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Abstract
We prove that the invariant probability measure of an orientation preserving circle homeomorphism f with several break

points (at which the derivative f ′ has jumps) is singular with respect to Lebesgue measure, if f ′ satisfies certain condition and
the product of jump ratios at break points is non-trivial. c©2017 All rights reserved.
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1. Introduction

Let S1 = R/Z be the unit circle with clearly defined orientation, metric, Lebesgue measure and the
operation of addition. Let π : R → S1 denote the corresponding projection mapping that ”winds” a
straight line on the circle. An arbitrary homeomorphism f that preserves the orientation of the unit circle
S1 can be ”lifted” on the straight line R in the form of the homeomorphism F : R → R with property
F(x+ 1) = F(x) + 1 that is connected with f by relation π ◦ F = f ◦ π. This homeomorphism F is called
the lift of the homeomorphism f and is defined up to an integer term. The most important arithmetic
characteristic of the homeomorphism f of the unit circle S1 is the rotation number

ρ(f) = lim
n→∞F

n(x)

n
mod 1,

where F is the lift of f with S1 to R. Here and below, for a given map F, Fn denotes its n-th iterate.
The rotation number is rational, if and only if f has periodic points. Poincare proved that, if f does not
have any periodic orbit, then it is semi-conjugate to the linear rotation fρ : x → x+ ρ mod 1. Denjoy
[6] proved that if f is a circle diffeomorphism with irrational rotation number ρ = ρ(f) and log f ′ is
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of bounded variation, then f is topologically conjugate to the linear rotation fρ, that is, there exists an
essentially unique homeomorphism ϕ of the circle with ϕ ◦ f = fρ ◦ϕ. The problem of smoothness of the
conjugation ϕ of smooth diffeomorphisms has come to be very well understood (see [3, 10, 12–14, 16]).

It is well-known that every circle homeomorphism with irrational rotation number ρ has a unique f-
invariant probability measure µf. Furthermore, the conjugation ϕ and the invariant probability measure
µf are connected by the relation ϕ(x) = µf([0, x]), x ∈ S1 (see for example [4]). Because of this relation,
the invariant measure µf is absolutely continuous with respect to the Lebesgue measure l, if and only if
ϕ is given by an absolutely continuous function. Natural generalizations of circle diffeomorphisms are
piecewise smooth homeomorphisms with break points or shortly the class of P-homeomorphisms which
was introduced by Herman [10]. In general, the ergodic properties of P-homeomorphisms such as their
invariant measures and renormalizations are rather different from those of diffeomorphisms (see [1, 2, 7–
9, 15].) In [7], Dzhalilov and Khanin proved that the invariant probability measure of C2+ε, ε > 0 circle
homeomorphism f with one break point is singular with respect to Lebesgue measure. Later Dzhalilov et
al. in [9] extended this result for the circle homeomorphism f with several break points b1,b2, ...,bn such
that f ′ is absolute continuous on S1 \ {bi, i = 1, 2, ...,n}, f ′′ ∈ L1(S

1,dl) and the jumps and their product at
break points are not equal to one.

The purpose of this paper is to extend the result of Dzhalilov et al. [9]. For this, below we define a
new class of circle homeomorphisms.

Let ψ : S1 → S1 be a continuous, non-decreasing function with ψ(0) = 0. By using this function we
define a class of orientation preserving circle homeomorphisms f such that

|f(x+ t) + f(x− t) − 2f(x)| 6 Ctψ(t), (1.1)

for all x, t ∈ S1 such that x− t, x+ t ∈ S1, here C > 0 is a constant. The class of real functions satisfying
(1.1) with ψ ≡ 1 on real line is called Zygmund class and denoted by Λ∗ (see [17]). This class plays a key
role to investigate the trigonometric series. The class Λ∗ was applied to the circle homeomorphisms for
the first time by Hu and Sullivan [11]. They extended the classical Denjoy’s theorem to this class. The
functions satisfying (1.1) are not of bounded variation at all, the reverse also is not true. For example let
us consider Weierstrass function:

Wβ(x) =

∞∑
n=1

θnb
−nβ cos(bnx),

where b > 1 and lim
n→∞θn = 0. The following fact can be found in [17]. Weierstrass proved that for a small

enough β > 0 the function Wβ is nowhere differentiable. The extension to β 6 1 was first proved by
Hardy. For β > 1, the function W ′β exists and continuous. If the sum of squares of the sequence θn is
divergent then W1 is differentiable in a set of measure zero. Thus by making b even number and instead
of θn taking the sequence n−1/2, we may easily check that the function W1 satisfies the condition (1.1),
but almost nowhere differentiable and thus W1 cannot be of bounded variation. Let f : S1 → S1 be an
orientation preserving circle homeomorphism with irrational rotation number and satisfies the following
conditions:

(1) There exist points b1,b2, ...,bn ∈ S1, the so-called break points of f, at which the one sided deriva-
tives f ′±(bi) > 0 are defined and σ(bi) :=

f ′−(bi)
f ′+(bi)

6= 1, i = 1, ...,n;

(2) log f ′ has bounded variation on S1 and f ′ except break points, satisfies (1.1);

(3)
n∏
i=1
σ(bi) 6= 1,

where the number σ(bi) is called jump of f at the break point bi.
Our main result is the following theorem.

