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Abstract
We introduce the concept of order-Ćirić-Lipschitz mappings, and prove some fixed point theorems for such kind of map-

pings in normed vector spaces without assuming the normalities of cones by using upper and lower solutions method, which
improve many existing results of order-Lipschitz mappings in Banach spaces or Banach algebras. It is worth mentioning that
even in the setting of normal cones, the main results in this paper are still new since the sum of spectral radius or the sum of
restricted constants may be greater than or equal to 1. c©2017 all rights reserved.

Keywords: Fixed point, order-Ćirić-Lipschitz mapping, Picard-complete, w-complete.
2010 MSC: 06A07, 47H10.

1. Introduction and preliminaries

Ćirić’s contraction in metric spaces was primitively introduced and studied by Ćirić [3], which gen-
eralizes and includes Banach contraction [1], Kannan contraction [7], and Chatterjea contraction [2]. Let
(X,d) be a metric space. Recall that a mapping T : X → X is called a Ćirić’s contraction if there exist
nonnegative numbers q, r, s, t with q+ r+ s+ 2t < 1 such that

d(Tx, Ty) 6 qd(x,y) + rd(x, Tx) + sd(y, Ty) + t[d(x, Ty) + d(y, Tx)], ∀ x,y ∈ X.

Note that a Ćirić’s contraction must be a Lipschitz mapping. Thus motivated by [3], we introduce the
concept of Ćirić order-Lipschitz mapping in topological vector spaces as follows.

Definition 1.1. Let P be a cone of a topological vector space E, D ⊂ E and � the partial order induced
by P. A mapping T : D → E is called an order-Ćirić-Lipschitz mapping if there exist Ai,Bi : P → P (i =
1, 2, 3, 4, 5) (or nonnegative real numbers Ai,Bi (i=1,2,3,4,5)) such that for each x,y ∈ D with y � x,

−B1(x− y) −B2(x− Tx)+ −B3(y− Ty)+ −B4(x− Ty)+ −B5(y− Tx)+ � Tx− Ty
� A1(x− y) +A2(x− Tx)+ +A3(y− Ty)+ +A4(x− Ty)+ +A5(y− Tx)+,

(1.1)
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where

u+ =


u, u ∈ P,
− u, u ∈ −P,
θ, o.w.

for each u ∈ E.

In particular when Aiu ≡ θ (i = 2, 3, 4, 5) and Biu ≡ θ (i = 2, 3, 4, 5), the generalized order-Lipschitz
mapping is reduced to an order-Lipschitz mapping considered in [8, 10, 11], where the cone is necessarily
assumed to be normal. Recently, without assuming the normality of P, Jiang and Li [6] proved the follow-
ing fixed point theorem of order-Lipschitz mappings by introducing the concept of Picard-completeness
and applying the sandwich theorem in the sense of w-convergence.

Theorem 1.2 ([6]). Let P be a solid cone of a Banach algebra (E, ‖ · ‖) and u0, v0 ∈ E with u0 � v0, and
T : D = [u0, v0]→ E a nondecreasing order-Lipschitz mapping restricted with vectors (i.e., there exist A1 ∈ P and
Ai = θ (i = 2, 3, 4, 5) such that such that (1.1) is satisfied). Assume that u0 � Tu0, Tv0 � v0 (i.e., u0 and v0 are a
pair of lower and upper solutions of T ), r(A1) < 1 and T is Picard-complete at u0 and v0. Then T has a unique fixed
point x∗ ∈ [u0, v0], and xn

w→ x∗ for each x0 ∈ [u0, v0], where {xn} = O(T , x0) and O(T , x0) denotes the Picard
iteration sequence of T at x0, i.e., xn = Tnx0 for each n.

In this paper, we shall prove some new fixed point theorems of order-Ćirić-Lipschitz mappings in
normed vector spaces without assuming the normalities of cones by using upper and lower solutions
method, which improve many existing results of order-Lipschitz mappings in Banach spaces or Banach
algebras. It is worth mentioning that even in the setting of normal cones, the main results in this paper
are still new since the sum of spectral radius or the sum of restricted constants may be greater than or
equal to 1.

