 1, a1 = 1, a2 = 1/2, a3 = −1, a4 = 1, b1 = −1, b2 = 1, b3 = −1/2, b4 = 1/4, c1 = 1/4, c2 =
−1, c3 = 1, c4 = 1,β1 = 1,β2 = 2,β3 = 1,Q ≈ 127.7343,Q1 ≈ 126.6899, where Q and Q1 are respectively
given by (3.3) and (4.1).

• For the applicability of Theorem 3.1 to the problem (5.1), let f(t,u(t)) = 1
200 tan−1 u(t)+ cost in (5.1).

It is easy to find that ` = 1/200 as |f(t,u) − f(t, v)| 6 1
200 |u− v| and that `Q ≈ 0.6387 < 1. Clearly all

the conditions of Theorem 3.1 are satisfied. Hence we deduce by the conclusion of Theorem 3.1 that
there exists a unique solution for problem (5.1) on [0, 2].

• For the illustration of Theorem 4.2, we take f(t,u(t)) = 1
200 tan−1 u(t) + cost in (5.1). Obviously

|f(t,u)| 6 π/400 + cos t = g(t), ‖g‖ = π+400
400 and `Q1 ≈ 0.63345 < 1. Thus all the conditions of

Theorem 4.2 are satisfied. Hence the conclusion of Theorem 4.2 applies to the problem (5.1).

• Let us take f(t,u(t)) = 1
2 sinu(t) + e−t + 2 in (5.1) such that |f(t,u)| 6 7/2. Thus, by the conclusion

of Theorem 4.4, we deduce that problem (5.1) has at least one solution on [0, 2].

• For the elaboration of Theorem 4.6, let f(t,u(t)) = 1√
t2+4

|u|
1+|u| in (5.1). Clearly |f(t,u)| 6 1√

t2+4
. By

fixing Ψ(‖u‖) = 1,p(t) = 1√
t2+4

, we find by (4.2) that M >M1 ≈ 90.4603. In consequence, it follows
by the conclusion of Theorem 4.6 that the problem (5.1) has at least one solution on [0, 2].

• In order to demonstrate the application of Theorem 4.7, we take f(t,u(t)) = 1
400 sin(2u) + 1 in (5.1)

and note that |f(t,u)| 6 ‖u‖/200 + 1. Clearly k = 1
200 , M = 1 and 0 < k = 1

200 <
1

127.7343 = 1
Q . As

all the conditions of Theorem 4.7 hold true, so the conclusion of Theorem 4.7 is applied and hence
there exists at least one solution for the problem (5.1) on [0, 2].

6. Concluding remarks

In this paper, we have discussed the existence and uniqueness of solutions for a new class of bound-
ary value problems consisting of sequential fractional differential equations and a combination of anti-
periodic and multi-point boundary conditions by means of appropriate tools of the fixed point theory.
Our results are not only new in the given configuration but also correspond to the ones for certain new
problems for particular values of the parameters involved in the problem at hand. For example, by tak-
ing ai,bi, ci = 0, i = 1, 2, ...,m, βj = 0,αj = 1 = γj, j = 1, 2, 3 in the results of this paper, we obtain
the new ones for the problem of sequential fractional differential equations with anti-periodic boundary
conditions:

(cDq + k cDq−1)u(t) = f(t,u(t)), 2 < q 6 3, 0 < t < T ,

u(0) + u(T) = 0, u ′(0) + u ′(T) = 0, u ′′(0) + u ′′(T) = 0.

Similarly the results for nonlocal multi-point boundary value problems associated with either left-end
point (x = 0) or right-end point (x = T ) of the interval [0, T ] can be obtained by taking γj = 0 and
αj = 0 (j = 1, 2, 3) respectively in our results. So the present work is a useful contribution to the existing
literature on the topic.
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