Theorem 1.1. If a circle homeomorphism f with irrational rotation number satisfies the above conditions (1)–(3)
then its invariant probability measure µf is singular with respect to Lebesgue measure l.
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Note that the proof of Theorem 1.1 is based on cross ratio distortion estimates and follows closely that
of [9].

2. Necessary facts and definitions

We consider a circle homeomorphism f that preserves orientation and has irrational rotation number
ρ. Let {ak,k ∈N} denote the sequence of elements in the expansion of ρ into a continued fraction, that is,
ρ = [a1,a2, ...,an, ...]. We set pn/qn = [a1,a2, ...,an],n > 1. The numbers pn/qn are called the convergents
of ρ, and qn is the first return time. The numbers qn satisfy the recurrence relation

qn+1 = an+1qn + qn−1, n > 1,

with the initial conditions q0 = 1 and q1 = a1. For an arbitrary point x0 ∈ S1, let I(n)0 (x0) denote the closed
interval with endpoints x0 and xqn = fqn(x0). Note that for odd n the point xqn lies to the left of x0, and
for even n to the right. We set I(n)i = fi(I

(n)
0 ), i > 1.

Lemma 2.1 ([4]). Consider an arbitrary point x0 ∈ S1. The segments of the trajectory {xi, 0 6 i < qn + qn−1}

divide the circle into the following disjoint (except for the endpoints) intervals:

I
(n)
i , 0 6 i 6 qn−1 − 1,

I
(n−1)
i , 0 6 i 6 qn − 1.

We denote the resulting partition by ξn(x0) and call it a dynamical partition of order n. We now
describe the process of transition from ξn(x0) to ξn+1(x0). All the intervals I(n)j , 0 6 j 6 qn−1 − 1 are

preserved, and each of the intervals I(n−1)
i , 0 6 i 6 qn − 1 is divided into an+1 + 1 parts:

I
(n−1)
i (x0) = I

(n+1)
i (x0)∪

an+1−1⋃
s=0

I
(n)
i+qn−1+sqn

(x0).

Lemma 2.2. Consider a circle homeomorphism f with irrational rotation number. Suppose that at points

bi ∈ S1, i = 1, 2, ..., k, b1 ≺ b2 ≺ ... ≺ bk,

there exist positive and finite one-sided derivatives f ′−(bi), f ′+(bi), f ∈ C1([bi,bi+1]), i = 1, 2, ..., k, bk+1 = b1

and v̄ =
k∑
i=1

var
[bi,bi+1]

log f ′ <∞. Let v = v̄+
k∑
i=1

| log f ′−(bi) − log f ′+(bi)|. Then the inequalities

e−v 6
qn−1∏
s=0

f ′(fs(y0)) 6 e
v,

hold for any y0 such that fs(y0) 6= bi, i = 1, 2, ..., k, 0 6 s < qn.

These inequalities are called Denjoy’s inequalities. Lemma 2.2 is proved in the same fashion as the
analogous assertion for diffeomorphisms (see [14]). It follows from this lemma that the intervals compris-
ing the dynamical partition ξn(x0) have exponentially small lengths.

Corollary 2.3. Let In be an arbitrary element of the dynamical partition ξn(x0). Then

l(In) 6 C1λ
n,

where the constant C1 is independent of n, x0 and λ = (1 + e−v)−1/2.
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Theorem 2.4 (Denjoy’s Theorem [14]). Suppose that the hypotheses of Lemma 2.2 hold. Then the homeomorphism
f is topologically conjugate to the linear rotation fρ.

Definition 2.5 ([12]). Let K > 1 be a constant. Two intervals I1 and I2 are said to be K-comparable on S1,
if the inequalities K−1l(I2) 6 l(I1) 6 Kl(I2) hold.

Definition 2.6 ([12]). An interval I = [τ, t] ⊂ S1 is said to be qn-small, and its endpoints qn-close, if the
intervals fi(I), 0 6 i 6 qn − 1 are pairwise disjoint.

It follows from the structure of dynamical partitions that an interval I = [τ, t] is qn-small, if and only
if either τ < t 6 fqn−1(τ) or fqn−1(t) 6 τ < t.