Let E be a topological vector space. A nonempty closed subset P of E is a cone if it is such that
ax+ by ∈ P, for each x,y ∈ P and each a,b > 0, and P ∩ (−P) = {θ}, where θ is the zero element of
E. Each cone P of E determines a partial order � on E by x � y ⇔ y− x ∈ P for each x,y ∈ X. For
each u0, v0 ∈ E with u0 � v0, we set [u0, v0] = {u ∈ E : u0 � u � v0}, [u0,+∞) = {x ∈ E : u0 � x} and
(−∞, v0] = {x ∈ E : x � v0}. A cone P of E is solid [4] if int(P) is nonempty, where int(P) denotes the
interior of P. For each x,y ∈ E with y− x ∈ int(P), we write x� y.

Let (E, ‖ · ‖) be a normed vector space. A cone P of E is normal [4] if there is a positive real number
N such that x,y ∈ E and θ � x � y implies that ‖x‖ 6 N‖y‖, and the minimal N is called a normal
constant of P. Note that if P is non-normal then the sandwich theorem does not hold in the sense of
norm-convergence.

Definition 1.3. Let P be a solid cone of a topological space E, {xn} ⊂ E and D ⊂ E.

(i) The sequence {xn} is w-convergent [5, 9] if for each ε ∈ int(P), there is a positive integer n0 and
x ∈ E such that x− ε � xn � x+ ε for each n > n0 (denote xn

w→ x and x is called a w-limit of
{xn}).

(ii) The sequence {xn} is w-Cauchy [6] if for each ε ∈ int(P), there is a positive integer n0 such that
−ε� xn − xm � ε for each m,n > n0, i.e., xn − xm

w→ θ (m,n→∞).

(iii) The space E is w-complete if each w-Cauchy sequence in E is w-convergent;

(iv) The subset D is w-closed [6] if for each {xn} ⊂ D, xn
w→ x implies x ∈ D.

Lemma 1.4 ([6, 9]). Let P be a solid cone of a normed vector space (E, ‖ · ‖) and u0, v0 ∈ E with u0 � v0. Then

(i) each sequence {xn} ⊂ E has a unique w-limit;
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(ii) the partial order intervals [u0, v0], [u0,+∞) and (−∞, v0] are w-closed;

(iii) for each {xn}, {yn}, {zn} ⊂ E with xn � yn � zn for each n, xn
w→ z and zn

w→ z imply yn
w→ z, where

z ∈ E.

Lemma 1.5 ([5, 9]). Let P be a solid cone of a normed vector space (E, ‖ · ‖) and xn ⊂ E. Then xn
‖·‖→ x implies

xn
w→ x. Moreover, if P is normal then xn

w→ x⇔ xn
‖·‖→ x.

Proposition 1.6. Let P be a normal solid cone of a normed vector space (E, ‖ · ‖). Then E is w-complete if and only
if it is complete.

Proof. Suppose that E is complete and {xn} is a w-Cauchy sequence of E. By Lemma 1.5 and the normality
of P, {xn} is a Cauchy sequence of E, and hence it is convergent by the completeness of E. Moreover by
Lemma 1.5, {xn} is w-convergent. This shows E is w-complete.

Suppose that E is w-complete and {xn} is a Cauchy sequence of E. By Lemma 1.5, {xn} is a w-Cauchy
sequence of E, and hence it is convergent by the w-completeness of E. Moreover by Lemma 1.5 and the
normality of P, {xn} is convergent. This shows E is complete.

Definition 1.7 ([6]). Let P be a solid cone of a topological vector space (E, ‖ · ‖), D ⊂ E, x0 ∈ D and
T : D → E. If the Picard iteration sequence O(T , x0) is w-convergent provided that it is w-Cauchy, then T
is said to be Picard-complete at x0. Moreover, if T is Picard-complete at each x ∈ D, then T is said to be
Picard-complete on D.

Remark 1.8. If E is a w-complete topological vector space then the mapping T : E → E is Picard-complete
on E. Consequently, if P is a normal solid cone of a Banach space (E, ‖ · ‖) then each mapping T : E → E

is Picard-complete on E by Proposition 1.6.