Now we mention a notion which is called cross-ratio distortion. The cross-ratio distortion is the
powerful tool to investigate the existence and smoothness of conjugation for the circle homeomorphisms
with break and critical points. Note that the cross-ratio distortions were used in dynamical systems for the
firs time by Yoccoz [16]. Yoccoz showed the existence of conjugation for critical circle homeomorphisms.

Definition 2.7. The cross-ratio of four real numbers z1, z2, z3, z4, with z1 < z2 < z3 < z4, is the number

Cr(z1, z2, z3, z4) =
(z2 − z1)(z4 − z3)

(z3 − z1)(z4 − z2)
.

Definition 2.8. The cross-ratio distortion of four numbers for a strictly increasing function F : R → R is
defined by

Dst(z1, z2, z3, z4; F) =
Cr(F(z1), F(z2), F(z3), F(z4))

Cr(z1, z2, z3, z4)
.

Now we define the cross ratio distortion on the circle. Let the points z1, z2, z3, z4 ∈ S1, be ordered as
z1 ≺ z2 ≺ z3 ≺ z4 ≺ z1 on S1. Let ẑ1, ẑ2, ẑ3, ẑ4 be the lifts of z1, z2, z3, z4, respectively. Note that the order of
the lifts ẑi is not necessary to be the same as the order of points on S1. Therefore we define z1 = ẑ1 and

zi =

{
ẑi, if ẑ1 < ẑi < 1,
1 + ẑ1, if 0 < ẑ1 < ẑi,

where i = 2, 3, 4. It is obvious that z1 < z2 < z3 < z4. The vector (z1, z2, z3, z4) ∈ R4 is called the lifted
vector of (z1, z2, z3, z4) ∈ (S1)4. Let f be a circle homeomorphism with lift F. We define the cross-ratio
distortion of a four-tuple (z1, z2, z3, z4), zi ∈ S1, i = 1, ..., 4 ordered as z1 ≺ z2 ≺ z4 ≺ z1, with respect to f,
by

Dst(z1, z2, z3, z4; f) := Dst(z1, z2, z3, z4; F).

3. Distortion lemmas and covering intervals theorem

In this section, we estimate the distortion of cross-ratios of four points, for the cases, when the break
points of the circle homeomorphism f, are contained in an interval which created from the endpoints
of those four points and the break points are not contained in this interval. We also provide covering
intervals theorem.

Let ω(δ; f) denote a modulus of continuity of f in the closed interval I, that is

ω(δ; f) = {sup |f(x1) − f(x2)| for x1, x2 ∈ I, |x1 − x2| 6 δ}.

If f ′ satisfies (1.1) then ω(δ; f ′) = o(δ log 1
δ) (see [17]).

Lemma 3.1. Suppose that a circle homeomorphism f satisfies the hypotheses of Theorem 1.1. Suppose also that
zi ∈ S1, i = 1, ..., 4 with z1 ≺ z2 ≺ z3 ≺ z4 ≺ z1 and the interval [z1, z4] does not contain any break point of f.
Then

|Dst(z1, z2, z3, z4; f) − 1| 6 C2|z4 − z1|ψ(|z4 − z1|) + |f ′(z4) − f
′(z1)|ω(|z4 − z1|; f ′),

where the constant C2 depends only on f.
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Proof. We note that if f ′ satisfies (1.1) then for each x,y ∈ S1

f(x) − f(y)

x− y
=

1
x− y

y∫
x

f ′(t)dt =
f ′(x) + f ′(y)

2
+O(|x− y|ψ(|x− y|)).

The proof of this equality is easy and it is proven similarly as the proof of Lemma 2.2 on page 283 in [5].
By using this equality, we get

f(z2) − f(z1)

z2 − z1

z4 − z2

f(z4) − f(z2)
=
f ′(z2) + f

′(z1) +O(|z2 − z1|ψ(|z2 − z1|))

f ′(z4) + f ′(z2) +O(|z4 − z2|ψ(|z4 − z2|))

=
(

1 −
f ′(z4) − f

′(z1)

f ′(z4) + f ′(z2)

)(
1 +O(|z4 − z1|ψ(|z4 − z1|))

)
=
(

1 −
f ′(z4) − f

′(z1)

2f ′(z4)

1

1 −
f ′(z4)−f ′(z2)

2f ′(z4)

)
×
(

1 +O(|z4 − z1|ψ(|z4 − z1|))
)

=
(

1 −
f ′(z4) − f

′(z1)

2f ′(z4)
(1 +O(f ′(z4) − f

′(z2)))
)

×
(

1 +O(|z4 − z1|ψ(|z4 − z1|))
)

= 1 −
f ′(z4) − f

′(z1)

2f ′(z4)
+O(|z4 − z1|ψ(|z4 − z1|)).