Definition 1.9. Let P be a solid cone of a topological vector space E and D ⊂ E. A mapping T : D → E

is w-continuous at x0 ∈ E if for each {xn} ⊂ E, xn
w→ x0 implies Txn

w→ Tx0. If T is w-continuous at each
x ∈ D, then T is w-continuous on D.

Lemma 1.10. Let P be a solid cone of a normed vector space (E, ‖ · ‖) and A : E → E a linear bounded mapping
with A(P) ⊂ P. Then A is w-continuous on E.

Proof. Let x ∈ E and {xn} be a sequence in E such that xn
w→ x. For each ε ∈ int(P), it is clear that

ε
m ∈ int(P) for each m, and hence there exists nm such that − ε

m � xn − x � ε
m for each n > nm. Note

that A is a linear mapping with A(P) ⊂ P, then −Aεm � Axn −Ax � Aε
m for each n > nm. It is clear that

Aε
m

‖·‖→ θ(m→∞) since A is bounded, and hence Aεm
w→ θ(m→∞) by Lemma 1.5. Moreover, by Lemma

1.4 (iii), we obtain Axn −Ax
w→ θ, i.e., A is continuous at x.

2. Main results

In this section, we first consider the existence of fixed points of order-Ćirić-Lipschitz mappings.

Theorem 2.1. Let P be a solid cone of a normed vector space (E, ‖ · ‖), x0 ∈ E and T : D = [x0,+∞) → E a
nondecreasing order-Ćirić-Lipschitz mapping restricted with linear bounded mappings Ai : P → P (i = 1, 2, 3, 4, 5).
Assume that x0 � Tx0, T is Picard-complete at x0 and

r(A2 +A5) < 1, r((I−A2 −A5)
−1(A1 +A3 +A5)) < 1. (2.1)

Then T has a fixed point in [x0,+∞).
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Proof. Let B : P → P be an arbitrary linear bounded mapping with r(B) < 1, then I − B is invertible,
denote the inverse of I−B by (I−B)−1. Moreover, it follows from Neumann’s formula that

(I−B)−1 =

∞∑
n=0

Bn = I+B+B2 + · · ·+Bn + · · · , (2.2)

which implies that (I−B)−1 : P → P is a linear bounded mapping. It follows from r(B) < 1 and Gelfand’s
formula that there exist a positive integer n1 and β ∈ (r(B), 1) such that

‖Bn‖ 6 βn, ∀ n > n1.

Thus for each u ∈ P, we get
‖Bnu‖ 6 ‖Bn‖‖u| 6 βn‖u‖, ∀ n > n1,

which implies Bnu
‖·‖→ θ for each u ∈ P, and hence by Lemma 1.5,

Bnu
w→ θ, ∀ u ∈ P. (2.3)

Let xn = Tnx0 for each n. Note that T is nondecreasing on [x0,+∞), then it follows from x0 � Tx0 that

x0 � x1 � · · · � xn � xn+1, ∀ n. (2.4)

By (1.1) and (2.4),

θ � xn+1 − xn = Txn − Txn−1

� A1(xn − xn−1) +A2(xn+1 − xn) +A3(xn+1 − xn) +A4(xn − xn) +A5(xn+1 − xn−1)

= A1(xn − xn−1) +A2(xn+1 − xn) +A3(xn − xn−1) +A5(xn+1 − xn) +A5(xn − xn−1), ∀ n,

and so
θ � (I−A2 −A5)(xn+1 − xn) � (A1 +A3 +A5)(xn − xn−1), ∀ n. (2.5)

Note that (I−A2 −A5)
−1 : P → P is a linear bounded mapping by r(A2 +A5) < 1 and taking B = A2 +A5

in (2.2). Acting (2.5) with (I−A2 −A5)
−1, we get

θ � xn+1 − xn � A(xn − xn−1), ∀ n, (2.6)

where A = (I −A2 −A5)
−1(A1 +A3 +A5). Clearly, (I −A)−1 is also a linear bounded mapping since

r(A) < 1 by (2.1). Taking B = A in (2.2), by (2.6), we have

θ � xm − xn =

m−1∑
i=n

(xi+1 − xi) �
m−1∑
i=n

Ai(x1 − x0)

= An
m−1∑
i=0

Ai(x1 − x0) � An(I−A)−1(x1 − x0), ∀ m > n.

(2.7)

Taking B = A and u = (I−A)−1(x1 − x0) in (2.3), it follows that

An(I−A)−1(x1 − x0)
w→ θ (n→∞),

which together with (2.7) and Lemma 1.4 (iii) implies that

xm − xn
w→ θ (m > n→∞), (2.8)
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i.e., {xn} is a w-Cauchy sequence. Thus by the Picard-completeness of T at x0, there exists x∗ ∈ E such
that

xn
w→ x∗. (2.9)

It is clear that [xn,+∞) is w-closed for each n by Lemma 1.4 (ii), and so it follows from (2.4) and (2.9) that

xn � x∗, n = 0, 1, 2, · · · . (2.10)

Moreover, by the nondecreasing property of T on [x0,+∞),

xn+1 = Txn � Tx∗, n = 0, 1, 2, · · · ,

which together with (2.9) and Lemma 1.4 (ii) implies that

x∗ � Tx∗. (2.11)

By (1.1), (2.4), (2.10), and (2),

θ � Tx∗ − xn+1

= Tx∗ − Txn

� A1(x
∗ − xn) +A2(Tx

∗ − x∗) +A3(xn+1 − xn) +A4(x
∗ − xn+1) +A5(Tx

∗ − xn), ∀ n.
(2.12)

Letting n→∞ in (2.12), by (2.8), (2.9), Lemma 1.4 (iii), and Lemma 1.10 we get

θ � Tx∗ − x∗ � A2(Tx
∗ − x∗) +A5(Tx

∗ − x∗),

and so
(I−A2 −A5)(Tx

∗ − x∗) � θ.

Acting the above inequality with (I−A2 −A5)
−1, we have θ � Tx∗ − x∗ � θ, i.e., x∗ = Tx∗.

Theorem 2.2. Let P be a solid cone of a normed vector space (E, ‖ · ‖), y0 ∈ E and T : D = (−∞,y0] → E a
nondecreasing order-Ćirić-Lipschitz mapping restricted with linear bounded mappings Ai : P → P (i = 1, 2, 3, 4, 5).
Assume that Ty0 � y0, T is Picard-complete at y0 and

r(A3 +A4) < 1, r((I−A3 −A4)
−1(A1 +A2 +A4)) < 1. (2.13)

Then T has a fixed point in (−∞,y0].

Proof. Let yn = Tny0 for each n. Note that T is nondecreasing on (−∞,y0], then it follows from Ty0 � y0
that

yn+1 � yn � · · · � y1 � y0, ∀ n. (2.14)

Set A = (I−A3 −A4)
−1(A1 +A2 +A4), then r(A) < 1 by (2.13). In analogy to (2.7), by (1.1) and (2.14), we

obtain

θ � yn − ym =

m−1∑
i=n

(yi − yi+1) �
m−1∑
i=n

A
i
(y0 − y1)

= A
n
m−1∑
i=0

A
i
(y0 − y1) � A

n
(I−A)−1(y0 − y1), ∀ m > n.

(2.15)

Taking B = A and u = (I−A)−1(x1 − x0) in (2.3), it follows that

A
n
(I−A)−1(x1 − x0)

w→ θ (n→∞),
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which together with (2.15) and Lemma 1.4 (iii) implies that

yn − ym
w→ θ (m > n→∞). (2.16)

Thus by the Picard-completeness of T at y0, there exists y∗ ∈ E such that

yn
w→ y∗. (2.17)

In analogy to (2.9), (2.10), and (2), we obtain

Ty∗ � y∗ � yn, n = 0, 1, 2, 3, · · · . (2.18)

By (1.1), (2.14), and (2.18),

θ � yn+1 − Ty
∗ = Tyn − Tx∗

� A1(yn − y∗) +A2(yn − yn+1) +A3(y
∗ − Ty∗) +A4(yn − Ty∗) +A5(yn+1 − y

∗), ∀ n.