(3.1)

In the same way can get that

z3 − z1

f(z3) − f(z1)

f(z4) − f(z3)

z4 − z3
= 1 +

f ′(z4) − f
′(z1)

2f ′(z4)
+O(|z4 − z1|ψ(|z4 − z1|)). (3.2)

From (3.1) and (3.2) we obtain

f(z2) − f(z1)

z2 − z1

z4 − z2

f(z4) − f(z2)

z3 − z1

f(z3) − f(z1)

f(z4) − f(z3)

z4 − z3
= 1 −

(f ′(z4) − f
′(z1)

2f ′(z4)

)2

+O(|z4 − z1|ψ(|z4 − z1|)).

Hence, from this equality and the modulus of continuity of f ′ follows that

|Dst(z1, z2, z3, z4; f) − 1| 6 const|z4 − z1|ψ(|z4 − z1|) + |f ′(z4) − f
′(z1)|ω(|z4 − z1|; f ′).

The lemma is proved with const = C2.

Now we consider the case when the interval [z1, z4] contains just one break point bi0 . More precisely,
suppose that bi0 lies outside the middle interval, that is, bi0 ∈ [z1, z2] ∪ [z3, z4]. Suppose for definiteness
that bi0 ∈ [z1, z2]. We define the numbers α, β, γ, τ, η and ξ as follows:

α := z2 − z1, β := z3 − z2, γ := z4 − z3, τ := z2 − bi0 , η :=
β

α
, ξ :=

τ

α
.

Lemma 3.2. Suppose that a circle homeomorphism f satisfies the hypotheses of Theorem 1.1. Let zi ∈ S1, i = 1, ..., 4
with z1 ≺ z2 ≺ z3 ≺ z4 ≺ z1. Suppose also that bi0 ∈ [z1, z2] and the other break points of f are not contained in
[z1, z4]. Then∣∣∣Dst(z1, z2, z3, z4; f) −

(σ(bi0) + (1 − σ(bi0)ξ))(1 + η)

σ(bi0) + (1 − σ(bi0))ξ+ η

∣∣∣ 6 C3|z4 − z1|ψ(|z4 − z1|) +ω(|z4 − z1|; f ′),

where the constant C3 > 0 depends only on f.
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Proof. By assumption bi0 ∈ [z1, z2]. Rewriting Dst(z1, z2, z3, z4; f) in the form

Dst(z1, z2, z3, z4; f) =
Cr(f(z1), f(z2), f(z3), f(z4))

Cr(z1, z2, z3, z4)
=
(f(z2) − f(z1)

z2 − z1
· z3 − z1

f(z3) − f(z1)

)
×
(f(z4) − f(z3)

z4 − z3
· z4 − z2

f(z4) − f(z2)

)
,

it is easy to check that each multiplication in parentheses equals to the following

f(z2) − f(z1)

z2 − z1
· z3 − z1

f(z3) − f(z1)
=
f ′+(bi0)(z2 − xb) + f

′
−(bi0)(xb − z1)

z2 − z1

× z3 − z1

f ′+(bi0)(z3 − xb) + f
′
−(bi0)(xb − z1)

=
(σ(bi0) + (1 − σ(bi0))ξ)(1 + η)

σ(bi0) + (1 − σ(bi0))ξ+ η
,

(3.3)

where σ(bi0) =
f ′−(bi0)

f ′+(bi0)
the jump ratio of f at the point bi0 .

f(z4) − f(z3)

z4 − z3
· z4 − z2

f(z4) − f(z2)
=
(f ′(z4) + f

′(z3)

2
+O(|z4 − z3|ψ(|z4 − z3|))

)
; (3.4)

(f ′(z4) + f
′(z2)

2
+O(|z4 − z2|ψ(|z4 − z2|))

)
=
f ′(z4) + f

′(z3) +O(|z4 − z3|ψ(|z4 − z3|))

f ′(z4) + f ′(z2) +O(|z4 − z2|ψ(|z4 − z2|))
=

1 +
f ′(z3) − f

′(z2)

f ′(z4) + f ′(z2)
+O(|z4 − z1|ψ(|z4 − z1|)).

From (3.3) and (3.4) we have

f(z2) − f(z1)

z2 − z1

z3 − z1

f(z3) − f(z1)

f(z4) − f(z3)

z4 − z3

z4 − z2

f(z4) − f(z2)
=

(σ(bi0) + (1 − σ(bi0))ξ)(1 + η)

σ(bi0) + (1 − σ(bi0))ξ+ η

+
f ′(z3) − f

′(z2)

f ′(z4) + f ′(z2)

(σ(bi0) + (1 − σ(bi0))ξ)(1 + η)

σ(bi0) + (1 − σ(bi0))ξ+ η

+O(|z4 − z1|ψ(|z4 − z1|)).