Letting n→∞ in the above inequality, by (2.16), (2.17), Lemma 1.4 (iii), and Lemma 1.10 we get

θ � y∗ − Ty∗ � A3(y
∗ − Ty∗) +A4(y

∗ − Ty∗),

and so
(I−A2 −A5)(y

∗ − T∗y∗) � θ.

Acting the above inequality with (I−A2 −A5)
−1, we have θ � y∗ − Ty∗ � θ, i.e., y∗ = Ty∗.

Remark 2.3. Theorems 2.1 and 2.2 are still valid without assumption of the Picard-completeness of T at the
expense that E is w-complete by Remark 1.8.

Proposition 2.4. Let P be a cone of a normed vector space (E, ‖ · ‖) and Ai : P → P (i = 1, 2, 3, 4, 5) be linear
bounded mappings. If one of the following conditions is satisfied:

(H1) Ai(i = 1, 2, 3, 4, 5) are mutually commutative (i.e., AiAj = AjAi for each 1 6 i, j 6 5), r(A4) = r(A5) and∑5
i=1 r(Ai) < 1;

(H2) Ai(i = 1, 2, 3, 4, 5) are mutually commutative, there exists ε > 0 such that r(A4) − r(A5) > ε and∑5
i=1 r(Ai) = 1 + ε,

then Ai(i = 1, 2, 3, 4, 5) satisfy the condition (2.1).

Proof. Suppose that (H1) is satisfied. Since Ai(i = 1, 2, 3, 4, 5) are mutually commutative, it follows from
(H1) that r(A2 +A5) 6 r(A2) + r(A5) < 1 and

r((I−A2 −A5)
−1(A1 +A3 +A5)) 6

r(A1 +A3 +A5)

1 − r(A2 +A5)
6
r(A1) + r(A3) + r(A5)

1 − r(A2) − r(A5)

=
r(A1) + r(A3) + r(A4)

1 − r(A2) − r(A5)
< 1,

and hence (2.1) holds.
Suppose that (H2) is satisfied. Since Ai(i = 1, 2, 3, 4, 5) are mutually commutative, it follows from (H2)

that

r(A2 +A5) 6 r(A2) + r(A5) 6
3∑
i=1

r(Ai) + 2r(A5) <

3∑
i=1

r(Ai) + (r(A4) − ε+ r(A5) 6 1,

and

r((I−A2 −A5)
−1(A1 +A3 +A5)) 6

r(A1 +A3 +A5)

1 − r(A2 +A5)
6
r(A1) + r(A3) + r(A5)

1 − r(A2) − r(A5)
< 1,

and hence (2.1) holds.
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In analogy to Proposition 2.4, we have the following result.

Proposition 2.5. Let P be a cone of a normed vector space (E, ‖ · ‖) and Ai : P → P (i = 1, 2, 3, 4, 5) be linear
bounded mappings. If either (H1), or the following condition is satisfied:

(H3) Ai (i = 1, 2, 3, 4, 5) are mutually commutative, there exists ε > 0 such that r(A5) − r(A4) > ε and∑5
i=1 r(Ai) = 1 + ε,

then Ai (i = 1, 2, 3, 4, 5) satisfy condition (2.13).

By Remark 1.8, Propositions 2.4 and 2.5, we have the following two corollaries corresponding to
Theorems 2.1 and 2.2.

Corollary 2.6. Let P be a solid cone of a normed vector space (E, ‖ · ‖), x0 ∈ E and T : D = [x0,+∞) → E a
nondecreasing order-Ćirić-Lipschitz mapping restricted with linear bounded mappings Ai : P → P (i = 1, 2, 3, 4, 5).
Assume that x0 � Tx0 and (H2) is satisfied. If E is w-complete, or T is Picard-complete at x0, then T has a fixed
point in [x0,+∞).

Corollary 2.7. Let P be a solid cone of aw-complete normed vector space (E, ‖ · ‖), y0 ∈ E and T : D = (−∞,y0]→
E a nondecreasing order-Ćirić-Lipschitz mapping restricted with linear bounded mappings Ai : P → P (i =
1, 2, 3, 4, 5). Assume that Ty0 � y0 and (H3) is satisfied. If E is w-complete, or T is Picard-complete at y0, then T
has a fixed point in (−∞,y0].

In particular when Ai,Bi (i = 1, 2, 3, 4, 5) are nonnegative real numbers, we have the following two
fixed point results.

Corollary 2.8. Let P be a solid cone of a normed vector space (E, ‖ · ‖), x0 ∈ E and T : D = [x0,+∞) → E a
nondecreasing order-Ćirić-Lipschitz mapping restricted with nonnegative real numbers Ai > 0 (i = 1, 2, 3, 4, 5).
Assume that x0 � Tx0 and the following condition is satisfied:

(H ′2) there exists ε > 0 such that
∑5
i=1Ai = 1 + ε and A4 −A5 > ε.

If E is w-complete, or T is Picard-complete at x0, then T has a fixed point in [x0,+∞).

Corollary 2.9. Let P be a solid cone of a normed vector space (E, ‖ · ‖), y0 ∈ E and T : D = (−∞,y0] → E a
nondecreasing order-Ćirić-Lipschitz mapping restricted with nonnegative real numbers Ai > 0 (i = 1, 2, 3, 4, 5).
Assume that Ty0 � y0 and the following condition is satisfied:

(H ′3) there exists ε > 0 such that
∑5
i=1Ai = 1 + ε and A5 −A4 > ε.

If E is w-complete, or T is Picard-complete at y0, then T has a fixed point in (−∞,y0].

Remark 2.10. Corollaries 2.8 and 2.9 are still valid in Hausdorff topological vector spaces.

Remark 2.11. In Corollaries 2.6–2.9, the sum
∑5
i=1 r(Ai) or

∑5
i=1Ai may be even greater than or equal to

1. Therefore, even in the setting of normal cones, Corollaries 2.6–2.9 are still new.

In particular when P is normal cone of a Banach space (E, ‖ · ‖), we have the following two corollaries
by Proposition 1.6 and Remark 1.8.

Corollary 2.12. Let P be a normal cone of a Banach space (E, ‖ · ‖), x0 ∈ E and T : D = [x0,+∞) → E a
nondecreasing order-Ćirić-Lipschitz mapping restricted with nonnegative real numbers Ai > 0 (i = 1, 2, 3, 4, 5).
Assume that x0 � Tx0 and (H ′2) is satisfied. Then T has a fixed point in [x0,+∞).

Corollary 2.13. Let P be a normal cone of a Banach space (E, ‖ · ‖), y0 ∈ E and T : D = (−∞,y0] → E a
nondecreasing order-Ćirić-Lipschitz mapping restricted with nonnegative real numbers Ai > 0 (i = 1, 2, 3, 4, 5).
Assume that Ty0 � y0 and (H ′3) is satisfied. Then T has a fixed point in (−∞,y0].
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Example 2.14. Let E = {1, 2, 3} be endowed with the usual norm | · | and P = {x ∈ R : x > 0}. Then (E, | · |)
is a Banach space and P is a normal cone of E and the partial order � induced by P is the usual total order
6.

Let T1 = T2 = 1 and T3 = 2, and set x0 = 1. Clearly, x0 � Tx0, [x0,+∞) = E and T : [x0,+∞) → E is
nondecreasing. Note that T1 − T1 = T2 − T2 = T3 − T3 = T2 − T1 = 0 and T3 − T1 = T3 − T2 = 1, then
it suffices to verify that (1.1) is satisfied with x = 3,y = 1 and x = 3,y = 2. Set Bi = 0 (i = 1, 2, 3, 4, 5),
A1 = A2 = A3 = A5 = 1

6 and A4 > 1
3 . Clearly,

∑5
i=1Ai > 1 but (H ′2) is satisfied with ε = A4 −

1
3 since

A4 −A5 = A4 −
1
6 > ε. Direct calculation gives that

0 < T3 − T1 = 1 <
4
3
6

2
3
+ 2A4 = 2A1 +A2 + 2A4 +A5

= A1(1 − 3)+ +A2(3 − T3)+ +A3(1 − T1)+ +A4(3 − T1)+ +A5(1 − T3)+,

0 < T3 − T2 = 1 <
7
6
6 A1 +A2 +A3 + 2A4

= A1(2 − 3)+ +A2(3 − T3)+ +A3(2 − T2)+ +A4(3 − T2)+ +A5(2 − T3)+.