Hence, from this equality and the modulus of continuity of f ′ follows that∣∣∣Dst(z1, z2, z3, z4; f) −
(σ(bi0) + (1 − σ(bi0)ξ))(1 + η)

σ(bi0) + (1 − σ(bi0))ξ+ η

∣∣∣ 6 const|z4 − z1|ψ(|z4 − z1|) +ω(|z4 − z1|; f ′).

The lemma is proved with const = C3.

Now we introduce a concept on the intervals of the circle which cover the break points regularly.
Consider f with n break points b1,b2, ...,bn ∈ S1 and irrational rotation number ρ. Suppose that all these
break points lie in different orbits. If this were not the case, then we could achieve it by considering
sufficiently high renormalizations. We set B(f) = {b1,b2, ...,bn} and say a subset B̂ ⊂ B(f) = {b1,b2, ...,bn}
is non-trivial, if

∏
bi∈B̂

σ(bi) 6= 1. We introduce the notion of a ’regular’ cover of the break points in B(f).

Suppose that zi ∈ S1, i = 1, ..., 4, z1 ≺ z2 ≺ z3 ≺ z4 ≺ z1 and rn takes value in the set {qn−1,qn,qn−1 +qn}.
Suppose that the interval [z1, z4] is rn-small and the system of intervals {fj([z1, z4]), 0 6 j < rn − 1} covers
the elements of B̂. We denote the number of elements of B̂ by m. For every element bis ∈ B̂ there exists
a number lis , 0 6 lis < rn such that b̄(n)is

= f−lis (bis) ∈ [z1, z4], the point b̄(n)is
is called the rn-pre

image of the element bis in [z1, z4]. The set of rn-pre-images of elements of B̂ also consists of m elements:
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b̄
(n)
i1

, b̄(n)i2
, ..., b̄(n)im

; we denote the maximal element of this set by b̂(n)t . Clearly, b̂(n)t = b̄
(n)
it

for some
0 6 t 6 m. We introduce the following notations:

η(j) =
l([fj(z2), fj(z3)])

l([fj(z1), fj(z2)])
, ξ(is)(j) =

l([fj(b̄
(n)
is

), fj(z2)])

l([fj(z1), fj(z2)])
, (3.5)

where 1 6 s 6 m, 0 6 j < rn − 1. In cases, where b̄(n)is
∈ [z1, z2], the numbers ξis(j) are called normalized

coordinates of the elements fj(b̄(n)is
). When the point b̄(n)is

moves from z2 to z1, the normalized coordinate
ξis(j) varies from 0 to 1. It is easy to see that

e−vη(0) 6 η(j) 6 evη(0), e−vξis(0) 6 ξis(j) 6 evξis(0), i = 1, 2, ...,n,

for all 0 6 j < rn − 1 and where v is the total variation of log f ′ over S1.

Definition 3.3 ([9]). Let K > M > 1, ζ ∈ (0, 1), δ > 0 be constant numbers, let n be a positive integer and
let x0 ∈ S1. We say a triple of intervals ([z1, z2], [z2, z3], [z3, z4]), zi ∈ S1, i = 1, ...4 (K,M, δ, ζ, x0)-regularly
cover the break points in a subset B̂, if for some rn ∈ {qn−1,qn,qn−1 +qn} the following conditions hold:

(1) [z1, z4] ⊂ (x0 − δ, x0 + δ) and the system of intervals {fj([z1, z4]), 0 6 j < rn − 1} covers every point in
B̂ only once.

(2) z2 = b̂
(n)
t and b̄(n)is

∈ [z1, z2), 1 6 s 6 n, s 6= t.
(3) Ml([z2, z3]) 6 l([z1, z2]) 6 Kl([z2, z3]) and K−1l([z3, z4]) 6 l([z2, z3]) 6 Kl([z3, z4]).
(4) The lengths of the intervals frn([z1, z2]), frn([z2, z3]) and frn([z3, z4]) are pairwise K-comparable.
(5) max{l([frn(zi), x0]), l([zi, x0]), i = 1, ..., 4} 6 Kl([z1, z2]).
(6) max

16s6m
{z(is)(0)} < ζ.

We now state a theorem on the intervals covering the break points regularly in order to use in the
proof of main theorem. The proof of this theorem does not depend on the considered class of circle
homeomorphisms and same with the proof of Theorem 3.1 in [9]. That is why here we provide this
theorem without proof.

Theorem 3.4 ([9]). Suppose that a homeomorphism f satisfies the hypotheses of Theorem 1.1. Let x0 ∈ S1 and
let M > 1, δ, ζ ∈ (0, 1) be constant numbers. Then there exist a constant K = K(f,M, ζ) > M such that for
any sufficiently large n there exists non-trivial subset B̂ = B̂(n) = {bi1 ,bi2 , ...,bim}, points zi ∈ S1, i = 1, ..., 4,
z1 ≺ z2 ≺ z3 ≺ z4 ≺ z1 and rn = rn(z1, z2, z3, z4) ∈ {qn−1,qn,qn−1 +qn} such that the intervals [zs, zs+1], s =
1, 2, 3 (K,M, δ, ζ, x0)-regularly cover the break points of B̂.

Note that in the proof of this theorem, the points z1, z2, z3, z4 were chosen and there was shown that
the intervals [z1, z4] and [x0, xqn−1 ] are comparable. From this follows that the intervals [fi(z1), fi(z4)], i =
0, 1, ..., rn cover S1 finite times. We use from this statement in the proof of Lemma 4.3.

4. Proof of main result

Now we recall some necessary lemmas from [9] to use in the proof of main Theorem 1.1.

Lemma 4.1 ([9]). Suppose that at a point x = x0 the conjugation ϕ has positive derivative, ϕ ′(x0) = ω0 and the
following conditions hold for some constant R1 > 1:

(i) the intervals [z1, z2], [z2, z3], [z3, z4] are pairwise R1-comparable.

(ii) max{|z1 − x0|, |z4 − x0|} 6 R1|z1 − z2|.
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In this case, for any ε > 0 there exists δ = δ(x0, ε) > 0 such that if all zi, 1 6 i 6 4 belong to (x0 − δ, x0 + δ), the
inequality

|Dist(z1, z2, z3, z4;ϕ) − 1| < C4ε

holds, where the constant C4 = C4(R1,ω0) depends on R1, ω0 and does not depend on ε.

Before recalling the next lemma we define the functions Fi(x,y), i = 1, 2, ...,n on the domain {(x,y) :
x > 0, 0 6 y 6 1} as:

Fi(x,y) =
[σ(bi) + (1 − σ(bi))y](1 + x)

σ(bi) + (1 − σ(bi))y+ x
,

where σ(bi) is the jump of f at the point bi.

Lemma 4.2 ([9]). Let {bi1 ,bi2 , ...,bim} be an arbitrary non-trivial subset of break points of f, so that A :=
m∏
s=1
σ(bis) 6= 1. Then there exist constants Ω0 = Ω0(σi1 ,σi2 , ...,σim) > 1 and τ0 = τ0(σi1 ,σi2 , ...,σim) ∈ (0, 1)

such that the inequality ∣∣∣ m∏
s=1

Fis(xs,ys) −A
∣∣∣ 6 |A− 1|

8

holds for all xs > Ω0, ys ∈ [0, τ0], s = 1, 2, ...,m.

We use τ0 and Ω0 to define two new constants τ0 and Ω0, which will play an important role in the
proof of Theorem 1.1. We set τ0 = min τ0(σi1 ,σi2 , ...,σim) ∈ (0, 1), Ω0 = maxΩ0(σi1 ,σi2 , ...,σim) where the
minimum and maximum are taken over all non-trivial subsets {bi1 ,bi2 , ...,bim} of break points of f.

Proof of Theorem 1.1. Suppose that a homeomorphism f satisfies the hypotheses of Theorem 1.1. Since
the rotation number ρ is irrational, the invariant measure µf has no atoms and the conjugation ϕ(x) is
given by monotonic function µf([0, x]), x ∈ S1. The finite derivative ϕ ′(x) of the conjugation exists by
the monotonicity of the function ϕ(x) for almost all x with respect to Lebesgue measure. We claim that
ϕ ′(x) = 0 at all points x where the finite derivative exists. Suppose that ϕ ′(x0) = ω0 > 0 at some point
x0 ∈ S1. We fix ε > 0. Let δ = δ(x0, ε) > 0 be defined by Lemma 4.1. We use the constants Ω0 and
τ0 to define new constants: M0 = Ω0e

v, ζ0 = τ0e
v where v > 0 is the total variation of log f ′ over S1.

Let K0 = K0(f,M0, ζ0) > M0 > 1 be the constant defined Theorem 3.4. By that theorem, for sufficiently
large n, there exist a non-trivial subset B̂ = {bi1 ,bi2 , ...,bim} of break points of f, points zi ∈ S1, i = 1, ..., 4
with z1 ≺ z2 ≺ z3 ≺ z4 ≺ z1 and a number rn ∈ {qn−1,qn,qn−1 + qn} such that the triple of intervals
([z1, z2], [z2, z3], [z3, z4]) (K0,M0, δ, ζ0, x0)-regularly cover the points of B̂. Since after rn steps the images
of the triple of intervals ([z1, z2], [z2, z3], [z3, z4]) cover all points of the non-trivial subset B̂, the cross-ratio
Cr(z1, z2, z3, z4) and Cr(frn(z1), frn(z2), frn(z3), frn(z4)) are substantially different.

More precisely, the following lemma holds.