Thus T has a fixed point in E by Corollary 2.12 (in fact, x = 1 is a fixed point of T ).
However, for each A ∈ [0, 1) we get T3 − T2 = 1 > A = A(3 − 2), and hence none of the results of

[6, 8, 10, 11] concerned with order-Lipschitz mappings is applicable here. On the other hand, for each
q, r, s, t > 0 with q+ r+ s+ 2t < 1, we have

q|3 − 2|+ r|3 − T3|+ s|2 − T2|+ t(|3 − T2|+ |2 − T3|) = q+ r+ s+ 2t < 1 = |T3 − T2|,

i.e., T is not a Ćirić’s contraction and hence none of the results in [1–3, 7] is applicable here.

Now we come to consider the unique existence of fixed points of order-Ćirić-Lipschitz mappings.

Theorem 2.15. Let P be a solid cone of a normed vector space (E, ‖ · ‖), x0,y0 ∈ E with x0 � y0 and T : D =
[x0,y0] → E a nondecreasing order-Ćirić-Lipschitz mapping restricted with linear bounded mappings Ai : P →
P (i = 1, 2, 3, 4, 5). Assume that x0 � Tx0, Ty0 � y0, T is Picard-complete at x0 and y0, and (H1) is satisfied. Then
T has a unique fixed point x∗ ∈ [x0,y0], and for each z0 ∈ [x0,y0], zn

w→ x∗, where zn = O(T , z0).

Proof. The existence of fixed points immediately follows from Theorems 2.1 and 2.2 and Propositions 2.4
and 2.5. Note that T is nondecreasing on [x0,y0], thus it follows from x0 � Tx0, Ty0 � y0 that

x0 � x1 � · · · � xn � · · · � yn � · · · � y1 � y0, ∀ n. (2.19)

Letting n→∞ in (2.19), by (2.9), (2.17), and Lemma 1.4 (ii), we get

x∗ � y∗. (2.20)

Thus by (1.1) and (2.19),

θ � yn+1 − xn+1

= Tyn − Txn

� A1(yn − xn) +A2(yn − yn+1) +A3(xn+1 − xn) +A4(yn − xn+1) +A5(yn+1 − xn), ∀ n.
(2.21)

Letting n→∞ in (2.21), by (2.8), (2.9), (2.17), (2.17), (2.20), Lemma 1.4 (iii), and Lemma 1.10, we get

θ � y∗ − x∗ � A1(y
∗ − x∗) +A4(y

∗ − x∗) +A5(y
∗ − x∗),

and so
(I−A1 −A4 −A5)(y

∗ − x∗) � θ. (2.22)
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Note that (I − A1 − A4 − A5)
−1 : P → P is a linear bounded mapping by

∑5
i=1 r(Ai) < 1 and taking

B = A1 +A4 +A5 in (2.2). Acting (2.22) with (I−A1 −A4 −A5)
−1, we obtain y∗ = x∗.

For each z0 ∈ [x0,y0], we have
xn � zn � yn,

which together with (2.9), (2.17), Lemma 1.4 (iii), and x∗ = y∗ implies that zn
w→ x∗.

Suppose that x ∈ [x0,y0] is another fixed point of T . Clearly, Tnx = x for each n and Tnx w→ x∗. Then
by Lemma 1.4 (i), x = x∗. This shows x∗ is the unique fixed point of T in [x0,y0].

Remark 2.16. Theorem 1.2 is a particular case of Theorem 2.15 in Banach algebras with A1 ∈ P and
Ai = θ (i = 2, 3, 4, 5).
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