Lemma 4.3. The inequality
|Dst(z1, z2, z3, z4; frn) − 1| > R2 (4.1)

holds for sufficiently large n, where the constant R2 > 0 depends only on f.

We will give the proof of this lemma later. Since the intervals [zs, zs+1], s = 1, 2, 3 (K0,M0, δ, ζ0, x0)-
regularly cover the points in B̂ these intervals along with [frn(zs), frn(zs+1)], s = 1, 2, 3 satisfy conditions
(i), (ii) of Lemma 4.1 with constant R1 = K0. By using the assertion of Lemma 4.1 we obtain

|Dst(z1, z2, z3, z4;ϕ) − 1| 6 C4ε, (4.2)

|Dst(frn(z1), frn(z2), frn(z3), frn(z4);ϕ) − 1| 6 C4ε, (4.3)
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where the constant C4 > 0 depends on R1 and ω.
Since ϕ effects a conjugation to a linear rotation, it is easy to see that

Cr(ϕ(frn(z1)),ϕ(frn(z2)),ϕ(frn(z3)),ϕ(frn(z4))) = Cr(ϕ(z1),ϕ(z2),ϕ(z3),ϕ(z4)). (4.4)

Equations (4.2), (4.3), (4.4) immediately imply that

|Dst(z1, z2, z3, z4; frn) − 1| 6 C5ε, (4.5)

where the constant C5 > 0 is independent of ε and n. The relations (4.1) and (4.5) cannot hold simultane-
ously for sufficiently small ε. This contradiction proves Theorem 1.1.

Proof of Lemma 4.3. Recall that the triple of intervals ([z1, z2], [z2, z3], [z3, z4]), (K0,M0, δ, ζ0, x0)-regularly
cover a non-trivial subset B̂ = {bi1 ,bi2 , ...,bim} of break points. By Definition 3.3 we have z2 = b̄

(n)
it

and b̄(n)is
∈ [z1, z2), s = 1, 2, ...m, s 6= t. We rewrite Dst(z1, z2, z3, z4; frn) in the form

Dst(z1, z2, z3, z4; frn) =
m∏
s=1

Dst(flis (z1), flis (z2), flis (z3), flis (z4); f)

×
rn−1∏
p=0

p6=lis ,s=1,..,m

Dst(fp(z1), fp(z2), fp(z3), fp(z4); f).
(4.6)

Now we estimate the first factor in (4.6). The assertion of Lemma 3.2 and the definition of Fi(x,y) imply
that

Dst(flit (z1), flit (z2), flit (z3), flit (z4); f) =
σ(b̄

(n)
is

)(1 + η(lit))

σ(b̄
(n)
is

) + η(lit)
+ θt(z1, z4)

= Fit(η(lit), 0) + θt(z1, z4),

(4.7)

where
|θt(z1, z4)| 6 C3|f

lit (z4) − f
lit (z1)|ψ(|f

lit (z4) − f
lit (z1)|) +ω(|flit (z4) − f

lit (z1)|; f ′),

and

Dst(flis (z1), flis (z2), flis (z3), flis (z4); f) =
(σ(b̄

(n)
is

) + (1 − σ(b̄
(n)
is

))ξis(lis))(1 + η(lis))

σ(b̄
(n)
is

) + (1 − σ(b̄
(n)
is

))ξis(lis) + η(lis)
+ θs(z1, z4)

= Fit(η(lis), ξ
is(lis)) + θs(z1, z4), s = 1, 2, ...,m, s 6= t,

(4.8)

where also

|θs(z1, z4)| 6 C3|f
lis (z4) − f

lis (z1)|ψ(|f
lis (z4) − f

lis (z1)|+ω(|flis (z4) − f
lis (z1)|; f ′),

s = 1, 2, ..., m, s 6= t.
By construction, the interval [z1, z4] is rn-small and therefore the intervals [fj(z1), fj(z4)], 0 6 j < rn− 1

are pairwise disjoint (except for endpoints). Hence, by using assertion of Corollary 2.3 we have

|fj(z4) − f
j(z1)| 6 C1λ

n, 0 6 j < rn − 1, (4.9)

where C1 is a constant and λ = (1 + e−v)−1/2. Because of the properties of modulus of continuity of f,
that is

- ω(δ; f) is non-decreasing function of δ;
- ω(aδ; f) 6 ([a] + 1)ω(δ; f) for any a > 0 real number, where [·] is an integer part of number,
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and (4.9) we have
ω(|flis (z4) − f

lis (z1)|; f ′) 6 ([C1] + 1)ω(λn; f ′), (4.10)

for all 0 6 lis < rn−1. In particular, this inequality holds for any s = 1, 2, ...,m. Similarly, by monotonicity
of ψ we have also

ψ(|flis (z4) − f
lis (z1)|) 6 ψ(C1λ

n), (4.11)

for all 0 6 lis < rn− 1 and particularly for any s = 1, 2, ...,m. So if we fix ε, then there existsN = N(ε) > 1
such that the estimate

|θs(z1, z4)| 6 C1λ
nψ(C1λ

n) + ([C1] + 1)ω(λn; f ′) 6 ε, s = 1, 2, ...,m, (4.12)

holds for all n > N. Suppose that η(0) and ξis(0), s = 1, 2, ...,m satisfy the following relations η(0) >
Ω0e

v =M0 and ξis(0) < τ0e
−v, s = 1, 2, ...,m. Hence by using the relation (3.5) we obtain that η(lis) > Ω0

and ξis(lis) < τ0, s = 1, 2, ...,m. It follows from Lemma 4.2 that

∣∣∣Fit(η(lit), 0)
m∏

s=1,s6=t
Fit(η(lis), ξ

is(lis)) −A
∣∣∣ 6 |A− 1|

8
. (4.13)

By combining (4.7)-(4.13), for sufficiently small ε > 0 we obtain

∣∣∣(Fit(η(lit), 0) + θt)
m∏

s=1,s6=t
(Fit(η(lis), ξ

is(lis)) + θs) −A
∣∣∣ 6 |A− 1|

4
. (4.14)

Now we estimate second factor in (4.6). Since [z1, z4] is rn-small, we have

rn−1∑
j=0

|fj(z4) − f
j(z1)| 6 1. (4.15)

We can write the second factor in (4.6) in the following form

∣∣∣ rn−1∏
p=0

p6=lis ,s=1,..,m

Dst(fp(z1), fp(z2), fp(z3), fp(z4); f) − 1
∣∣∣

=
∣∣∣exp{ rn−1∑

p=0
p6=lis ,s=1,..,m

log[1 + (Dst(fp(z1), fp(z2), fp(z3), fp(z4); f) − 1)]}− 1
∣∣∣

6
∣∣∣exp{ rn−1∑

p=0
p6=lis ,s=1,..,m

Dst(fp(z1), fp(z2), fp(z3), fp(z4); f) − 1}− 1
∣∣∣.

(4.16)

By using Lemma 3.1 and inequalities (4.10), (4.11) we obtain

rn−1∑
p=0

p6=lis ,s=1,..,m

|Dst(fp(z1), fp(z2), fp(z3), fp(z4); f) − 1|

6
rn−1∑
p=0

p6=lis ,s=1,..,m

C2|f
p(z4) − f

p(z1)|ψ(|f
p(z4) − f

p(z1)|)
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+

rn−1∑
p=0

p6=lis ,s=1,..,m

|f ′(fp(z4)) − f
′(fp(z1))|ω(|fp(z4) − f

p(z1)|; f ′)

6 ψ(C1λ
n)

rn−1∑
p=0

p6=lis ,s=1,..,m

|fp(z4) − f
p(z1)|

+ ([C1] + 1)ω(λn; f ′)
rn−1∑
p=0

p6=lis ,s=1,..,m

|f ′(fp(z4)) − f
′(fp(z1))|.

Because the intervals [fp(z1), fp(z4)], p = 0, 1, ..., rn − 1, p 6= lis , s = 1, 2, ...,m cover S1 finite times,
rewriting them as a non-overlapping intervals and using (4.15), we obtain

rn−1∑
p=0

p6=lis ,s=1,..,m

|Dst(fp(z1), fp(z2), fp(z3), fp(z4); f) − 1| 6 ψ(C1λ
n) +K([C1] + 1)var

S1
f ′ ·ω(λn; f ′), (4.17)

where K is the number of covers. Hence, for sufficiently large n, the right side of (4.17) is less than ε and
from this it follows that the right side of (4.16) is less than ε, that is,

∣∣∣ rn−1∏
p=0

p6=lis ,s=1,..,m

Dst(fp(z1), fp(z2), fp(z3), fp(z4); f) − 1
∣∣∣ 6 ε.

This inequality with sufficiently small ε and (4.14) implies that

∣∣∣rn−1∏
p=0

Dst(fp(z1), fp(z2), fp(z3), fp(z4); f) − 1
∣∣∣ = ∣∣∣(rn−1∏

p=0

Dst(fp(z1), fp(z2), fp(z3), fp(z4); f) −A
)

+ (A− 1)
∣∣∣

>
∣∣∣∣∣∣rn−1∏
p=0

Dst(fp(z1), fp(z2), fp(z3), fp(z4); f) −A
∣∣∣− |A− 1|

∣∣∣
>

3|A− 1|
4

.

Hence, from this inequality follows the assertion of the lemma with constant R2 =
3|A−1|

4 . Lemma 4.3 is
proved.
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